Relational Database: Identities of Relational Algebra; Example of Query Optimization

Greg Plaxton
Theory in Programming Practice, Spring 2005
Department of Computer Science
University of Texas at Austin

Selection Splitting

ullet For any database relation R and predicates p, q, we have

$$\sigma_{p \wedge q}(R) = \sigma_p(\sigma_q(R))$$

A corollary is that selection is commutative, that is,

$$\sigma_p(\sigma_q(R)) = \sigma_q(\sigma_p(R))$$

Projection Refinement

ullet For any subsets a and b of a database relation R such that $a\subseteq b$, we have

$$\pi_a(R) = \pi_a(\pi_b(R))$$

Commutativity of Selection and Projection

ullet For any subset a of the attributes of a database relation R, and any predicate p, we have

$$\pi_a(\sigma_p(R)) = \sigma_p(\pi_a(R))$$

Commutativity and Associativity of Union, Cross Product, Join

- Union and cross product are commutative and associative
- Join is commutative
- For any database relations R, S, and T such that (1) R and S have at least one common attribute, (2) S and T have at least one common attribute, and (3) no attribute is common to R, S, and T, we have

$$(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$$

Selection Pushing

• For any database relations R and S, any predicate p, and any operator \odot in the set $\{\cup, \cap, -\}$, we have

$$\sigma_p(R \odot S) = \sigma_p(R) \odot \sigma_p(S)$$

• For any database relations R and S, any predicate p that depends only on attributes of R, and any operator \oslash in the set $\{\times, \bowtie\}$, we have

$$\sigma_p(R \oslash S) = \sigma_p(R) \oslash S$$

Projection Pushing

ullet For any database relations R and S, and any set of attributes a, we have

$$\pi_a(R \cup S) = \pi_a(R) \cup \pi_a(S)$$

Distributivity of Projection over Join

• For any database relations R and S with associated sets of attributes r and s, respectively, and any sets of attributes a, b, and c such that $a \subseteq r \cup s$, $b = (a \cap r) \cup d$, and $c = (a \cap s) \cup d$ where $d = r \cap s$, we have

$$\pi_a(R \bowtie S) = \pi_a(\pi_b(R) \bowtie \pi_c(S))$$

An "Unnamed" Identity (to be used later)

• For any database relations R and S, and any predicates p and q such that p depends only on attributes of R and q depends only on attributes of S, we have

$$\sigma_{p \wedge q}(R \bowtie S) = \sigma_p(R) \bowtie \sigma_q(S)$$

- Proof:
 - By selection splitting and commutativity of join,

$$\sigma_{p \wedge q}(R \bowtie S) = \sigma_p(\sigma_q(S \bowtie R))$$

- By selection pushing over join and commutativity of join,

$$\sigma_p(\sigma_q(S\bowtie R)) = \sigma_p(R\bowtie \sigma_q(S))$$

By selection pushing over join,

$$\sigma_p(R \bowtie \sigma_q(S)) = \sigma_p(R) \bowtie \sigma_q(S)$$

Query Optimization

- ullet We are given a query in the form of a relational algebra expression lpha
- We could evaluate α directly
- Instead, it might be more efficient to use identities such as the ones presented earlier to obtain an equivalent expression β for which a direct evaluation is more efficient

An Example of Query Optimization

- We consider an abstraction of the movie example discussed in the course packet
- ullet For the sake of brevity, we use the letters A through I to refer to the nine attributes of the example
- We have three database relations R, S, and T with attributes $\{A,B,C,D,E\}$, $\{A,F,G,H\}$, and $\{F,I\}$, respectively
- Let p (resp., q) denote a predicate asserting that attribute B (resp., G) has a particular given value
- We wish to evaluate $\pi_I(\sigma_{p \wedge q}(R \bowtie S \bowtie T))$

Example: High Level

We wish to evaluate

$$\pi_I(\sigma_{p \wedge q}(R \bowtie S \bowtie T))$$

We will prove that this expression is equivalent to

$$\pi_I([\pi_A(\sigma_p(R))\bowtie \pi_{A,F}(\sigma_q(S))]\bowtie T)$$

- Why is the latter expression likely to be more efficient to evaluate directly?
- In what follows we will give a step-by-step proof of the equivalence of the two preceding formulae

Step One

• Claim:

$$\pi_I(\sigma_{p \wedge q}(R \bowtie S \bowtie T)) = \pi_I(\sigma_{p \wedge q}[(R \bowtie S) \bowtie T])$$

ullet This claim follows from the associativity of \bowtie (as we have already noted, the required conditions are met)

Step Two

• Claim:

$$\pi_I(\sigma_{p \wedge q}[(R \bowtie S) \bowtie T]) = \pi_I(\sigma_{p \wedge q}(R \bowtie S) \bowtie T)$$

• This claim follows from selection pushing over join

Step Three

Claim:

$$\pi_I(\sigma_{p \wedge q}(R \bowtie S) \bowtie T) = \pi_I([\sigma_p(R) \bowtie \sigma_q(S)] \bowtie T)$$

- ullet This claim follows from the "unnamed" identity established earlier since p only involves attribute B and q only involves attribute G
 - Note that B is an attribute of R and G is an attribute of S

Step Four

• Claim:

$$\pi_I([\sigma_p(R)\bowtie\sigma_q(S)]\bowtie T)=\pi_I(\pi_F[\sigma_p(R)\bowtie\sigma_q(S)]\bowtie\pi_{F,I}(T))$$

• This claim follows from distributivity of projection over join

Step Five

• Claim:

$$\pi_I(\pi_F[\sigma_p(R)\bowtie\sigma_q(S)]\bowtie\pi_{F,I}(T))=\pi_I(\pi_F[\sigma_p(R)\bowtie\sigma_q(S)]\bowtie T)$$

 \bullet This claim follows from the observation that $\pi_{F,I}(T)=T$

Last Step

• Claim:

$$\pi_I(\pi_F[\sigma_p(R)\bowtie\sigma_q(S)]\bowtie T) = \pi_I([\pi_A(\sigma_p(R))\bowtie\pi_{A,F}(\sigma_q(S))]\bowtie T)$$

- This claim follows from distributivity of projection over join
 - Note that the lone common attribute of $\sigma_p(R)$ and $\sigma_q(S)$ is A