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There are two parts to this assignment. The first part is described in Section 1 below,
and may be done with a partner. The proofs associated with the first part are due at the
beginning of class on Wednesday, November 28.

The second part, described in Section 2 below, consists of a number of exercises related
to the lecture material, and is due at the beginning of class on Wednesday, December 5.
Each student should work on this part separately.

NOTE: Here is a summary of the changes made to this document since it was handed
out in class.

1. In Section 1, the original document referred to a “Lemma 7”, but there was no
Lemma 7. Lemma 8 has now been renamed to Lemma 7; the bonus problem is to
prove this lemma. The basic task is to prove four of Lemmas 1 through 6.

2. In Exercise 4(b), the case conditions mentioned in the hints section have been corrected
to 0 ≤ k ≤ m and m < k ≤ 2m.

3. In the statement of Lemma 3 and in the sentence that follows Lemma 3, I had mistak-
enly written “Algorithm 2” instead of “Algorithm C”.

1 Programming & Problem Solving: Mooov Around

In the previous assignment you implemented an algorithm called Algorithm C for the Mooov
Around problem with general (i.e., not necessarily strict) preferences. In the sequence of
lemmas stated below, we establish a number of key properties of Algorithm C. Your task is
to prove any four of Lemmas 1 through 6. You have the option to also turn in a proof of
Lemma 7 for bonus credit. In proving a given lemma, you should feel free to make use of
any of the facts or lemmas stated before it. Fact 1 below is straightforward to prove.

Fact 1: Algorithm C performs O(n2) revelation actions.
Lemma 1: If Algorithm C performs an action that maps the current configuration G to

a new configuration G′, then satisfied(G) ⊆ satisfied(G′).
Lemma 2: If G is a configuration such that a trading action is enabled for cycle C, then

at least one student on C belongs to unsatisfied(G).
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Lemma 3: Algorithm C performs O(n) trading actions.
Fact 1 and Lemmas 1 through 3 imply that Algorithm C terminates after performing

O(n2) actions.
Lemma 4: If G is a configuration such that unsatisfied(G) is nonempty, then some action

is enabled in G.
The preceding lemma implies that Algorithm C terminates in a configuration G such

that unsatisfied(G) is empty. The next result is somewhat more difficult to prove. We state
it as a fact because we do not ask you to prove it.

Fact 2: Assume that Algorithm C performs an action mapping the current configuration
G to a new configuration G′. Then for any space j, we have distance(G, j) ≤ distance(G′, j).

Lemma 5: Assume that Algorithm C performs an action mapping the current configu-
ration G to a new configuration G′. Let student i and space j be such that next(G, i) = j.
Prove that if distance(G′, j) = distance(G, j) then next(G′, i) = next(G, i).

For any configuration G, we define frozen(G) as the set of all students i such that
distance(G, space(G, i)) =∞.

Lemma 6: Assume that Algorithm C performs an action mapping the current configu-
ration G to a new configuration G′. Let i be a student in frozen(G). Then i belongs to
satisfied(G), space(G′, i) = space(G, i), and i belongs to frozen(G′).

In Assignment 4 we proved that the output allocation of Algorithm B is uniquely deter-
mined, i.e., it does not depend on how the nondeterminism is resolved. Lemmas 5 and 6 are
useful for establishing the following result, which is nontrivial to prove. We state it as a fact
because we do not ask you to prove it.

Fact 3: The output allocation of Algorithm C is uniquely determined.
In Assignment 4 we proved that Algorithm B is strategyproof. Using a similar approach,

we can establish the following result. We state it as a fact because we do not ask you to
prove it.

Fact 4: Algorithm C is strategyproof.
Lemma 7: The allocation produced by Algorithm C is strictly Pareto-efficient. Hints:

Let G0, G1, . . . , Gk denote the sequence of configurations associated with an execution of
Algorithm C. By Lemma 6, we have frozen(G`−1) ⊆ frozen(G`) for 1 ≤ ` ≤ k. Since
every student belongs to unsatisfied(G0), we have distance(G0, j) = 1 for every space j,
and hence frozen(G0) is empty. Since Algorithm C terminates in a configuration G such
that unsatisfied(G) is empty, we conclude that every student belongs to frozen(Gk). For
1 ≤ ` ≤ k, let U` denote the set of students frozen(G`) \ frozen(G`−1). Assume that some
allocation π′ weakly dominates the allocation π produced by Algorithm C, and derive a
contradiction by comparing the sets of spaces allocated to U1 under π and π′, then comparing
the sets of spaces allocated to U2 under π and π′, and so on.

It is straightforward to argue that the allocation produced by Algorithm C satisfies
individual rationality. Thus Algorithm C provides a strategyproof solution to the Mooov
Around problem. It turns out that Algorithm C enjoys other fundamental game-theoretic
properties as well. Specifically, the output allocation is in the “core”, and is in the “strict
core” if that set is nonempty. An allocation π is in the core (resp., strict core) if no subset
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of the students can all do better than (resp., can all do at least as well as, with at least one
student doing better) in π by trading amongst themselves the set of spaces initially assigned
to them by the university. We omit the (nontrivial) proofs that Algorithm C enjoys these
core-related properties.

2 Exercises

1. In class we discussed the problem of determining whether a given graph is 3-colorable,
and we referred to this decision problem as 3-COL. We also presented a polynomial-time
transformation from 3-SAT to 3-COL as part of a proof that 3-COL is NP-complete
(see also Section 8.7 of the textbook). The other part of the proof involved arguing
that 3-COL belongs to NP, which is straightforward. Given a graph G, we can also ask
whether G is 4-colorable; let us call this decision problem 4-COL. Give a polynomial-
time transformation from 3-SAT to 4-COL, justifying your answer. (Since it is easy
to argue that 4-COL belongs to NP, we conclude that 4-COL is NP-complete.) Hint:
Make suitable modifications to the polynomial-time transformation from 3-SAT to
3-COL that we presented in class.

2. Prove that the number of finite languages over the alphabet {0, 1} is countably infinite.

3. Let S denote the set of all finite strings over the alphabet {a}, i.e., S = a∗ =
{ε, a, aa, aaa, . . .}. Prove that there is an undecidable language over the alphabet {a},
i.e., an undecidable subset of S.

4. In class we discussed two approximation algorithms for an NP-hard load balancing
problem in which we are asked to distribute n tasks, each with a positive integer
weight, over m machines in a way that minimizes the maximum load of any machine.
The first algorithm that we presented guarantees a maximum load within a factor of
two of optimal. The second algorithm that we presented guarantees a maximum load
within a factor of 3

2
of optimal. These two algorithms are also presented in Section 11.1

of the text, where they are referred to as GreedyBalance and SortedBalance,
respectively. The purpose of the present question is to develop a tighter analysis of
algorithm SortedBalance. Specifically, we will prove that this algorithm achieves
an approximation factor of 4

3
. Fix an instance I of the load balancing problem with m

machines and n tasks. Number the tasks from 1 to n, and let wi denote the positive
integer weight of task i. Assume without loss of generality that the tasks are numbered
in such a way that wi ≥ wi+1, 1 ≤ i < n. Let L∗ denote the minimum possible
maximum machine load. Let k denote the number of tasks with weight greater than
L∗/3.

(a) Explain why k is at most 2m.
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(b) Let L∗∗ denote the minimum possible maximum machine load when tasks 1
through k are assigned to the machines (and the rest of the tasks are not as-
signed to any machine). Prove that at the point in its execution when algorithm
SortedBalance has processed tasks 1 through k, the maximum load of any ma-
chine is exactly L∗∗. Hints: You may find it useful to consider the cases 0 ≤ k ≤ m
and m < k ≤ 2m separately. In each case, begin by precisely characterizing of the
way that algorithm SortedBalance maps tasks 1 through k to the machines.

(c) Prove that algorithm SortedBalance achieves an approximation ratio of 4
3
.

Hint: Use the same overall framework as we used to establish the 3
2

bound, but
improve the bound by making use of the results of parts (a) and (b).
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