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Problem Set #3

This problem set is due at the start of class on Thursday, March 29th.

Fix an instance of the assignment game with m buyers and n sellers, and where all of
the o, ; values are integers. As a technical convenience, we assume that the set of buyers
includes n buyers ¢ such that «;; = 0 for each item j. (These buyers may be viewed as
dummy buyers; we will use them to ensure that there is a stable assignment in which every
item is assigned to a buyer.)

Let p* denote the minimum (i.e., buyer-optimal) stable price vector for this instance. In
the lecture we saw how to use the (incremental) Hungarian algorithm to compute p*. In
this problem set, we analyze another method for computing p*. For any price vector p, and
any buyer i, we define gap(p,i) as the maximum, over all items j, of o ; — p;. Given any
price vector p, let yes(p) denote the set of all buyers ¢ such that gap(p,i) > 0, let maybe(p)
denote the set of all buyers i such that gap(p,i) = 0, and let no(p) denote the set of all
buyers ¢ such that gap(p,i) < 0.

For any buyer i, we define demand(p, 1) as the set of all items j such that o, ; — p; =
max{0, gap(p,)}. For any set of items S, we define confined(p, S) as the set of all buyers
i in yes(p) such that demand(p,i) is contained in S. [NOTE ADDED 3/16/12: In the
original version of the problem set, I had erroneously written “belongs to S” at the end
of the previous sentence, rather than “is contained in S”.] We define overdemanded(p) as
the collection of all sets of items S such that |confined(p, S)| > |S|. We define a subset of
overdemanded(p), denoted minimal(p), as follows: A set S in overdemanded(p) belongs to
minimal(p) if no proper subset of S belongs to overdemanded(p).

For any set of items S, we define interested(p, S) as the set of all buyers ¢ such that
demand(p, i) NS is nonempty.

1. Let p be a price vector such that p < p* (i.e, for any item j, p; < p;f), let S be a set
of items in minimal(p), and let p’ denote the price vector that is obtained from p by
incrementing the prices of all items in S (i.e., for each item j in S, p’ = p; + 1, and for
each item j that does not belong to S, p; = p;). Prove that p’ < p*.

2. Consider the following nondeterministic algorithm A for computing a price vector
p. Start by initializing p to the all-zeros vector. Then, while overdemanded(p) is
nonempty, nondeterministically choose a set S from minimal(p) and update p by in-
crementing each p; such that j belongs to S. It is easy to argue that this algorithm
terminates. In the following parts, let p denote the final price vector produced by some
execution of algorithm A.

(a) Use the result of question 1 to argue that p is at most p*.

(b) Prove that for any set of items S, we have |interested(p,S)| > |S|. Hint: Use
induction on the number of iterations performed by A, and bear in mind the
existence of the “dummy” buyers.
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Prove that there is an assignment 2z’ such that every buyer i in yes(p) is assigned
to an item in demand(p,i). Hint: It is known (Hall, 1935) that if G = (U,V, E)
is a bipartite graph such that every subset U’ of U has a neighborhood of size
at least |U’| in V, then G admits a matching M such that every vertex in U is
matched in M. (The “neighborhood” of a subset U’ of U is the set of all vertices
in V' that are adjacent to at least one vertex in U’.)

Prove that there is an assignment x” such that every item j is assigned to some
buyer i such that j belongs to demand(p,i). Hint: Make use of the result of
part (b) and the hint of part (c).

Prove that there is an assignment x such that every buyer 7 in yes(p) is assigned
to an item in demand(p, 1), and every item j is assigned to some buyer i such that
j belongs to demand(p,i). Hint: It is known (Mendelson and Dulmage, 1958)
that if bipartite graph G = (U, V, E') admits a matching M’ such that every vertex
in a subset U’ of U is matched in M’ and a second matching M" such that every
vertex in a subset V' of V' is matched in M”, then G admits a matching M such
that every vertex in U’ U V' is matched in M.

Let x be an assignment satisfying the conditions of the previous part. Prove that
there is a stable outcome w, v, x such that v = p.

Prove that p = p*.



