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The emergence of large scale distributed computing networks has given in-

creased prominence to a number of algorithmic concerns, including the need to

handle dynamic membership, selfishness, and incomplete information. In this doc-

ument, we outline our explorations into these algorithmic issues.

We first present our results on the analysis of a graph-based coupon collec-
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tor process related to load balancing for networks with dynamic membership. In

addition to extending the study of the coupon collector process, our results imply

load balancing properties of certain distributed hash tables.

Second, we detail our results on worst case payoffs when playing buyer-

supplier games, against many selfish, collaborating opponents. We study optimiza-

tion over the set of core vectors. We show both positive and negative results on

optimizing over the cores of such games. Furthermore, we introduce and study the

concept of focus point price, which answers the question: If we are constrained to

play in equilibrium, how much can we lose by playing the wrong equilibrium?

Finally, we present our analysis of a revenue management problem with in-

complete information, the online weighted transversal matroid matching problem.

In specific, we present an algorithm that delivers expected revenue within a con-

stant of optimal in the online setting. Our results use a novel algorithm to generalize

several results known for special cases of transversal matroids.
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Chapter 1

Three Algorithmic Concerns

1.1 Introduction

The emergence of large scale distributed computing networks has given prominence

to a number of algorithmic concerns. First, algorithms should handle dynamic

membership. In a large scale system, it is undesirable to have preallocated, central,

coordinating nodes for controlling membership. Such nodes limit the scalability of

the network and are bottle necks of communication. Second, algorithms should

handle selfish behavior on behalf of the computational nodes. For example, if the

network is spread across machines owned by several entities, each entity may have

its selfish interests override the interests of the community. Third, the algorithms

should work even when there is a lack of total information. For example, when

running an algorithm based on input from many participants, the algorithm may

not have access to the full input before a decision is required. Instead, the algorithm

would need to make on the spot, near-optimal decisions as input becomes available.

In this document, we present some methods of dealing with the algorithmic

issues of distributed computing networks. First, using probabilistic analysis, we con-

sider a random process with close connections to load balancing in distributed net-

works. We show some desirable properties of the random process that directly lead

to a load balancing scheme in distributed networks with dynamic membership. Sec-

ond, using game theory, we analyze a class of games called buyer-supplier games. We

consider the case where players can selfishly collude in an unrestricted fashion and

derive algorithms for finding worst case payoffs in the selfish environment. Third,
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we present an algorithm for finding near-optimal matchings in weighted transver-

sal matroids. The algorithm works without full knowledge of the input and finds

applications in search engine auctions, scheduling, and other domains.

The rest of the document is structured as follows. In the rest of this chapter,

we give some context and discussion of the results presented in the document. In

Section 1.2, we briefly describe our results on load balancing in distributed networks.

The full results are then presented in Chapter 2. In Section 1.3, we review some

game theoretic preliminaries and discuss our work on buyer-supplier games. The

full results are then presented in Chapter 3. In Section 1.4, we detail some of the

connections between probabilistic analysis and game theory that lead to our work

on the online matroid problem. We present our full results on the online matroid

problem in Chapter 4. Finally, in Chapter 5, we provide some concluding remarks

and discussion on future directions.

1.2 Dynamic Membership

In this section, we discuss our results on analyzing graph-based variants of the

classic coupon collector process. To provide context, in Section 1.2.1, we present

some history of the applications and variants of the coupon collector process. Then,

in Section 1.2.2, we discuss our results on several graph-based variants and related

load balancing applications.

1.2.1 Coupon Collector Processes

One of the most commonly discussed stochastic processes in computer science is the

so-called coupon collector process [26, 40]. In the coupon collector process, there are

n distinct coupons in a bag. The process proceeds in rounds, where in each round we

select a uniformly random coupon from the bag and replace it back into the bag. The

coupon collector process has been studied extensively. For example, we know that

Θ(n log n) rounds are required, with high probability, to see each coupon at least

once. We also know that after n rounds, we would have seen each coupon no more

than O(log n/ log log n) times with high probability [25]. The coupon process can

also be described as as placing balls uniformly at random into bins, where each bin

represents a coupon and placing a ball into a bin represents selecting that coupon.
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One application of the coupon collector process is load balancing in dis-

tributed systems. For example, imagine a distributed system with n servers. Fur-

thermore, imagine that jobs arrive into the system and each job is assigned to a

server. We call the number of jobs assigned to a server the server’s load. The

coupon collector results described in the previous paragraph immediately yield the

result that if n jobs are assigned uniformly at random to the n servers, then the max-

imum load in the system is O(log n/ log log n) with high probability. The coupon

collector process also finds applications in hashing, Markov chain mixing, Monte

Carlo methods and other areas [25, 37, 48].

Study of coupon collector processes goes as far back as de Moivre’s work

of 1712 [26]. Since then, numerous properties and variants of coupon collector

processes have been considered. For example, Erdös and Rényi bound the number

of rounds required to draw each of the n coupons at least m times [17]. Their result

is generalized by Kaplan, who bounds the number of rounds required for l of the

n coupons to be seen at least m times [29]. More recently, Azar et al., using the

balls and bins interpretation of the process, and consider a variant where in each

round we choose two bins uniformly at random and place the ball in the least loaded

bin [7]. They show that in this variant, the maximally loaded bin after n rounds

has log log n/ log 2 + O(1) balls with high probability, an exponential decrease in

the maximum load of the original process. Mitzenmacher extensively studies this

multi-choice process variant and its applications to load balancing in his thesis [39].

1.2.2 A Graph-Based Coupon Collector Process

Similar to Mitzenmacher, we also study several variants of the coupon collector

process. The variants we study take place on a graph and find applications in load

balancing for distributed hash tables.

A distributed hash table (DHT), is a special type of distributed network with

a primary focus on data storage. In a DHT, every machine is in charge of a fraction

of the storage namespace; this fraction of the namespace is the machine’s load. A

typical DHT connects n machines so that each machine has Θ(log n) neighbors. One

method for the (n + 1)st machine to join the DHT consists of the following three

steps:

• Select a uniformly random machine from the n machines in the DHT.
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• Query the selected machine’s neighbors for their loads.

• Join the network by splitting the load of the most heavily loaded neighbor.

Adler et al. have shown how to use similarities between the described join procedure

and a graph-based coupon collector process to prove load balance guarantees in the

distributed hash table [1].

Consider the following graph-based coupon collector process. Initially, all

the nodes of the graph are uncovered. The process then proceeds in rounds. In each

round, we first select a uniformly random node and cover one of the selected node’s

uncovered neighbors. Of course, exactly how we choose which uncovered neighbor

to cover leads to different variants of the graph-based coupon collector process. If

we imagine that a DHT is formed by the nodes of the graph, one can relate covering

a node in the process to splitting the load of the node in the DHT. Adler et al.

use this relationship to show that O(n) cover time, where n is the number of nodes

in the graph, in such a graph-based coupon collector process lead to load balance

guarantees in DHTs.

To be more specific, the cover time of a graph-based coupon collector process

is a random variable indicating the round on which the last uncovered node of the

graph is covered. Using the approach of Adler et al., an O(n) cover time be used to

show that, under the described DHT join procedure, if the DHT initially has a single

machine with a load of 1, then after n− 1 machines join the DHT, the load of every

machine is O( 1
n) with high probability. Thus, up to a constant factor, no machine

is loaded with more than its fair share of the total DHT load. For the load-balance

guarantees to hold, the O(n) cover time result must hold both in expectation and

with high probability.

Adler et al. have shown that picking a uniformly random uncovered neighbor

when the process takes place on the hypercube leads to an O(n) cover time. The

proofs of O(n) cover time of Adler et al. strongly depend on the structure of the

hypercube, and thus the resulting load balance results apply only to hypercubic

DHTs.

In Chapter 2, we analyze several graph-based coupon collector processes on

arbitrarily structured graphs. For several natural variants, we show that if all nodes

of the graph have degree Θ(log n), regardless of the specific graph structure, then

the cover time of the process is Θ(n) with high probability. We show that the
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same asymptotic bound holds for the expected cover time. See Theorem 2.4.1 and

Lemma 2.5.2 for a precise statement of results. Using the connection between cover

time and load balance due to Ader et al., our cover time results directly imply load

balance guarantees to arbitrarily structured DHTs, as long as the DHT nodes have

Θ(log n) neighbors, as is the case with most common DHTs [35].

To show our cover time results, we use what is known as a delay sequence

argument as our argument scaffold [34]. The earliest instances of the delay sequence

argument in the literature appear in the works of Aleliunas and Upfal on parallel

communication [3, 58]. The delay sequence argument is used to prove that a random

process completes in a certain time bound, say T (n), and works as follows. First,

we identify a set of problem specific combinatorial objects called delay sequences.

Second, we define the notion of an i-active delay sequence, which connects the

combinatorial object to a particular round in the process. Third, we argue that if the

process completes in round j, a j-active delay sequence is created. Finally, we argue

that there is no ω(T (n))-active delay sequence with high probability. These steps

let us conclude that the process completes in time O(T (n)) with high probability.

In addition to showing fast cover time results for several variants of the graph

coupon collector process, in Chapter 2 we also show that an arbitrary method of

choosing which uncovered neighbor to cover does not result in O(n) cover time.

Specifically, we show that under a natural process variant there exists a graph such

that each node in the graph has degree Θ(log n) but the graph-based coupon collector

process has Ω(n
√

log n/ log log n) cover time with high probability. In other words,

we show that the method in which we choose which uncovered neighbor to cover

does matter. See Theorem 2.6.1 for a precise statement of results.

1.3 Selfishness

In this section, we present our results on optimization over the core of buyer-supplier

games. But, before we can introduce the results in detail, in Sections 1.3.1 and 1.3.2,

we present some of the required game theoretic preliminaries. In Section 1.3.1,

we informally introduce the definition of a game. In Section 1.3.2, we informally

introduce the notion of a solution concept for a game by discussing several example

solution concepts. Then, we present our results on optimizing over the core of

buyer-supplier games in Sections 1.3.3 and 1.3.4.
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1.3.1 Game Theoretic Preliminaries

A game is a strategic interaction between a group of players. Every game has a set

of possible outcomes. The particular outcome realized by playing the game depends

on the actions selected by the game’s players. Each player has a utility, also known

as a payoff, associated with each outcome. Each player’s goal is to take actions that

maximize their payoff in the game’s final, realized outcome.

There are two basic ways of specifying games. The first is called the extensive

form, or game tree. Each level of the tree designates a point in time. The game

begins at the root level and continues to the leaves of the tree, where payoffs are

determined. Each node in the tree represents a decision available to the players.

The game described by the tree is sequential in the sense that the strategic options

available at level i in the tree are determined by the decisions made on levels 1

through i − 1.

The second basic way of specifying a game is called the normal form. Con-

trary to extensive form games, which have an intuitive, built-in, sequential nature,

normal form games are single-shot, simultaneous decision games. In other words, in

a normal form game, each player makes a single decision and the combined decisions

of all the players specify the game’s realized outcome.

It is possible to express extensive form games as normal form games. To

transform an extensive form game to a normal form game, we have the single decision

made by each player in the normal form game specify a strategy for all nodes in the

extensive form game tree. Once the simultaneous decisions are made in the normal

form game, there is a unique, fixed path from the root of the game tree to the game’s

outcome; thus, the payoffs are determined.

We restrict our attention to normal form games. Since extensive form games

can be expressed as normal form games, we do not eliminate any games by restricting

our attention to normal form games. More explicitly, a normal form game is defined

as follows. First, the game has a set P of players. Each player in P has an associated

set of actions, called a strategy set, as well as a utility function which determines

the player’s payoff given the actions chosen by all players in the game. Once the

players, the strategy sets, and the utility functions are specified, the normal form

game is fully specified. Figure 1.1 depicts a typical normal form game.
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Figure 1.1: A typical normal form game. The players are {Row,Col}. The strategy
set for both Row and Col happens to be the same, namely {C,D}. The utility
functions listed in the matrix specify the payoff to each player, given the vector of
strategies chosen by both players. For example, the payoff to the Row player when
Row chooses C and Column chooses D is −10.

1.3.2 Introduction to Solution Concepts

In game theory, a solution concept predicts the outcome of a game; the predic-

tions made by the solution concept are called equilibria. Different models of game

play lead to different solution concepts. For example, the famous Nash equilibrium

solution concept was developed within the framework alluded to in the previous

section: players make strategic decisions simultaneously, without any inter-player

communication [56, p. 240]. Intuitively, in a Nash equilibrium, each player is self-

ishly selecting the best response, personal payoff maximizing strategy. A set of best

response strategies can be complementary such that no player wishes to unilaterally

change strategy. To illustrate this, in Figure 1.1 fix the Strategy D for the Row

player and the Strategy D for the Col player. Given this fixed set of strategies, it

is to neither player’s advantage to unilaterally change strategy. If we find such a

set of complementary best response strategies, we have found a Nash equilibrium.

Every normal form game has a Nash equilibrium in mixed strategies, where a mixed

strategy is a probability distribution over the player’s strategy set.

A stronger solution concept than Nash equilibrium comes from the defini-

tion of a strongly dominated strategy. We say that Strategy 1 strongly dominates

Strategy 2 for some player if, regardless of the actions of the remaining players,

Strategy 1 always gives a higher payoff than Strategy 2. For example, in Figure 1.1,

the Strategy D strongly dominates Strategy C for the Row player. Regardless of

what Col plays, Row always receives a higher payoff from playing D than C. Thus,

C is not a reasonable strategy for Row and we can eliminate C from the possible

7



choices for Row. If iterative elimination of strongly dominated strategies leads to

a single outcome, we have found a dominant strategy equilibrium. All dominant

strategy equilibria are Nash equilibria, but the converse is not true. Because of the

associated strong requirements, dominant strategy equilibria do not always exist.

As a third and final example of a solution concept, we present the core, which

was developed with the notion that players may collude by communicating before

playing the game, and reallocating payoffs at the end of the game. Intuitively,

if no collusion is allowed, only some strategies are rational, since an individual

player never accepts a payoff that the player can unilaterally and selfishly improve.

Allowing some sets of players to collude further restricts the set of rational strategies.

A group of players does not accept a total payoff that is less than the group can

achieve through collaboration. The core is the set of payoff vectors resulting from

strategies that are rational when we allow every subset of the players to collude.

Again, because of the strong rationality requirements, the core of a game may be

empty.

For a more explicit example of the core, consider a game involving three

players, {A, B, C}. Each subset of the players, if allowed to collude, can unilaterally

guarantee some payoff, regardless of the remaining player’s actions. Suppose that

{A}, {B}, {C}, {AB}, {AC}, {BC}, {ABC} can unilaterally guarantee payoffs of

3, 2, 2, 10, 10, 10, 37, respectively. The core is then the set of payoff vectors where

each subset of players receives at least as much payoff as the subset can guarantee,

and we give out no more payoff than can be earned in the game. In our example, the

payoff vector (10, 10, 17), in alphabetical order of player name, is in the core since

every subset of the players receives at least as much as it can guarantee and we give

out a total of 37, which can be earned in the game. Similarly, the payoff vectors

(12, 15, 10) and (3, 27, 7) are also in the core. However, the payoff vector (10, 10, 16)

is not in the core, since the subset of players {ABC} does not receive as much as it

can guarantee. The payoff vector (3, 28, 7) is also not in the core, because, even if

everyone colludes, the players cannot achieve a total payoff of 38.

1.3.3 Buyer-Supplier Games

The connections between computer science and game theory can be categorized in

two ways.
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1. The transformation of optimization problems studied in computer science into

games. For example, Nisan and Ronen study scheduling under a truthful

mechanism setting [42]. Also, Archer and Tardos devise truthful mechanisms

for several combinatorial problems where the players’ secret information is a

single positive real number [6].

2. Algorithmic investigations into game theoretic concepts. For example, the

work of Daskalakis et al. classifies the computational complexity of Nash

equilibrium [13]. Also, Deng and Papadimitriou study the computability of

the Arrow-Debreu pricing equilibrium [15].

In Chapter 3, we present our results on optimization over the core of a large class of

games called buyer-supplier games. As such, our work fits into both categories. A

buyer-supplier game can be derived from most combinatorial minimization problems,

thus the work fits into the first category. Given a game theoretic characterization

of the core, the study of efficient optimization over the core fits into the second

category.

Buyer-supplier games, a subset of assignment games, have been studied for

decades. Shapley and Shubik originally characterized the core of buyer-supplier

games [55]. Since the work a Shapley and Shubik, there has been a series of works

both in the economics and computer science literature on buyer-supplier games [10,

18, 22].

We introduce buyer-supplier games with a specific example. The buyer-

supplier minimum spanning tree (MST) game is a buyer-supplier game derived from

the MST minimization problem. The set of players for the MST buyer-supplier

game consists of a set of suppliers, one for each edge, and a single buyer player.

Each supplier owns their corresponding edge, and the buyer’s goal is to purchase a

spanning tree from the suppliers. Consequently, a strategy for a supplier is a single

positive real number representing a bid submitted by the supplier to the buyer. A

strategy for the buyer is a subset of the suppliers, representing the set of suppliers

chosen by the buyer for a purchase. To model a real situation accurately, the utility

functions are defined as follows. Each supplier has an internal cost associated with

supplying goods to the buyer. The buyer has a fixed maximum amount of money,

M , they are willing to spend on purchasing services from the suppliers. The payoff

for the buyer is 0 if the edges chosen do not span the graph, and is otherwise equal to
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the remainder of the M dollars, after payments to the chosen suppliers are complete.

The payoff for a supplier is 0 if the supplier is not chosen by the buyer, and equal

to the supplier’s bid otherwise.

The MST buyer-supplier game lends itself to a natural interpretation. A

company owns factories on every node of a graph. The company wishes to connect

the factories by purchasing edges in the graph. Each edge is owned by a unique

supplier player. Each supplier has an internal cost associated with the company’s

usage of the edge. The company has a maximum amount of money it is willing

to spend on purchasing edges. The buyer-supplier game paradigm yields similarly

natural games when applied to other minimization problems. For example, Steiner

tree, shortest path, minimum set cover, minimum cut, facility location, single- and

multi-commodity flow can all be used to instantiate a buyer-supplier game. A

general method of transforming a combinatorial minimization problem to a buyer-

supplier game is presented in Chapter 3.

1.3.4 Optimization Over the Core of Buyer-Supplier Games

We informally introduced the core solution concept in Section 1.3.2. Unlike Nash

equilibrium, which is usually defined by a vector of strategies, the core is usually

defined by a vector of payoffs. Furthermore, the core can be defined under two

distinct settings: the transferable utility (TU) setting, and the non-transferable

utility (NTU) setting. In the TU setting, we expand each player’s strategy set to

include the transfer of any amount of their own utility to other players of the game.

In the NTU setting, such utility transfers are disallowed.

Shapley and Shubik developed the definition of the core and showed that

for buyer-supplier games, the core in the TU setting can be characterized by an

exponentially sized set of linear inequalities on the payoff vector [55]. In Chapter 3,

we show the surprising result that the same characterization holds in the NTU

setting. The proof is based on the intuitive observation that transfers of utility can

be simulated in the NTU setting by an adjustment to the supplier bids.

In our investigations, we introduce the concept of focus point price. Solution

concepts often yield multiple predictions, or equilibria. For example, there may be

multiple vectors in the core. In actual game play, however, only one of the equilibria

can be chosen by the players. Experiments show that conditions outside the game,
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such as societal pressures or undue attention to a specific player, focus the players’

attention on the point of a single equilibrium. A classic example is given by a

boardroom meeting, where a volunteer is needed to perform an undesirable task. In

real situations, everyone stays perfectly still in the hope of that the group’s focus

will not fall on them.

The focus point price measures the value of a good focus point. In other

words, the focus point price is the difference between the best and worst equilibrium

outcome, where the terms best and worst are based on some desirable criterion.

Stated succinctly, the focus point price answers the question: If we are constrained

to play in equilibrium, how much can we lose by playing the wrong equilibrium?

The focus point price concept motivates our examination of optimization

over the core of buyer-supplier games. We concentrate on the focus point price from

the buyer’s perspective. In other words, we try to answer the question: What is

the difference between the best and worst possible core outcome for the buyer? For

the rest of the document, when we say the buyer’s focus point price, we mean this

specific instance of the focus point price concept. In Chapter 3, we give two main

computational results, with applications to general buyer supplier games.

First, we give a positive computational result by exhibiting a separation ora-

cle over the exponential set of equations defining the core. Given a separation oracle,

the ellipsoid algorithm can be used to solve linear optimizations over the exponential

set of equations. The ellipsoid algorithm only calls the separation oracle a polyno-

mial number of times. Thus, if the separation oracle runs in polynomial time, we can

optimize linear functions over the exponential set of equations in polynomial time.

For a combinatorial minimization problem and the corresponding buyer-supplier

game, we are able to show that if it is possible to solve the minimization problem in

polynomial time, then it is possible to optimize linear functions over the core of the

game in polynomial time. See Theorem 3.4.1 for the precise statement of results.

Second, we give a complementary result, which can be used to show hardness

of optimization over the core. For a combinatorial minimization problem and the

corresponding buyer-supplier game, by using several polynomial time reductions, we

can show that solving the minimization problem is polynomial time equivalent to

optimization over the core of the game. See Theorem 3.5.8 for the precise statement

of results. In the process of showing Theorem 3.5.8, we also derive strong negative

results for computing the buyer’s focus point price. We show that if the underlying

11



minimization problem is not solvable in polynomial time, then it is not possible

to approximate the buyer’s focus point price to within any multiplicative factor in

polynomial time.

Finally, to complement our general results on optimization over the core of

buyer-supplier games, we also exhibit a simple extension of Kruskal’s algorithm

that can be used to compute the buyer’s focus point price in the buyer-supplier

MST game.

1.4 Incomplete Information

In this section, we present our results on incomplete information settings. To provide

context, before we discuss our results, we explore some of the intimate ties between

probabilistic analysis and game theory that result from modeling incomplete infor-

mation. In Sections 1.4.1, we give an example of how incentives can lead players

not to reveal their private information, leading to incomplete information. In 1.4.2,

we discuss some of the main approaches to dealing with incomplete information in

games, which include modeling a lack of knowledge as a probability distribution

over the possibilities. In Section 1.4.3, we consider the connections between ran-

dom processes and games to further reinforce the connections between game theory

and probabilistic analysis. Finally, in Section 1.4.4, we discuss our work on the

online matroid problem, a problem in a random process setting with incomplete

information.

1.4.1 Private Information Leads to Incomplete Information

The application of any of the solution concepts in Section 1.3.2, and indeed a player’s

decision making process as they try to maximize their payoff, depends on knowing

the utilities of all the players in the game. However, in real applications, it is

typical for each player to know only their own utility function. Each player depends

on outside information to get a sense of the other players’ utilities. Because of this

dependence on outside information, it may be advantageous for players not to reveal

their true evaluation of the game’s outcomes.

To illustrate the benefits of not revealing private information, consider the

“Chicken” game, displayed in Figure 1.2a. In this game, two cars drive directly

at each other. Each car has the choice of driving forward or swerving. If they
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-100

(b) Tough Man Chicken Game

Figure 1.2: The normal form game in 1.2a is the “Chicken” game. In this game
two cars square off and drive directly at each other. Each driver has the choice to
continue driving forward or swerve. The normal form game in 1.2b is the “Tough
Man Chicken” game. In this game Car2 has convinced Car1 that Car2 only cares
about its honor – driving is always preferable to swerving.

both drive forward, they crash and suffer terrible losses. If one swerves but the

other drives, the swerver suffers humiliation and other car declares victory. Finally,

if both cars swerve, both suffer mild humiliation. Applying the Nash equilibrium

solution concept, we find two equilibria at {Swerve, Drive} and {Drive, Swerve}.
Suppose that Car2 manages to convince Car1 that Car2 only cares about its

honor. In other words, Car1 believes that regardless of Car1’s actions, Car2 always

prefers to avoid humiliation and drive forward. This “Tough Man Chicken” game

is illustrated in Figure 1.2b. In this game there is only a single Nash equilibrium,

{Swerve, Drive}. In fact, {Swerve, Drive} also satisfies the stronger notion of a dom-

inant strategy equilibrium. Thus, Car2 ensures victory in the game by convincing

Car1 of its toughness.

Since players often benefit from preserving the secrecy of their true evalua-

tions of the game’s outcomes, to develop a truly applicable game theory, we must

find ways to deal with this “problem of private information.”

1.4.2 Addressing Incomplete Information

In this section, we detail how handling incomplete and private information leads to

the introduction of probabilistic analysis in games. In particular we detail two main

approaches to dealing with private information.

One approach to dealing with private information is through the design of
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truthful mechanisms. We call a game truthful if it is to every player’s advantage to

reveal all private information. A truthful mechanism is a truthful game in which

the equilibrium outcomes have some desired property. For the purposes of this dis-

cussion, we are interested in the truthfulness property, since it removes the problem

of private information.

A simple example of a truthful mechanism is the Vickrey auction, which is

also called a second price sealed bid auction. In this game the players are bidding

to purchase an item. Each player may bid a non-negative amount for the item. The

players simultaneously submit bids to the auctioneer, and the auctioneer assigns

the item to the player with the highest bid. However, the winning player does not

pay their bid, but only the second highest bid submitted to the auctioneer. In the

Vickrey auction, the private information of each player is the maximum amount of

money the player is willing to pay for the item on sale.

Intuitively, the Vickrey auction is truthful because the auction structure

guarantees that each player has no regret from revealing their private valuation of

the item. If a player bids more than their private valuation, the player runs the

risk of winning and paying more than the valuation. On the other hand, if the

player bids less than the private valuation, they do not gain any utility since there

is no decrease in the payment required upon winning. Upon winning, the player

always pays the second highest bid. Thus, when a player bids less than their private

valuation, the player just runs the risk of losing the auction at no gain in utility.

So, it is in each player’s interest to bid exactly their private evaluation of the item

on sale.

There has been a great amount of work in theoretical computer science on

truthful mechanism design, starting with the work by Nisan and Ronen [42]. Feigen-

baum, Papadimitriou, and Shenker have used truthful mechanisms in the context of

multicast transmissions [19]. Tardos and Archer have created a general framework

for designing truthful mechanisms where the private information of each player is a

single positive real number [6].

There is an intuitive problem with truthfulness which makes the method not

applicable in certain situations. We wish to have a player’s private information so

that we can make optimal decisions when playing against that player. However, a

rational player does not reveal private information if it is disadvantageous to do so.

We give two specific examples where this intuitive problem is manifested. First, if
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the players are involved in just two consecutive, identical executions of a truthful

mechanism, in general, it is no longer the case that revealing all private information

is the optimal strategy. If a player reveals private information in the first execution,

then the player may suffer a loss of utility in the second execution. The brittleness

of truthfulness under repetition holds even for the most common truthful mech-

anism, the Vickrey auctions introduced at the beginning of this section [60]. A

second example of the non applicability of truthfulness is related to the difficulty of

enforcing a desirable property known as budget balance. To maintain truthfulness,

many mechanisms make excessively large utility payments to the players. The pay-

ments made by the mechanism are often larger than the total wealth present at the

beginning of the game, implying that the mechanism is not budget balanced. The

constraints imposed by budget balance often irreconcilably conflict with truthful-

ness and the mechanism’s desired property. For example, in general, it is impossible

to design truthful, budget balanced mechanisms that maximize the net utility to all

players [49].

A second approach to dealing with the problem of private information is

the method of types developed by Harsanyi [27]. Informally, the method of types

removes the problem of private information by introducing a mathematically mean-

ingful notion of “beliefs” into the game. In Harsanyi’s model, every player has

beliefs, represented by probability distributions, about the private information of

the other players. With this model, a player can make optimal decisions by pre-

tending to play a random game with complete information, where the game is drawn

from a distribution determined by the player’s beliefs about the private values of

the other players. The key to the application of this method is the ability to deal

with a wide range of games of complete information.

While mathematically elegant, Harsanyi’s method of types does have several

drawbacks. The first, most glaring drawback is that a player may be entirely unsure

of their own beliefs. But, to properly analyze a game using the method of types,

the belief distributions are required. More pessimistic, worst case approaches can

be taken, but even those require at least a range for the unknown data [2].

The second drawback to the method of types is a more technical one. In the

formal statement of the method of types, each player has an associated set of types,

where each type specifies a utility function and a belief probability distribution over

the other players’ types. The belief probability distributions remove the problem of
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private information when it comes to unknown utility functions. However, to apply

the method of types, while each player may not know the types (utilities and beliefs)

of the other players, all players must know each other’s possible types.

A third drawback of the method of types stems from computational con-

siderations. To compute an equilibrium for a game using the method of types, we

compute an equilibrium strategy for each player type instead of simply for each

player. For example, suppose that we have a game between two players. Say Player

1 has two types {t10, t11} and Player 2 has two types {t20, t21}. Suppose that we are

helping Player 1 compute an equilibrium strategy. Since we are working with Player

1, we know the type of Player 1. Let us say that the type of Player 1 is t10. To com-

pute an equilibrium strategy for t10, since we are unsure of the type of Player 2,

we must compute equilibrium strategies for each of t20 and t21. But, the equilibrium

strategies of the types t20 and t21 depend on an equilibrium strategy of the unrealized

type t11. Thus, to compute an equilibrium strategy for t10, we compute one equilib-

rium strategy for each type in the game instead of one equilibrium strategy for each

player. A lack of information results in an explosion in the number of types and an

increase in the computational burden required for finding equilibria.

1.4.3 Random Processes in Games

Harsanyi’s method of types is one instance where we can think of the set of players

as playing a random game. The concept of playing random games is powerful and

has found wide applicability in game theory. Similarly to the method of types, other

models using a mixture of game theory and random processes are typically more

realistic and applicable than the standard game theoretic models. For example, it is

common to model complex games as a Markov chain, where each node of the chain

contains a game. The result of playing the game at a particular node, along with

some randomness, determines a transition to another node in the Markov chain.

Games evolving based on a random process are called stochastic games.

One common application of stochastic games comes in modeling evolution.

A common evolution model involves a fixed game and a player pool. At each step of

the random process, we randomly pair players in the player pool and each pair plays

the game. If a player does poorly over several rounds of random pairings, the player

“dies” and is removed from the pool. On the other hand, players who do well in the
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random pairings get to “reproduce,” creating clones of themselves in the pool. The

idea behind the evolution model is that over time, successful players dominate the

population in the pool.

A second common application of stochastic games comes in modeling mar-

kets. A market model usually involves a set of players playing a market game, as

well as a set of bystanders each of whom is presented with the choice of entering

the market game. In addition to the current strategies of all players, the payoff

each player receives from playing the market game is also dependent on the player’s

past strategy, the number of players playing the game, as well as some randomness

inherent in the game. A key notion in such market models is that of a “shock.”

Every so often, as determined by random events, the market game experiences a

shock which may drastically change the payoffs given to the players.

A third example of the combination of random processes and games comes

from Shapley’s study of stochastic games [54]. Shapley shows that two player, zero

sum stochastic games have a value. In other words, under every complementary

best-response equilibrium, the expected sum of payment exchanges over the course

of the stochastic game is the same. Shapley analyzes the expected payments in the

stochastic game, similarly to our analysis of the expected cover time in the graph-

based coupon collector process. Shapley continues by giving expressions for optimal

strategies in the stochastic game, strategies achieving the game’s value. A natural

extension of his work would be an analysis of the expected deviation from the game’s

value if the players follow optimal strategies. Such an extension would be analogous

to our high probability deviation results for the expected cover time.

1.4.4 The Online Matroid Problem

In Chapter 4, we examine a revenue management problem under a random process

with incomplete information. Suppose we own a store with n items for sale. We know

that m customers will enter the store throughout the day. Whenever a customer

enters, the customer specifies a subset of the items and tells us that he is willing

to pay a certain dollar amount for any one of those items. We must immediately

make a decision on which item to sell to the customer if any. After the transaction,

the customer leaves the store never to be seen again. A natural question to ask is,

even though arbitrary customers may arrive, if we know that a uniformly random
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permutation of customers arrives throughout the day, can we achieve revenue that is

within a constant factor of optimal without a priori knowing the customers’ desired

subsets of items or dollar amounts?

This particular revenue management problem finds applications in online ad-

vertising auctions and scheduling. For example, the problem can be reinterpreted as

selling keywords on a search engine with the customer’s dollar amounts representing

bids for those keywords. Another interpretation may be selling server time slots,

where customers represent jobs asking to be scheduled in certain slots for certain

dollar amounts.

In general, the problem we have described can be abstracted as the online

weighted transversal matroid matching (OWTMM) problem. See Chapter 4 for the

formal definitions. The OWTMM problem is a generalization of the well studied

secretary problem, which arose as a folklore problem in the 1950’s [20, 21]. In the

secretary problem, there is only a single item in the store, and we must choose

the customer to whom we sell the item. Usually, the secretary problem is a rein-

terpretation of having a single position for a secretary and interviewing a random

permutation of candidates.

Motivated by the applications in auctions, mechanism design, and revenue

management, Babaioff et al. introduce the online matroid problem, a generalization

of the OWTMM problem et al. [8]. In the online matroid problem, given the total

number of matroid elements, the goal is to find an independent set with weight within

a constant of the max-weight independent set when a random permutation of the

elements revealed to us, one element at a time [43]. We call an algorithm solving

the online matroid problem a competitive algorithm. As well as studying several

instances of the online matroid problem, Babaioff et al. demonstrate the connections

between the online matroid problem and the design of truthful mechanisms for online

auctions. The work of Babaioff et al. extends the work Kleinberg on such truthful

mechanisms [32].

The instances of the online matroid problem for which competitive algorithms

are known include the secretary problem [36], uniform matroids [32], bounded left-

degree transversal matroids, graphic matroids, and truncated matroids [8]. For

general matroids, the best known algorithm gives an independent set within a factor

of O(log r) of optimal, where r is the rank of the matroid [8].

In Chapter 4, we present a competitive algorithm for the OWTMM problem.
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Our work generalizes all of the previously known competitive algorithm results for

the online matroid problem. For example, as has been mentioned, the secretary

problem is a special case of OWTMM, where there is only one item in the store.

The online matroid problem on uniform matroids is a special case of OWTMM

where every customer bids on every item. Of course, the online matroid problem

on bounded left-degree transversal matroids is a special case of OWTMM where

each customer can only bid on a small, fixed number of items. The graphic matroid

results of Babaoiff et al. depend on a reduction to bounded left-degree transversal

matroids. The results on truncated matroids give a reduction from an algorithm

for matroid M to an algorithm for the truncation of matroid M . Along with our

results on transversal matroids, this reduction gives competitive algorithms on the

truncations of transversal matroids.

All of the competitive algorithms in the literature are ultimately based on

generalization of a sample-and-price algorithm for the secretary problem that works

as follows. We sample the first half of the customers, not selling the item to anyone,

but recording the customer bids. We then sell the item to the first non-sampled

customer, if any, who bids higher than the maximum bid of the sampled customers.

This algorithm sells the item to the customer with the highest bid with probability

at least 1/4, since, with probability at least 1/4, the second highest bidding customer

is sampled and the highest bidding customer is not.

It is difficult to extend this algorithm to the full transversal matroid set-

ting. Indeed, that is one reason why Babaioff et al. consider bounded left-degree

transversal matroids. We discuss some of the difficulties in Chapter 4. We discuss

our novel sample-and-price technique for solving the OWTMM problem. One of the

main difficulties in proving the effectiveness of the technique are the probabilistic

dependencies that arise in the analysis. To address these concerns, the main tech-

nical section of our proof is based on a series of counting arguments that directly

imply the required probabilistic results.
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Chapter 2

Dynamic Membership

2.1 Introduction

One of the most commonly discussed stochastic processes in computer science is

the so-called coupon collector process [40]. In that process, there are n distinct

coupons and we proceed in rounds, collecting one uniformly random coupon (with

replacement) in each round. Are O(n) rounds sufficient to collect all of the coupons?

Put differently, is picking coupons with replacement as efficient, to within a constant

factor, as picking them without replacement? No, it is a well-known fact that with

high probability the number of rounds required to collect all of the coupons is

Θ(n log n).

This shortcoming has motivated Adler et al. [1] and Alon [4] to study a similar

graph-based covering process. The nodes of the graph nodes represent the coupons

and covering a node represents collecting a coupon. In each round, a uniformly

random node w is selected. If an uncovered neighbor of w exists, choose one such

uncovered neighbor and cover it. We refer to this process as process CC.

Process CC can use a variety of different covering methods to decide which

uncovered neighbor to cover. If our ultimate goal is to minimize cover time, certainly

the most powerful covering method available is an offline method with knowledge of

the entire sequence of node selections and with infinite computing power. We refer

to this powerful cover time minimizing version of process CC as process MIN. To

achieve our O(n) goal, it is natural to consider log n-regular graphs since the work

of Alon implies process MIN has an expected cover time of Ω(n + n log n
d ) rounds on
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d-regular graphs [4].

2.1.1 Logarithmic-Degree Graphs

Another natural version of process CC — in which the covering method chooses a

uniformly random uncovered neighbor, if any — was studied by Adler et al. [1] and

by Alon [4]. We refer to this version of process CC as process UNI. Alon shows that

for logarithmic-degree Ramanujan expander graphs, process UNI completes in O(n)

time, matching the lower bound for process MIN.

Adler et al. show that for the hypercube, which has a weak expansion prop-

erty but is not an expander, process UNI takes O(n) time, also matching the lower

bound for process MIN [1]. They also show that for arbitrary logarithmic-degree

graphs, process UNI completes in O(n log log n) time. Furthermore, Adler et al.

present an application of process UNI to load balancing in a hypercubic distributed

hash table (DHT).

A process that is intuitively similar to process UNI is one where we initially

assign a rank to each node using a uniformly random permutation of the nodes, and

the covering method covers the minimum-rank uncovered neighbor, if any. We refer

to this permutation-based version of process CC as process P-RANK. In this chapter,

we show that process P-RANK completes in O(n) time on arbitrary logarithmic-

degree graphs.

In fact, we analyze a more general and local version of process CC in which

each node initially chooses a uniformly random rank in a suitable range, and the

covering method covers the minimum-rank uncovered neighbor of the selected node.

(We assume that the nodes are numbered from 1 to n, and that ties in rank are

broken in favor of the lower-numbered node.) We refer to this random rank version

of process CC as process R-RANK. We show that the more general and local process

R-RANK completes in O(n) time on arbitrary logarithmic-degree graphs.

2.1.2 Results for General Graphs

Alon shows that process MIN on any d-regular graph has expected cover time at

least n − n
d + n

d ln(n
d ) [4]. Alon also shows that process UNI completes in time

n + (1 + o(1))n ln n
d for random nearly d-regular graphs. Alon further shows that

on any (n, d, λ)-expander graph the expected cover time of process UNI is at most
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n + n(λ
d )2(lnn + 1). In particular, this implies that on Ramanujan graphs process

UNI completes in (1 + o(1))n time, matching the lower bound for process MIN.

If our goal is to maximize cover time, certainly the most powerful covering

method available is an offline adversary with knowledge of the entire sequence of

node selections and with infinite computing power. We refer to this powerful cover

time maximizing version of process CC as process MAX. Alon notes that the upper

bounds for expanders hold even if after every round an adversary “is allowed to shift

the uncovered nodes to any place he wishes, keeping their number.” In particular,

this shows that on Ramanujan graphs, the cover time for process MAX matches the

cover time for process MIN, up to constant factors. In effect, the covering method

does not matter for this class of graphs.

Another previously studied variant of process CC favors covering the selected

node. In this variant, we check — immediately after selecting a uniformly random

node — if the selected node is uncovered. If it is, we cover it and move to the next

selection. Only otherwise do we consider the neighbors of the selected node. We

refer to the selection-biased variants of processes process UNI, process P-RANK,

and process R-RANK as process UNI′, process P-RANK′, and process R-RANK′,

respecively.

Adler et al. show that for all d-regular graphs, processes UNI and UNI′ finish

in O(n+n(log n)(log d)/d) time[1]. They also show that for random d-regular graphs

only O(n + n log n
d ) steps are needed. Furthermore, they exhibit an application of

process UNI′ to load balancing in DHTs.

All of the results matching Alon’s lower bound for process MIN presented

prior to this work have used some expansion properties of the underlying graph.

In contrast, our proof techniques do not require the underlying graph to have any

particular structure. Thus, we show the following general result: for directed graphs,

with self-loops but no parallel edges, where each node has in-degree at least δin and

at most ∆in, and out-degree at most ∆out, both process R-RANK and process

R-RANK′ cover all nodes in O(n max(∆in∆out/δ2
in, (log n)/δin)) rounds with high

probability. This result matches Alon’s lower bound for δin = ∆in = ∆out = Θ(d),

and is thus optimal under these conditions.

Furthermore, Alon’s results for Ramanujan graphs raise the question whether

there is any separation between the cover times for process MAX and process MIN.

In other words, are there any graphs for which the choice of covering method mat-
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ters? We define a weakly adversarial process, process A-RANK, that is similar

to process P-RANK. In process A-RANK, instead of picking a uniformly random

permutation, an adversary is initally allowed to fix the permutation used to assign

ranks to the nodes. We then proceed as in process P-RANK. In addition, we define

the selection-biased variant of process A-RANK as process A-RANK′. We establish

that there exists a logarithmic-degree graph on which process A-RANK and process

A-RANK′ each take ω(n) rounds to complete. This implies that in general there

is separation between the cover times of process MIN and process MAX. In other

words, the covering method does matter.

2.1.3 Proof Outline

The proof of our theorem is inspired by the delay sequence argument used by Ranade

for the analysis of a certain packet routing problem on the butterfly [47] (see also [34,

Section 3.4.4]). In a delay sequence argument, we identify certain combinatorial

structures that exist whenever the random process lasts for a long time. Then, we

show that the probability any of these structures exist is small. This in turn implies

an upper bound on the running time of the random process.

There are significant differences between our proof and that of Ranade. For

example, in our problem, the connection between the running time and the length

of a delay sequence is not clear-cut, while in the butterfly routing problem analyzed

by Ranade, the length of the delay sequence is equal to the running time. But let

us begin by giving the notion of a delay sequence in our problem.

Consider the node that was covered last, say w1. Why wasn’t w1 covered

earlier? It was not covered earlier because at the last opportunity to cover w1 —

that is, the last selection in w1’s neighborhood — we covered some other node, w2,

instead. In such a case we consider w1 to be delayed by w2. Similarly, w2 may be

delayed by some node w3, et cetera, until finally we reach a node wk that is not

delayed, i.e., wk is covered at the first opportunity. The sequence of nodes w1, . . . , wk

corresponds to our notion of a delay sequence.

In analyzing process R-RANK, we find it useful to first analyze a much

simpler process, process SELECT, in which we repeatedly select a uniformly random

node, never covering anything. After establishing several lemmas for the simpler

process, we proceed to analyzing process R-RANK. This is the bulk of the proof,
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and includes a technical lemma to work around the difficulties in linking cover time

to delay sequence length. Finally, we reduce process R-RANK′ to process R-RANK

to show that the same bounds hold.

The rest of this chapter is structured as follows. In Section 2.2, we present

a number of useful definitions and lemmas related to standard probability distribu-

tions. In Section 2.3, we analyze the simple process, process SELECT. In Section 2.4,

we analyze process R-RANK. In Section 2.5, we analyze process R-RANK′. In Sec-

tion 2.6, we show the existence of a log(n)-regular graph on which process A-RANK

and process A-RANK′ each take ω(n) rounds to complete, establishing that the

neighbor selection method does matter. We conclude the paper with Section 2.7,

where we provide different yet equivalent views of the processes discussed here as

well as discuss several remaining open problems.

2.2 Preliminaries

We use the term ℓ-sequence to refer to a sequence of length ℓ. For any ℓ-sequence σ

of elements of a given type, and any element x of the same type, we let σ : x denote

the (ℓ + 1)-sequence obtained by appending element x to σ.

For any nonnegative integer n and probability p, we use the notation X ∼
Bin (n, p) to denote that the random variable X has a binomial distribution with n

trials and success probability p. Similarly, we write X ∼ Geo (p) to indicate that

the random variable X has a geometric distribution with success probability p, and

we write X ∼ NegBin (r, p) to indicate that the random variable X has a negative

binomial distribution with r successes and success probability p.

Lemma 2.2.1. Let p denote an arbitrary probability, let ℓ denote an arbitrary non-

negative integer, and let X ∼ NegBin (ℓ, p). For any integer j such that 1 ≤ j ≤ ℓ,

let pj denote an arbitrary probability such that pj ≥ p, let Yj ∼ Geo (pj), and let

Y =
∑

1≤j≤ℓ Yj. Then for any nonnegative integer i, Pr(X ≥ i) ≥ Pr(Y ≥ i).

Proof. Note that if pj = p for all j, then the random variables X and Y have the

same distribution. Furthermore, increasing any of the pj ’s can only decrease Y .

Lemma 2.2.2. For any nonnegative integers r and n, and any probability p, we

have Pr(X < r) = Pr(Y > n), where X ∼ Bin (n, p) and Y ∼ NegBin (r, p).
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Proof. The random variables X and Y can be seen as different views of the same

experiment where we successively flip coins with probability of success p. With Y ,

we ask “How many flips are required for r successes?” With X, we ask “How many

successes are in the first n flips?” In this experiment, the event of seeing less than r

successes in the first n flips (X < r) corresponds to the event that we have to wait

more than n flips for the first r successes (Y > n). This gives the result.

Lemma 2.2.3. For any integer r ≥ 2, we have Pr (X ≥ 2E[X]) = Pr (X ≥ 2r/p) ≤
exp(−r/8), where X ∼ NegBin (r, p).

Proof. Let j =
⌊

2r
p

⌋

− 1 and let Y ∼ Bin (j, p). By Lemma 2.2.2, we know that

Pr(X ≥ 2r
p ) ≤ Pr(X ≥

⌊

2r
p

⌋

) = Pr(X >
⌊

2r
p

⌋

− 1) = Pr(Y < r) = Pr(Y ≤ r − 1).

Pr

(

Y ≤ jp

2

)

= Pr
(

Y ≤ r − (η + 1)
p

2

)

= Pr (Y ≤ r − 1)

where 2r
p =

⌊

2r
p

⌋

+ η and the last equality holds because 0 < (η + 1)p
2 < 1.

Recall the Chernoff bounds in the form Pr(Y ≤ (1 − λ)jp) ≤ exp(−λ2jp/2)

for 0 < λ < 1 (see [5, 28]).

We apply this bound with λ = 1
2 to get

Pr (Y ≤ r − 1) = Pr (Y ≤ jp/2)

≤ exp (−jp/8)

≤ exp

(−2r + (η + 1)p

8

)

≤ exp (−r/8)

where η is as previously defined and the last inequality holds because r ≥ 2.

Lemma 2.2.4. Let p be an arbitrary probability and let X be the sum of n indepen-

dent Bernoulli variables X1, . . . , Xn, where Xj has success probability pj ≥ p. Then

Pr (X ≤ np/2) ≤ exp(−np/12).

Proof. The result follows from Chernoff bounds (see, e.g., [5, 28]).
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Lemma 2.2.5. Suppose we repeatedly throw balls independently and uniformly at

random into n bins, and let the random variable X denote the number of throws re-

quired for every bin to receive at least n balls. Then X is O(n2) with high probability,

that is, with failure probability that is an arbitrary inverse polynomial in n.

Proof. The result follows from Lemma 2.2.4.

Lemma 2.2.6. Let j balls be thrown independently and uniformly at random into

n bins. Let X denote the number of bins with at least one ball at the end of the

experiment. Then, Pr (X ≤ min (n/4, j/4)) ≤ exp(−j/2).

Proof. Let [n] = {1, 2, . . . , n}. Suppose min
(

n
4 , j

4

)

= k. Let S ⊆ [n] be a particular

subset of size k. Then,

Pr(all balls land in S) ≤
(

k

n

)j

Thus,

Pr (X ≤ k) = Pr





⋃

S s.t. |S|=k

all balls land in S





≤
(

n

k

)(

k

n

)j

≤
(en

k

)k
(

k

n

)j

=
(en

k

)k
(

k

n

)
j
2

(

k

n

)
j
2

Now, since j
2 ≥ 2k and since k ≤ n

4 implies ek
n ≤ e

4 < 1

Pr (X ≤ k) ≤
(

ek

n

)k (k

n

)
j
2

≤
(

ek

n

)k (1

4

)
j
2

≤ exp

(

− j

2

)
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2.3 Process SELECT

Throughout the remainder of the chapter, we fix an arbitrary directed graph G =

(V, E) where |V | = n > 0. We say that an event holds “with high probability” if the

probability that it fails to occur is upper bounded by an arbitrary inverse polynomial

in n. We let δin, ∆in, and ∆out denote the minimum in-degree, maximum in-degree,

and maximum out-degree of any node, respectively. For ease of exposition, we

assume throughout the chapter that δin > 0. The edge set E is allowed to contain

loops but not parallel edges. For any node v, we define Γin(v) as {w | (w, v) ∈ E}.
For any sequence of edges σ = (u1, v1), . . . , (uℓ, vℓ), we define the two sequences of

nodes src(σ) = u1, . . . , uℓ and dst(σ) = v1, . . . , vℓ.

In this section, we analyze a simple stochastic process, process SELECT,

defined as follows. Initially, we fix a positive integer r and independently assign

each node in V a uniformly random integer rank between 1 and r. Process SELECT

then proceeds in an infinite number of rounds, indexed from 1. In each round, one

node is selected uniformly at random, with replacement. The following definitions

are central to our analysis of this process.

A node sequence is said to be rank-sorted if the associated sequence of node

ranks is nondecreasing.

For any node sequence σ, we inductively define duration(σ), a nonnegative

integer, and a node sequence select(σ) as follows. If σ is empty, then duration(σ) is

0 and select(σ) is empty. Otherwise, σ is of the form τ : v for some shorter node

sequence τ and node v. Let i denote the the least i such that i > duration(τ) and

the node selected in round i belongs to Γin(v). Let u denote the node selected in

round i. Then we define duration(σ) as i, and select(σ) as select(τ) : u.

Lemma 2.3.1. For any ℓ-sequence of distinct nodes σ, Pr(σ is rank-sorted) =
(

ℓ+r−1
ℓ

)

r−ℓ.

Proof. There are
(

ℓ+r−1
ℓ

)

ways that ranks can be assigned to the ℓ distinct nodes

so that the resulting ℓ-sequence is rank-sorted. The result follows since each such

assignment occurs with probability r−ℓ.

Lemma 2.3.2. For any ℓ-sequence of nodes σ = v1, . . . , vℓ and any nonnegative

integer i, we have

Pr(duration(σ) = i) ≤ Pr(X ≥ i), where X ∼ NegBin
(

ℓ, δin
n

)

.
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Proof. We proceed by proving that

Pr(duration(σ) = i) = Pr

(

ℓ
∑

k=1

Yk = i

)

where Yk ∼ Geo
(

dk
n

)

and dk denotes the in-degree of vk. The desired bound then

follows by Lemma 2.2.1.

We prove the foregoing claim by induction on ℓ. If ℓ = 0, the claim holds

since duration(σ) =
∑ℓ

k=1 Yk = 0.

For ℓ > 0, we let τ denote the node sequence v1, . . . , vℓ−1 and assume induc-

tively that

Pr(duration(τ) = i) = Pr

(

ℓ−1
∑

k=1

Yk = i

)

.

Thus,

Pr(duration(σ) = i)

=
i−1
∑

j=0

Pr(duration(τ) = j) ·

Pr(duration(σ) − duration(τ) = i − j | duration(τ) = j)

=
i−1
∑

j=0

Pr(duration(τ) = j) · Pr(duration(σ) − duration(τ) = i − j)

=

i−1
∑

j=0

Pr(duration(τ) = j) · Pr(Yℓ = i − j)

=
i−1
∑

j=0

Pr

(

ℓ−1
∑

k=1

Yk = j

)

· Pr(Yℓ = i − j)

= Pr

(

ℓ−1
∑

k=1

Yk = i

)

.

The second equality holds because each selection is independent of previous selec-

tions. The third equality holds because the waiting time to obtain a selection in

Γin(vℓ) is distributed as Yℓ.
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Lemma 2.3.3. For any ℓ-sequence of edges σ, Pr(select(dst(σ)) = src(σ)) ≤ δ−ℓ
in .

Proof. We proceed by induction on ℓ. For ℓ = 0, Pr(select(dst(σ)) = src(σ)) = 1 =

δ0
in since we have assumed that δin > 0.

For ℓ > 0, σ can be written in the form τ : (u, v), where we inductively

assume that the claim of the lemma holds for τ . Let A denote the event that the

first node selected in Γin(v) after round duration(dst(τ)) is u. We have

Pr(select(dst(σ)) = src(σ))

= Pr(select(dst(τ)) = src(τ)) · Pr(A | select(dst(τ)) = src(τ))

= Pr(select(dst(τ)) = src(τ)) · Pr(A)

≤ δ−ℓ
in .

The second step follows from the independence of the events A and select(dst(τ)) =

src(τ). (These two events are independent since each selection is independent of

previous selections.) The third step follows from the induction hypothesis and the

observation that Pr(A) is equal 1/Γin(v), which is at most 1/δin.

Lemma 2.3.4. For any ℓ-sequence of edges σ and nonnegative integer i, the three

events specified as A = “dst(σ) is rank-sorted”, B = “duration(dst(σ)) = i”, and

C = “select(dst(σ)) = src(σ)” are mutually independent.

Proof. Note that event A depends only on the rank assignments, while events B

and C depend only on the selections. Thus event A is independent of events B and

C. Below we argue that events B and C are independent.

Let σ = (u1, v1), . . . , (uℓ, vℓ) and let σj denote the length-j prefix of σ, 0 ≤
j ≤ ℓ. Define a selection to be j-special, 1 ≤ j ≤ ℓ, if it is the first selection after

round duration(σj−1) in Γin(vj). A selection is special if it is j-special for some j.

Note that event B depends only on the timing of the special events; in particular,

B occurs if and only if the ℓ-special selection occurs in round i. Suppose we run

process SELECT, but at each step, instead of revealing the selected node, we reveal

only whether the selection is special. This information is sufficient to determine the

unique i for which B occurs, but does not bias the distribution of select(dst(σ)).

Since event C only depends on select(dst(σ)), it is independent of B.
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Lemma 2.3.5. Let σ be an ℓ-sequence of edges so that the nodes of dst(σ) are

distinct, let X ∼ NegBin
(

ℓ, δin
n

)

, let i be a nonnegative integer, and let events A,

B, and C be defined as in the statement of Lemma 2.3.4. Then Pr(A ∩ B ∩ C) ≤
(

ℓ+r−1
ℓ

)

· Pr(X ≥ i) · (rδin)
−ℓ.

Proof. By Lemma 2.3.1, Pr(A) ≤
(

ℓ+r−1
ℓ

)

r−ℓ. By Lemma 2.3.2, Pr(B) ≤ Pr(X ≥ i).

By Lemma 2.3.3, Pr(C) ≤ δ−ℓ
in . The claim then follows by Lemma 2.3.4.

2.4 Process R-RANK

In the section we analyze an augmented version of process SELECT, referred to as

Process R-RANK, in which we maintain a notion of a “covered subset” of the nodes.

Initially, all of the nodes are uncovered. Process R-RANK then proceeds in rounds

in exactly the same manner as process SELECT, except that in any given round,

if one or more outgoing neighbors of the selected node are uncovered, we cover the

uncovered outgoing neighbor with minimum rank. (As indicated in Section 2.1, ties

are broken according to some arbitrary numbering of the nodes.)

Note that process R-RANK simply augments process SELECT by also cover-

ing nodes; rank assignment and selections are performed in exactly the same manner

in the two processes. Thus all of the definitions and lemmas presented in Section 2.3

are applicable to process R-RANK. The following additional definitions are useful

for our analysis of process R-RANK.

The cover time of process R-RANK is defined as the number of rounds re-

quired to cover all of the nodes.

We inductively define the notion of a linked sequence of edges. For ℓ equal

to 0 or 1, any ℓ-sequence of edges is linked. For ℓ > 1, an ℓ-sequence of edges of the

form σ : (u, v) : (u′, v′) is linked if the (ℓ− 1)-sequence σ : (u, v) is linked and (u, v′)

belongs to E.

For any node v, we define parent(v) as follows. Let i denote the round

in which node v is covered. If i is the first round in which some node in Γin(v)

is selected, then parent(v) is defined to be nil. Otherwise, parent(v) is the node

covered in the first round prior to round i in which the selected node belongs to

Γin(v).

We inductively define the notion of a chronological sequence of nodes as

follows. Any ℓ-sequence of nodes with ℓ ≤ 1 is chronological. An ℓ-sequence of
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nodes of the form σ : v : v′ is chronological if σ : v is chronological and node v is

covered before node v′.

We inductively define the notion of an active node sequence as follows. The

empty node sequence is active. A singleton node sequence consisting of the node v

is active if parent(v) = nil. An ℓ-sequence of nodes of the form σ : v : v′ is active if

σ : v is active and parent(v′) = v.

We call an ℓ-sequence of edges σ active if dst(σ) is active and select(dst(σ)) =

src(σ).

We call an ℓ-sequence of edges σ i-active if it is active and either ℓ = i = 0

or ℓ > 0, σ is of the form σ : (u, v), and v is the node covered in round i.

Lemma 2.4.1. For any nonnegative integer ℓ, there are at most n∆ℓ
out∆

ℓ−1
in linked

ℓ-sequences of edges.

Proof. We proceed by induction on ℓ, treating ℓ = 0 and ℓ = 1 as the base cases.

For ℓ = 0, the empty sequence is the only linked 0-sequence, and the claim holds

since n/∆in ≥ 1. (Note that ∆in is at most n since we do not allow parallel edges.)

For ℓ = 1, the number of linked 1-sequences is at most |E| ≤ n∆out.

Now let ℓ be greater than 1 and inductively assume that the number of linked

(ℓ− 1)-sequences of edges is at most n∆ℓ−1
out ∆ℓ−2

in . Recall that any linked ℓ-sequence

of edges is of the form σ : (u, v) : (u′, v′) where the (ℓ−1)-sequence of edges σ : (u, v)

is linked and (u, v′) belongs to E. Observe that for any linked (ℓ − 1)-sequence of

edges σ : (u, v), there are at most ∆out nodes v′ such that (u, v′) belongs to E,

and for each such choice of v′, there are at most ∆in nodes u′ such that (u′, v′)

belongs to E. Thus the number of linked ℓ-sequences is at most ∆out∆in times the

number of linked (ℓ−1)-sequences, and the desired bound follows from the induction

hypothesis.

Lemma 2.4.2. Suppose we run two instances of process R-RANK in parallel using

the same random ranks and the same sequence of random selections, but in the

second instance, we allow an arbitrary subset of the covered nodes to be uncovered

after each round. Then the cover time of the first instance is at most the cover time

of the second instance.

Proof. By a straightforward induction on the number of rounds, at all times, the

set of covered nodes in the first instance contains the set of covered nodes in the

second instance. The claim of the lemma follows.
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Lemma 2.4.3. For any rank assignment, the expected cover time of process R-

RANK is O(n2).

Proof. It follows from Lemma 2.2.5 that the cover time is O(n2) with high proba-

bility since in that time each vertex is selected at least n times, implying that all of

its neighbors are covered.

We can then consider a modified version of process R-RANK in which the

infinite sequence of rounds is partitioned into epochs of O(n2) rounds, and where

at the end of each epoch, if the nodes are not all covered, all nodes are uncovered

before proceeding to the next epoch. Since each epoch covers all the nodes with high

probability, the expected cover time of this modified version of process R-RANK is

O(n2). By Lemma 2.4.2, for any rank assignment, the expected cover time of process

R-RANK is O(n2).

Lemma 2.4.4. Assume that v is the node covered in round i and let u be the node

selected in round i. Then there is an i-active edge sequence σ terminating in edge

(u, v) and such that duration(dst(σ)) = i.

Proof. Observe that u belongs to Γin(v). Furthermore, if parent(v) = nil, then the

singleton node sequence v is active with duration(v) = i. Thus the singleton edge

sequence σ = (u, v) is i-active with duration(dst(σ)) = i.

We prove the claim by induction on i. For i = 1, we have parent(v) = nil

and so the claim follows by the observations of the previous paragraph.

For i > 1, if parent(v) = nil, the claim once again follows from the foregoing

observations. Otherwise, parent(v) = v′ where v′ is the node covered in round j with

j < i. Let u′ denote the node selected in round j. Since j < i, we can inductively

assume that there is a j-active edge sequence, call it τ , terminating in edge (u′, v′)

and such that duration(dst(τ)) = j. Since τ is active, the node sequence dst(τ) is

active and select(dst(τ)) = src(τ). Let σ = τ : (u, v). Thus src(σ) = src(τ) : u

and dst(σ) = dst(τ) : v. Since parent(v) = v′ and dst(τ) is an active node sequence

terminating in node v′, dst(σ) is active. Since duration(dst(τ)) = j, select(dst(τ)) =

src(τ), u was selected in round i, and i is the least integer greater that j such that

the node selected in round i belongs to Γin(v), we have duration(dst(σ)) = i and

select(dst(σ)) = src(σ). Since dst(σ) is active and select(dst(σ)) = src(σ), σ is

active. Since σ is active and v is the node covered in round i, σ is i-active. Thus

the edge sequence σ satisfies all of the requirements of the lemma.
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Lemma 2.4.5. Any active node sequence is rank-sorted, chronological, and consists

of distinct nodes.

Proof. Note that any chronological node sequence consists of distinct nodes. Thus,

in what follows, it is sufficient to prove that any active node sequence is rank-sorted

and chronological.

We proceed by induction on the length of the sequence. For the base case,

note that any node sequence of length 0 or 1 is rank-sorted and chronological. For

the induction step, consider an active node sequence σ of the form τ : v : v′.

Since σ is active, τ : v is active and parent(v′) = v. Since τ : v is active, the

induction hypothesis implies that it is also rank-sorted and chronological. Since

parent(v′) = v, rank(v) ≤ rank(v′) and v is covered before v′. Hence σ is rank-

sorted and chronological.

Lemma 2.4.6. For any nonempty active edge sequence σ, if the last edge in σ is

(u, v), then v is the node covered in round duration(dst(σ)) and node u is selected

in the same round.

Proof. We prove the claim by induction on the length of the active edge sequence

σ.

If σ consists of a single edge (u, v), then by the definition of an active edge

sequence, the singleton node sequence dst(σ) is active and select(dst(σ)) = src(σ).

Since dst(σ) is active, parent(v) = nil, that is, v is the node covered in the first

round in which a node in Γin(v) is selected, which is round duration(dst(σ)). Since

select(dst(σ)) = src(σ), node u is selected in the same round.

Now assume that σ is an active edge sequence of the form τ : (u, v), where τ

is of the form τ ′ : (u′, v′). Since σ is active, the node sequence dst(σ) is active and

select(dst(σ)) = src(σ). It follows that dst(τ) is active and select(dst(τ)) = src(τ),

that is, τ is also active. Since τ is active and shorter than σ, we can inductively

assume that v′ is the node covered in round duration(dst(τ)) and node u′ is selected

in the same round. Since dst(σ) is active, parent(v) = v′, that is, v is the node

covered in the first round after round duration(dst(τ)) in which a node in Γin(v) is

selected. Applying the definition of duration(dst(σ)), we conclude that v is the node

covered in round duration(dst(σ)). Since select(dst(σ)) = src(σ), node u is selected

in the same round.
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Lemma 2.4.7. If σ is an active sequence of edges, then σ is linked.

Proof. We proceed by induction on the length of σ. If the length of σ is 0 or 1, then

σ is linked by definition.

Now assume that σ is an edge sequence of the form τ : (u, v), where τ is of

the form τ ′ : (u′, v′) and σ is active. Since σ is active, dst(σ) is active. Since dst(σ)

is active, dst(τ) is also active. Since dst(τ) is active and τ is shorter than σ, we can

inductively assume that τ is linked. Therefore, in order to establish that σ is linked,

it is sufficient to prove that (u′, v) is an edge. Since dst(σ) is active, parent(v) = v′.

Hence, letting i denote the round in which node v is covered, we find that v′ is the

node covered in the first round prior to round i in which the selected node belongs

to Γin(v). By Lemma 2.4.6, v′ is covered in a round in which node u′ is selected.

Thus u′ belongs to Γin(v), that is, (u′, v) is an edge, as required.

Lemma 2.4.8. If an edge sequence σ is i-active, then duration(dst(σ)) = i.

Proof. If σ is empty, then the claim holds since i = 0 and duration(dst(σ)) = 0.

Otherwise, σ is of the form τ : (u, v), and by the definition of an i-active edge

sequence, v is the node covered in round i. By Lemma 2.4.6, v is the node covered

in round duration(dst(σ)), so duration(dst(σ)) = i.

Lemma 2.4.9. For any ℓ-sequence of edges σ, and any nonnegative integer i, the

probability that σ is i-active is at most
(

ℓ+r−1
ℓ

)

· Pr(X ≥ i) · (rδin)
−ℓ, where X ∼

NegBin
(

ℓ, δin
n

)

.

Proof. If the nodes in dst(σ) are not all distinct, then Pr(σ is i-active) = 0 by

Lemma 2.4.5 and the claimed inequality holds since the right-hand side is nonneg-

ative.

Now assume that dst(σ) consists of distinct nodes, and let events A, B, and

C be as defined in the statement of Lemma 2.3.4. Below we prove that if σ is i-

active, then events A, B, and C all occur. The claimed inequality then follows by

Lemma 2.3.5.

Assume that σ is i-active. Thus event B occurs by Lemma 2.4.8. Further-

more, σ is active, so dst(σ) is active and event C occurs by the definition of an

active edge sequence. Since dst(σ) is active, event A occurs by Lemma 2.4.5.
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Lemma 2.4.10. For any nonnegative integers i and ℓ, the probability that some

ℓ-sequence of edges is i-active is at most

n∆ℓ
out∆

ℓ−1
in

(

ℓ + r − 1

ℓ

)

Pr(X ≥ i)

(rδin)ℓ

where X ∼ NegBin
(

ℓ, δin
n

)

.

Proof. By Lemma 2.4.7, if an edge sequence σ is not linked, then Pr(σ is i-active) =

0. A union bound then implies that the probability some ℓ-sequence of edges is

i-active is at most the number of linked ℓ-sequences of edges multiplied by the max-

imum probability that any particular ℓ-sequence is i-active. The desired inequality

then follows by Lemmas 2.4.1 and 2.4.9.

Lemma 2.4.11. For nonnegative integers i, ℓ, and r satisfying the properties i ≥
64n max(∆out∆in/δ2

in, (lnn)/δin) and r ≥ min(⌈2e2∆out∆in/δin⌉, ℓ), we have

∆ℓ
out∆

ℓ−1
in

(

ℓ + r − 1

ℓ

)

Pr(X ≥ i)

(rδin)ℓ
≤ exp(−iδin/(32n))

where X ∼ NegBin
(

ℓ, δin
n

)

.

Proof. First, we show that the LHS of the claimed inequality is a nonincreasing

function of r.

It is sufficient to prove that the expression
(

ℓ+r−1
ℓ

)

r−ℓ is a nonincreasing

function of r. Fix ℓ and let f(r) denote the preceding expression. Note that

f(r + 1)

f(r)
=

r + ℓ

r

(

r

r + 1

)ℓ

=

(

1 +
ℓ

r

)(

1 +
1

r

)−ℓ

≤ 1,

where the last inequality holds since the binomial theorem implies (1 + 1
r )ℓ ≥ 1 + ℓ

r .

Since we have established that the LHS of the claimed inequality is a nonin-

creasing function of r, we can assume that r = min(⌈2e2∆out∆in/δin⌉, ℓ).
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Let us rewrite the LHS of the claimed inequality as λ · Pr(X ≥ i), where

λ = ∆ℓ
out∆

ℓ−1
in

(

ℓ + r − 1

ℓ

)

(rδin)
−ℓ

≤ ∆ℓ
out∆

ℓ
in

(

e(ℓ + r − 1)

ℓrδin

)ℓ

≤
(

e∆out∆in(ℓ + r)

ℓrδin

)ℓ

. (2.1)

We begin by establishing two useful upper bounds on λ, namely, Equa-

tions (2.2) and (2.4) below.

If r = ⌈2e2∆out∆in/δin⌉, then since since r = min(⌈2e2∆out∆in/δin⌉, ℓ), we

have r ≤ ℓ. Substituting the value of r into Equation (2.1), we find that

λ ≤
(

e(ℓ + r)

2e2ℓ

)ℓ

≤
(

2eℓ

2e2ℓ

)ℓ

≤ e−ℓ. (2.2)

If r = ℓ, then Equation (2.1) implies

λ ≤
(

2e∆out∆in

ℓδin

)ℓ

. (2.3)

Let h(ℓ) denote the natural logarithm of the RHS of Equation (2.3), that is, h(ℓ) =

ℓ ln(2e∆out∆in/(ℓδin)). Using elementary calculus, it is straightforward to prove

that the derivative of h(ℓ) with respect to ℓ is positive for ℓ < 2∆out∆in/δin, is 0

when ℓ = 2∆out∆in/δin, and is negative for ℓ > 2∆out∆in/δin. It follows that h(ℓ) ≤
h(2∆out∆in/δin) = 2∆out∆in/δin. Since ln is monotonic, the RHS of Equation (2.3) is

also maximized when ℓ = 2∆out∆in/δin. Combining this result with Equation (2.2),

we find that for any r

λ ≤ exp(2∆out∆in/δin). (2.4)

(Note that exp(2∆out∆in/δin) ≥ 1 and Equation (2.2) implies λ ≤ 1 when r =

⌈2e2∆out∆in/δin⌉.)
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We are now ready to proceed with the proof of the lemma. We consider the

two cases ℓ > ⌈iδin/(2n)⌉ and ℓ ≤ ⌈iδin/(2n)⌉ separately.

If ℓ > ⌈iδin/(2n)⌉, then ℓ > 2ecmax(∆out∆in/δin, lnn) where c = 16/e > e.

Thus ℓ > ⌈2e2∆out∆in/δin⌉ and so r = ⌈2e2∆out∆in/δin⌉. It follows from Equa-

tion (2.2) that λ ≤ e−ℓ ≤ exp(−iδin/(2n)) ≤ exp(−iδin/(64n)), and hence the claim

holds since Pr(X ≥ i) ≤ 1.

Now assume that ℓ ≤ ⌈iδin/(2n)⌉. Let Y ∼ NegBin
(⌊

iδin
2n

⌋

, δin
n

)

and Z ∼
NegBin

(⌊

iδin
2n

⌋

− ℓ, δin
n

)

. By the definition of the negative binomial distribution,

Pr(Y ≥ i) = Pr(X +Z ≥ i). And, since Z is nonnegative, Pr(X +Z ≥ i) ≥ Pr(X ≥
i). Thus

Pr(X ≥ i) ≤ Pr(Y ≥ i). (2.5)

Since E[Y ] ≤ i
2 and ⌊iδin/(2n)⌋ ≥ ⌊32 max(∆out∆in/δin, lnn)⌋ > 2, Lemma 2.2.3

implies Pr(Y ≥ i) ≤ Pr(Y ≥ 2E[Y ]) ≤ exp
(

−iδin
16n + 1

8

)

. The claim follows since

λ · Pr(X ≥ i) ≤ exp

(

2∆out∆in

δin

)

· Pr(Y ≥ i)

≤ exp

(−iδin

16n
+

1

8
+

2∆out∆in

δin

)

≤ exp

(−iδin

32n
+

1

8

)

≤ exp

(−iδin

64n

)

.

(The first step follows from Equations (2.4) and (2.5). For the third step and

fourth steps, note that the assumption i ≥ 64n max(∆out∆in/δ2
in, (lnn)/δin) implies

iδin/(32n) ≥ 2∆out∆in/δin and iδin/(64n) ≥ 1/8, respectively.)

Lemma 2.4.12. If r ≥ min(⌈2e2∆out∆in/δin⌉, n), then every active edge sequence

is, with high probability, O(n max(∆out∆in/δ2
in, (log n)/δin))-active.

Proof. Let c denote an arbitrary positive real greater than or equal to 1, and let i

denote the positive integer ⌈64cn max(∆out∆in/δ2
in, (lnn)/δin))⌉.

For any nonnegative integer j, let pj denotes the probability that there is a j-

active edge sequence. Any j-active edge sequence σ is active, so the associated node
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sequence dst(σ) is active. It follows from Lemma 2.4.5 that any j-active sequence

has length at most n. In other words, ℓ ≤ n for any j-active ℓ-sequence of edges.

Furthermore, if j > 0 then the length of a j-active sequence is nonzero. Since any j-

active ℓ-sequence of edges satisfies ℓ ≤ n, the condition r = min(⌈2e2∆out∆in/δin⌉, n)

allows us to apply Lemmas 2.4.10 and 2.4.11. Applying these two lemmas, together

with a union bound, we obtain pj ≤ n2 exp(−jδin/(64n)) for j > i.

Let p denote the probability that there is a j-active edge sequence for some

j ≥ i. By a union bound, p ≤∑j≥i pj . Using the upper bound on pj derived in the

preceding paragraph, we find that p is upper bounded by an infinite geometric sum

with initial term n2 exp(−iδin/(64n)) and ratio exp(−δin/(64n)). Thus

p = O((n3/δin) exp(−iδin/(64n)))

= O(n3 exp(−c max(∆out∆in/δin, log n)))

= O(n3−c).

By setting c to a sufficiently large positive constant, we can drive p below

any desired inverse polynomial threshold. The claim of the lemma follows.

Lemma 2.4.13. If r ≥ min(⌈2e2∆out∆in/δin⌉, n), then the cover time of process

R-RANK is, with high probability, O(n max(∆out∆in/δ2
in, (log n)/δin)). The same

asymptotic bound holds for the expected cover time.

Proof. The high probability claim is immediate from Lemmas 2.4.4 and 2.4.12. The

bound on the expected cover time then follows by Lemma 2.4.3.

Theorem 2.4.1. If both ∆in and ∆out are O(δin), then there is an r in O(δin) such

that the cover time of process R-RANK is O(n + n log n
δin

) with high probability. The

same asymptotic bound holds for the expected cover time.

Proof. Immediate from Lemma 2.4.13.

The result of Theorem 2.4.1 matches the lower bound proved by Alon for

process MIN and is thus optimal [4].

Note that as r tends to infinity, the behavior of process R-RANK converges

to that of process P-RANK. Thus, the bounds of Theorem 2.4.1 also hold for process

P-RANK.
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2.5 Process R-RANK′

In this section we analyze a biased version of process R-RANK, which we call process

R-RANK′. Process R-RANK′ is similar to process R-RANK, except that immedi-

ately after a selection, if the selected node is uncovered we cover it and move to the

next selection. Otherwise, we proceed as in process R-RANK.

In our analysis, we find it helpful to consider another process, which we call

process H. Process H runs in two phases. For the first phase, consisting of the first

cn max(1, (log n)/δin) rounds, we run process SELECT. At the end of phase 1, we

remove from the graph all edges which did not have at least one end-point selected

during phase 1. After the edge removal, we proceed to phase 2 where we begin to

cover vertices as in process R-RANK.

Lemma 2.5.1. If process H and process R-RANK′ use the same random rank as-

signment, infinite series of selections, and tie-breaking node order, the cover time of

process R-RANK′ is at most the cover time of process H.

Proof. We prove the stronger claim that if process H and process R-RANK′ use

the same random rank assignment, infinite series of selections, and tie-breaking

node order, then at the end of any round i, all nodes covered in process H are also

covered in process R-RANK′.

Call a round i low if i ≤ cn max(1, (log n)/δin), and high otherwise. We call

a node marked if it was selected in some low round.

We proceed by induction on i. For the base case, we consider any low round

i. In these rounds, process H covers no nodes, so there is nothing to prove.

Now, assume i is high. Let u be the node selected in round i in both process

R-RANK′ and process H. If no node is covered in process H, the claim follows from

the induction hypothesis. Now assume node v is covered in process H in round i. If

v is covered in process R-RANK′ in some round prior to round i, there is nothing

to prove. Thus, assume that v is not covered in process R-RANK′ prior to round

i. We now complete the induction step by arguing that v must also be covered in

process R-RANK′ in round i.

If v is marked, then v is covered in process R-RANK′ in a low round since

it was selected in a low round. But, v is not covered in process R-RANK′ prior to

round i, so v is unmarked. Since process H selects u and covers v in round i, (u, v)
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is not removed by process H at the end of phase 1. Thus, u and v cannot both be

unmarked, so u is marked.

It follows that u is not equal to v and u is already covered in process R-

RANK′ as it was selected in a low round. Since u is marked, it has the same set of

outgoing neighbors in both processes, i.e., no edge (u, w) is thrown away in process

H at the end of the first phase.

Let S (resp., T ) be the uncovered outgoing neighbors of u in process R-

RANK′ (resp., process H) at the beginning of round i. By the induction hypothesis,

S is contained in T . Since both processes use the same random ranks and tie-

breaking node order, the neighbor selection procedure gives well defined order of

the nighbors of u. Since S ⊆ T and v is the minimum order node in T and belongs

to S, v is the minimum order node in S. Thus v also is covered in round i in process

R-RANK′.

Lemma 2.5.2. If r ≥ min(⌈2e2∆out∆in/δin⌉, n), then the cover time of process

R-RANK′ is, with high probability, O(n max(∆out∆in/δ2
in, (log n)/δin)). The same

asymptotic bound holds for the expected cover time.

Proof. We run a copy of process R-RANK′ in parallel with a copy of process H,

using the same random ranks, selections, and tie-breaking node order.

We call phase 1 of process H successful if at least δin/4 of every node’s in-

neighbors are selected. If phase 1 is unsuccessful, we over estimate the cover time

of process R-RANK′ by the O(n log n) cover time of coupon collector. If phase 1

is successful, by Lemma 2.5.1 we may overestimate the cover time of process R-

RANK′ with the cover time bound of process H. To find the cover time bound of

process H, we add the number of rounds during phase 1, to the cover time bound

of process R-RANK during phase 2. We apply Lemma 2.4.13 to phase 2 of pro-

cess H where the graph has in-degree at least δin/4, to get a cover time bound of

O(max(∆out∆in/δ2
in, (log n)/δin)) for process H. Since the bound on the cover time

of process H is both with high probability and in expectation, if phase 1 is successful

with high probability, the same bound holds for process R-RANK′.

All that remains to be shown is the required result is that phase 1 is successful

with high probability.

Consider a specific node w. The probability of selecting a node in Γin(w) on

any selection is a Bernoulli random variable with success probability at least δin/n.
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The number of selections in Γin(w) during phase 1 is the sum of cn max(1, (log n)δin)

such independent Bernoulli random variables. Thus, by Lemma 2.2.4, the proba-

bility of getting less than (c/2)max(δin, log n) selections in Γin(w) during phase 1

is at most exp((c/12)max(δin, log n)), which is an arbitrary inverse polynomial by

choosing a large enough constant c.

Given that (c/2)max(δin, (log n)) selections during phase 1 select a vertex

in Γin(w), we apply Lemma 2.2.6. To do so, let the variables in the lemma be

n = |Γin(w)| ≥ δin, and j = (c/2)max(δin, (log n)) which is also at least δin if we set

c ≥ 2. Thus, Lemma 2.2.6 tell us that the probability less than δin
4 distinct nodes

of Γin(w) are selected during phase 1 of process H is at most exp( c
2 max(δin, log n)),

which is an arbitrary inverse polynomial by selecting a large enough constant c.

Taking the union bound over all nodes in the graph shows that phase 1 is successful

with high probability.

2.6 Lower Bounds

In this section, we show lower bound results on the cover times of the processes pro-

cess A-RANK and process A-RANK′ defined in Section 2.1. These results establish

that the method of picking which uncovered neighbor to cover does make a difference

to the resulting expected cover time. While the full proofs of the two theorems are

rather lengthy, the main ideas are straightforward. We summarize these main ideas

in the two proof outlines that follow. The main technical tools employed in the full

proofs are Chernoff bounds and Azuma’s inequality (see, e.g., [40, 5]). Note that

our lower bounds hold even if we restrict attention to the special class of directed

graphs where edge (u, v) is present if and only if edge (v, u) is present; below we

refer to such graphs as undirected.

Theorem 2.6.1. For all n, there is an n-node undirected graph G in which each

node has degree Θ(log n), and an assignment of ranks 1 through n to the nodes of

G, such that process A-RANK has cover time Ω(n
√

(log n)/ log log n) = ω(n).

Proof sketch: Fix n and construct G as follows. First, partition the n nodes into

ℓ levels, numbered from 0 to ℓ − 1, so that the following conditions hold: level

0 contains n/2 nodes; successive levels have a geometrically decreasing number of

nodes with ratio a =
√

(log n)/ log log n; level ℓ− 1 is the only level with fewer than
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√
n nodes. Thus ℓ = Θ((log n)/ log log n). Assign ranks 1 through n to the nodes

in such a way that nodes on lower-numbered levels have lower ranks. For each node

u at level i, select Θ(log n) nodes at random from each of levels i and i − 1 (with

replacement), and add an edge from u to each selected node. (If node u is at level

0, then only select nodes from level 0.) We let si denote the number of nodes on

level i and define τi to be ni/ca, where c is a sufficiently large constant. We call a

level crowded if more than half of the nodes on that level are covered.

We inductively show that, with high probability, level i is not crowded until

τi. For the base case, i = 0, the claim is trivially true since τ0 is 0. For induction,

we have two subclaims. First, using the inductive hypothesis we can show that,

with high probability, only a small constant fraction of level i is covered between

rounds 0 and τi−1. Second, we can show that, with high probability, only a small

constant fraction of level i is covered between rounds τi−1 and τi. This completes

the proof of the inductive claim. The theorem results from setting i = ℓ in the

inductive claim. Specifically, with high probability, level ℓ is not crowded on round

τℓ = Ω(n
√

(log n)/ log log n), which gives the theorem statement. All that remains

to be shown are the two subclaims.

First, we show that, with high probability, only a small constant fraction

of level i is covered between rounds 0 and τi−1. We define a bad set as a set of

nodes from levels i and i − 1 with no uncovered neighbor on level i − 1 on round

τi−1. Inductively assuming that level i− 1 is not crowded until τi−1, we can use the

probabilistic method to show that with high probability no bad set of size greater

than si+1 exists. We over estimate the covers on level i from round 0 to τi−1, by

assuming all selections throughout the specified rounds on level i + 1 or on a bad

set of size si+1 result in covers on level i. Thus, with high probability, the rate of

coverage on level i between rounds 0 to τi−1 is 2si+1/n. The expected number of

nodes covered is then 2τi−1si+1/n = o(si). Using Chernoff bounds, we can show

that, with high probability, only a small constant fraction of level i is covered by

round τi−1.

Second, we show that, with high probability, only a small constant fraction

of level i is covered between rounds τi−1 and τi. We over estimate the covers on

level i from round τi−1 to τi by assuming that all selections on levels i − 1, i, and

i + 1 result in a cover on level i. The rate of coverage is upper bounded by 2si−1/n.

From the definitions of si−1, τi−1 and τi, we find the expected number of nodes
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covered on level i from round τi−1 to τi is a small constant fraction of si. Using

Chernoff bounds, and combining the results from this and the previous paragraph,

we can show that with high probability, level i does not become crowded until τi,

completing the inductive claim.

Theorem 2.6.2. For all n, there is an n-node undirected graph G in which each

node has degree Θ(log n), and an assignment of ranks 1 through n to the nodes of

G, such that process A-RANK′ has cover time Ω(n log log n) = ω(n).

Proof sketch: The proof of this theorem proceeds in much the same was as the

proof for Theorem 2.6.1. Again, partition the n nodes into ℓ levels, numbered from

0 to ℓ− 1 with level 0 containing about n/2 nodes. However, this time, let the ratio

a of the number of nodes between successive levels be (log n)1/4. We restrict the

number of levels ℓ to Θ((log n)3/8 log log n). Again, assign ranks 1 through n to the

nodes in such a way that nodes on lower-numbered levels have lower ranks. For each

node u at level i, select Θ(log n) nodes at random from each of levels i and i − 1

(with replacement), and add an edge from u to each selected node. (If node u is at

level 0, then only select nodes from level 0.) Again, we let si denote the number of

nodes on level i.

This time, however, we define τi to be a more conservative ni
ca3/2

, where c is

a sufficiently large constant. Furthermore, we change the meaning of crowded to

denote that more than a 1 − 1/
√

a fraction of the nodes on that level are covered.

The motivation for these changes is that node covers resulting from the bias towards

the selected node quickly cover a significant fraction of the nodes in each level.

Again, we inductively show that, with high probability, level i is not crowded

until τi. For the base case, i = 0, the claim is trivially true since τ0 is 0. For

induction, we have two subclaims. First, using the inductive hypothesis we can

show that, with high probability, only a 1 − 2/
√

a fraction of level i is covered

between rounds 0 and τi−1. Second, we can show that, with high probability, only

a further 1/
√

a fraction of level i is covered between rounds τi−1 and τi. This

completes the proof of the inductive claim. The theorem results from setting i = ℓ

in the inductive claim. Specifically, with high probability, level ℓ is not crowded on

round τℓ = Ω(n log log n), which gives the theorem statement. All that remains to

be shown are the two subclaims.

First, we show that, with high probability, only a 1 − 2/
√

a fraction of level
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i is covered between rounds 0 and τi−1. We define a bad set as a set of nodes

from levels i and i − 1 with no uncovered neighbor on level i − 1 on round τi−1.

Inductively assuming that level i − 1 is not crowded until τi−1, we can use the

probabilistic method to show that with high probability no bad set of size greater

than si+1 exists. To show the desired result, we analyse an over-estimate of the

covers on level i from round 0 to τi−1 in to two parts. First, we assume that all

selections throughout the specified rounds on level i + 1 or a bad set of size si+1

result in covers on level i. We show that with high probability, covers of this type

cover no more than a 1/
√

a fraction of level i. Second, using Azuma’s inequality, we

show that the covers due to bias towards the selected node on level i cover no more

than a 1 − 3/
√

a fraction of the nodes on level i with high probability.

In the final remaining claim, we show that, with high probability, only an

1/
√

a fraction of level i is covered between rounds τi−1 and τi. We over estimate

the covers on level i from round τi−1 to τi by assuming that all selections on levels

i− 1, i, and i+1 result in a cover on level i. The rate of coverage is upper bounded

by 2si−1/n. From the definitions of si−1, τi−1 and τi, we find the expected number

of nodes covered on level i from round τi−1 to τi is a 1/
√

a fraction of si. Using

Chernoff bounds, and combining the results from this and the previous paragraph,

we can show that with high probability, level i does not become crowded until τi,

completing the inductive claim.

2.7 Concluding Remarks

For completeness, the reader should notice that assigning r a greater value in the

proof of Lemma 2.4.11 does not alter the result. It is this fact that makes the locally

assigned random ranks more general than the random permutation discussed in the

introduction. If we let r = 2n, the random ranks will fix a random permutation

with high probability.

We also note that process UNI is equivalent to a process where each node

selects a uniformly random permutation of the vertices. Then, when a node is

selected, we pick the min-rank neighbor based on the selected node’s ranks – as

opposed to the global ranks in process P-RANK. This once again highlights the

similarities between process P-RANK and process UNI.

Furthermore, we note that process CC on a directed graph can be viewed
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as a process on a family of sets. Let there be s, not necessarily distinct, sets from

a universe of n elements. In each round, we select a set uniformly at random and

cover an uncovered element from that set. When s = n and each of the n sets is the

set of out-neighbors of a particular node from the directed graph, the two processes

are equivalent. Our proof techniques, can be used to derive results in this set based

process.
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Chapter 3

Selfishness

3.1 Introduction

In this chapter, we study the core of a large set of games, a subset of assignment

games, which we term buyer-supplier games [10, 55] [56, Chapter 6]. We are pri-

marily concerned with efficient computations over the set of vectors belonging to

the core of buyer-supplier games. Before diving into an overview of buyer-supplier

games, we present some connections between our work and the existing literature.

3.1.1 Related Work

Though suggested by Edgeworth as early as 1881 [16], the notion of the core was for-

malized by Gillies and Shapley [23, 53], extending von Neumann and Morgenstern’s

work on coalitional game theory [59]. Recently, Goemans and Skutella studied the

core of a cost sharing facility location game [24]. In their paper, Goemans and

Skutella are primarily interested in using core vectors as a cost sharing indicator,

to decide how much each customer should pay for opening the facility used by the

customer. Goemans and Skutella show that, in general, the core of the cost sharing

facility location game they study is empty. In contrast, for the buyer-supplier games

we study, the core is always nonempty. Additionally, in our work we do not view

vectors in the core as an indication of cost shares but rather as rational outcomes of

negotiation amongst the players in the buyer-supplier game. Pál and Tardos extend

the work of Goemans and Skutella by developing a mechanism for the cost sharing

facility location game which uses the concept of an approximate core [44].

46



There has been great interest in comparing the game’s best outcome to the

best equilibrium outcome, where the term best is based on some objective function.

For example, one may wish to compare the outcome maximizing the net utility for

all players in the game against the best possible Nash equilibrium, with respect to

net utility. Papadimitriou termed one such comparative measure as the price of

anarchy [45]. Roughgarden and Tardos have studied the price of anarchy in the

context of routing [50, 51, 52].

In this chapter, we introduce a quantity with a similar motivation to that of

the price of anarchy. Solution concepts often yield multiple predictions, or equilib-

ria. In actual game play, however, only one of the equilibria can be chosen by the

game’s players. Experiments show that conditions outside the game, such as societal

pressures or undue attention to a specific player, focus the players’ attention on the

point of a single equilibrium, which then becomes the outcome of the game. This is

a common notion in game theory called the focus point. A player may receive differ-

ent payoffs in different equilibria. How much is the player willing to pay for a good

focus point? We define the focus point price with respect to a given player as the

difference between the maximum and minimum equilibrium payoffs to the player.

Stated succinctly, focus point price answers the question: If we are constrained to

play in equilibrium, how much can we lose by playing the wrong equilibrium?

Recently, Garg et al. studied transferable utility games they call coalitional

games on graphs [22]. Coalitional games on graphs are a proper subset of buyer-

supplier games, which can be derived by setting the buyer’s internal cost, Bcost,

to zero (see Section 3.1.3 and Lemma 3.3.21). For some buyer-supplier games, for

example the buyer-supplier facility location game, it does not appear that the game

can be described with Bcost fixed to zero.

Garg et al. study the concepts of “frugality” and “agents are substitutes.”

They show that suppliers are substitutes if and only if the core of the game forms

a lattice. In buyer-supplier games, suppliers are not always substitutes. We show,

in Lemma 3.4.4, that if suppliers are substitutes, we can optimize over the core by

solving a polynomially sized linear program. Garg et al. and, more recently, Karlin

et al. study and characterize the frugality certain auction mechanisms; the focus

point price concept introduced in this chapter is quite different from frugality [31].

A third difference between Garg et al. and this work comes from the fact

that, similarly to the economics literature, Garg et al. are mainly concerned with
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the characterization of the core: When does the core form a lattice? How do core

vectors relate to auctions? We, on the other hand, are mainly concerned with

characterizing optimization over the core. Our main results are in the flavor of Deng

and Papadimitriou, in that we are interested with the complexity of computing using

game theoretic characterizations [15].

Faigle and Kern study optimization over the core for submodular cost par-

tition games [18]. Faigle and Kern exhibit a generic greedy-type algorithm for

optimization of any linear function over the core of partition games whose value

function is both submodular and weakly increasing, a property they define.

The greedy framework of Faigle and Kern captures certain buyer-supplier

games, such as the buyer-supplier minimum spanning tree game. However, even

some buyer-supplier games derived from problems that admit greedy solutions, such

as the buyer-supplier shortest path game, are not amenable to the approach of Faigle

and Kern. In this chapter, we do not restrict ourselves to greedy algorithms. By

making use of the ellipsoid method, we are able to give polynomial time algorithms

for optimization over the core of any buyer-supplier game for which the underlying

minimization problem is solvable in polynomial time.

To provide the reader with a simple, concrete example of optimization over

the core of a buyer-supplier game, towards the end of this chapter, we focus our

attention on the buyer-supplier minimum spanning tree game. We give a simple

greedy algorithm for this problem, which is a minor extension of Kruskal’s minimum

spanning tree algorithm. A greedy algorithm is provided by the work of Faigle and

Kern, but their exposition involves a good deal of machinery. Our exposition is

completely elementary.

Several methods, apart from buyer-supplier games, are known for transform-

ing a combinatorial optimization problem into a game. The cores of these transfor-

mations have also been extensively studied. For example, Deng et al. show results

on core non-emptyness, distinguishability of core vectors, and finding core vectors

for one such transformation [14]. Caprara et al. continue the work of Deng et al.

by considering a certain optimization over the set of core vectors for this alternate

transformation [12].
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3.1.2 Main Contributions

There has been increased interest from the theoretical computer science community

in game theory. While problem-specific solutions may give us insight, to leverage

the full power of decades of study in both research areas, we must find generic

computational solutions to game theoretic problems. Indeed, others have already

realized this need [6, 46]. In this chapter, we continue this line of work by deriving

generic results for computing with core solutions in a large class of games.

The core of buyer-supplier games in the transferable utility setting is charac-

terized by Shapley and Shubik [55]. As a minor contribution, we extend their result

by showing that the core in the non-transferable utility setting is the same as the

core with transferable utilities. Our primary contributions are as follows:

1. While previous work in the economics literature has concentrated on charac-

terizing the core of buyer-supplier games and relating core vectors to auctions,

our main interest is in optimizing over the set of core vectors [10]. We provide

a generally applicable algorithm, based on the ellipsoid method, for optimizing

over the core. If the original minimization problem is solvable in polynomial

time, we show that it is possible to optimize linear functions of core vectors in

polynomial time.

2. We fully characterize optimization over the core of buyer-supplier games by

using a polynomial time reduction to show that if the original minimization

problem is not solvable in polynomial time, it is impossible, in polynomial

time, to test if an arbitrary vector is in the core of the buyer-supplier game.

3. We introduce the concept of focus point price. Our positive computational

results give a polynomial time algorithm for computing the buyer’s focus point

price in buyer-supplier games when the underlying minimization problem is

solvable in polynomial time. When the underlying minimization problem is

not solvable in polynomial time, we show that it is impossible to approximate

the buyer’s focus point price to within any multiplicative factor.

3.1.3 Overview of Buyer-Supplier Games

The definition of a buyer-supplier game, given in Section 3.2.1, is self-contained and

does not require an argument. However, it is also possible to transform a combina-
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torial minimization problem into a buyer-supplier game. Consider a combinatorial

minimization problem of the following form. We have some finite set of elements C.

We designate some subsets of C as feasible. To capture feasibility, we use a predi-

cate P : 2C → {0, 1}, where the predicate is one on all feasible subsets of C. With

each feasible set A ⊆ C, we associate a non-negative cost f(A). The combinatorial

minimization problem can then be captured by the function MinProb : 2C → ℜ+

defined by

MinProb(B) = min
A ⊆ B

P (A) = 1

f(A)

where ℜ+ denotes the non-negative real numbers.

To transform the above minimization problem into a buyer-supplier game,

we associate a player with each element of C; we call such players suppliers. We

also add another player whom we call the buyer. In the game, the buyer wishes to

purchase a feasible subset of C. The suppliers, on the other hand, are offering their

membership to the buyer’s set at a price.

To fully specify the game’s model of a realistic interaction, we let M desig-

nate the maximum investment the buyer is willing to spend on a feasible set. We

decompose f such that f(A) = Bcost(A)+
∑

a∈A τ(a), where τ(a) is an internal cost

for supplier a to be present in the buyer’s set and Bcost(A) is an internal cost to the

buyer for purchasing this specific feasible set. In general, many such decompositions

are possible, and they produce different games. However, when specifically applying

the core solution concept, Lemma 3.3.21 shows that all such decompositions are

equivalent. Though it is not necessary, to remove special cases in our statements, it

is convenient to let Bcost(A) = M when A = ∅ or A is not feasible.

Now that we have determined the internal costs for the buyer and the sup-

pliers, we can specify the game. The buyer-supplier game is specified by the tuple

(C, τ, Bcost). The strategy set for the buyer is the power set of C. By playing A ⊆ C,

the buyer chooses to purchase the membership of the suppliers in A. The strategy

set for every supplier a ∈ C is the non-negative real numbers, indicating a bid or

payment required from the buyer for the supplier’s membership.

For any supplier a ∈ C, we let β(a) denote the associated bid. Let A be the

set of suppliers chosen by the buyer. The payoff for the buyer is M − Bcost(A) −
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∑

a∈A β(a). The payoff for a supplier not in A is 0. The payoff for a supplier a in

A is β(a) − τ(a).

Since we are applying the solution concept of the core, one may think of the

game play as follows. All the players in the game sit down around a negotiating

table. All the players talk amongst themselves until they reach an agreement which

cannot be unilaterally and selfishly improved upon by any subset of the players.

Once such an agreement is reached, game play is concluded. Since no subset of the

players can unilaterally and selfishly improve upon the agreement, rationality binds

the players to follow the agreement.

The fully formal definition of a buyer-supplier game is given in Section 3.2.1.

The transformation process described above can be used to create buyer-supplier

games from most combinatorial minimization problems. For example, minimum

spanning tree, Steiner tree, shortest path, minimum set cover, minimum cut, single-

and multi-commodity flow can all be used to instantiate a buyer-supplier game.

As a concrete example and interpretation of a buyer-supplier game, consider

the buyer-supplier minimum spanning tree game. In this game, a company owns

factories on every node of a graph. The company wishes to connect the factories

by purchasing edges in the graph. Each edge is owned by a unique supplier player.

Each supplier has an internal cost associated with the company’s usage of the edge.

The company has a maximum amount of money it is willing to spend on purchasing

edges. Depending on the transportation conditions of a particular edge, the company

may have some internal cost associated with choosing that particular edge. The

buyer-supplier game paradigm yields similarly natural games when applied to other

minimization problems.

In this chapter we will be concerned with efficient computation over the set

of core vectors. For the rest of the chapter, when we say polynomial time, we mean

time polynomial in the size of the parameter C, which is also polynomial in the

number of players of the buyer-supplier game.

3.1.4 Organization of the Chapter

In Section 3.2 we define buyer-supplier games and the core of a game. In Section 3.3

we characterize the core of buyer-supplier games. In Section 3.4 we give positive

computational results, namely the generic algorithm for optimizing over the set
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of core vectors. In Section 3.5 we give negative computational results by showing

polynomial time equivalence between several related problems. In Section 3.6 we give

the problem-specific combinatorial algorithm for the buyer-supplier game arising

from the minimum spanning tree problem.

3.2 Definitions

In this section, we formally define buyer-supplier games and give the game theoretic

definitions required for our analysis.

3.2.1 Buyer-Supplier Games

Let C be a finite set and M be a non-negative real number. Let τ be a function

from C to ℜ+. Let Bcost be a function from 2C to ℜ+ such that Bcost(∅) = M . The

simplifying condition that Bcost(∅) = M is not required. We explain the condition’s

purpose later in this section. For A ⊆ C, let Eval(τ, Bcost,A) denote Bcost(A) +
∑

a∈A τ(a). For A ⊆ C, let MinEval(τ, Bcost,A) denote minB⊆A Eval(τ, Bcost,B).

We will omit the parameters τ and Bcost from the functions Eval(τ, Bcost,A) and

MinEval(τ, Bcost,A) when the value is clear.

Given a tuple (C, τ, Bcost), we proceed to define a buyer-supplier game. As-

sociate a player with each element of C. Call the players in C suppliers. Let there

also be another player, µ, whom we call the buyer. Let P = C ∪ {µ} be the set of

players for the buyer-supplier game.

The strategy for supplier a is a tuple (β(a), pa) with β(a) ∈ ℜ+ and pa :

P → ℜ+. The first element, β(a), represents supplier a’s bid to the buyer, requiring

the buyer to pay β(a) for using the supplier’s services. The second element, pa,

represents the non-negative side payments supplier a chooses to make to the game’s

players. By pa(b) we denote the side payment a makes to player b.

The strategy for the buyer, µ, is a tuple (A, pµ) where A ⊆ C and pµ :

P → ℜ+. The first element, A, represents the suppliers chosen by the buyer for

a purchase. Similarly to a supplier, the second element, pµ, represents the non-

negative side payments the buyer chooses to make to the game’s players.

For each player a ∈ P we denote the player’s strategy set by Sa. For a set of

players A ⊆ P, we denote the set of strategies
⊗

a∈A Sa by SA. We call elements of

SA strategy vectors. We index strategy vectors from SA by the elements of A.
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We now define the utility function for each player. Suppose strategy s ∈ SP

is played. Specifically, suppose that (A, pµ) ∈ Sµ and (β(a), pa) ∈ Sa for each

a ∈ C are played. The utility function for buyer is uµ(s) = M − [Bcost(A) +
∑

a∈A β(a)]+[
∑

b∈P pb(µ)−∑b∈P pµ(b)]. The utility for a supplier a in A is ua(s) =

β(a) − τ(a) + [
∑

b∈P pb(a) −∑b∈P pa(b)]. The utility for a supplier a not in A is

ua(s) = [
∑

b∈P pb(a) −∑b∈P pa(b)].

Interpreting, the buyer begins with a total of M utility and chooses to make

a purchase from each supplier in A. The buyer gives β(a) to each supplier a ∈
A and loses an extra Bcost(A) from the initial M utility. Each supplier a in A
receives the bid payment from the buyer and loses τ(a) because the supplier must

perform services for the buyer. The distribution of sidepayments completes the

utility functions. The requirement that Bcost(∅) = M lets the strategy ∅ stand as a

“don’t play” strategy for the buyer. To remove the requirement, we could introduce

a specific “don’t play” strategy to the buyer’s strategy set, however this creates a

special case in most of our proofs.

Let the sidepayment game we have defined be denoted SP. Let NOSP denote

the same game with the additional requirement that all sidepayments be fixed to

zero. In other words, in NOSP we restrict the strategy set for each a ∈ P so that

pa is identically zero.

3.2.2 Game Theoretic Definitions

All of the definitions in this section closely follow those of Shubik [56, Chapter 6].

We call a vector in ℜ|P|, indexed by a ∈ P, a payoff vector. We say a payoff

vector π is realized by a strategy vector s ∈ SP if πa = ua(s) for all a ∈ P.

Let π be a payoff vector and s be a strategy vector in SA for A ⊆ P. Let t

be any strategy vector in SP such that the restriction of t to the coordinates in A is

equal to s. If for all t and for all a ∈ A we have πa ≤ ua(t), we say that the players

in A can guarantee themselves payoffs of at least π by playing s.

We use Shubik’s alpha theory to define our characteristic sets [56, pp. 134-

136]. Thus for a set of players A ⊆ P, we define the characteristic set, V (A), to be

the set of all payoff vectors π such that there is a strategy vector s ∈ SA, possibly

dependent on π, with which the players in A can guarantee themselves payoffs of

at least π. In the transferable utility setting, SP, the characteristic sets can be
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replaced with a characteristic function. Given the definitions of the utility functions

in Section 3.2.1, the characteristic function Ṽ (A) for a set of players A is equal to

M − MinEval(τ, Bcost,A− {µ}).
We say that a set A ⊆ P of players are substitutes if Ṽ (P) − Ṽ (P − B) ≥

∑

a∈B Ṽ (P) − Ṽ (P − {a}) for all B ⊆ A.

We say that a payoff vector π dominates a payoff vector ν through a set

A ⊆ P if πa > νa for all a ∈ A. In other words, π dominates ν through A when

each player in A does better in π than in ν.

For a set of players A ⊆ P, we define D(A) as the set of all payoff vectors

which are dominated through A by a payoff vector in V (A). Interpreting, the players

in A would never settle for a payoff vector π ∈ D(A) since they can guarantee

themselves higher payoffs than those offered in π.

The core of a game consists of all π ∈ V (P) such that π /∈ D(A) for all

A ⊆ P.

3.3 A Characterization of the Core

The characterization of the core of buyer-supplier games in the transferable utility

setting was done by Shapley and Shubik [55]. In this section, we show the surprising

result that the same characterization holds in the non-transferable utility setting.

In general, it is not the case that the core of the transferable utility and non-

transferable utility versions of a game are the same. For example, the buyer may

be able to use bribes to alter the bidding strategies of some suppliers, and thus

reduce the bids of other suppliers. The following condition characterizes the core

of buyer-supplier games. A payoff vector π is in the core of a buyer-supplier game

defined by (C, τ, Bcost) if and only if it satisfies

πa ≥ 0 ∀a ∈ P,
∑

a∈A

πa ≤ MinEval(τ, Bcost, C − A) − MinEval(τ, Bcost, C) ∀A ⊆ C,

πµ = M − MinEval(τ, Bcost, C) −
∑

a∈C

πa.

We prove the result from first principles. In Section 3.3.1, we give some pre-

liminary lemmas for the games NOSP and SP. In Section 3.3.2, we show that the
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core of SP is the same as the core of NOSP. In Section 3.3.3, we give a characteri-

zation of the core of NOSP.

3.3.1 Preliminary Lemmas on the Core of NOSP and SP

This section contains some preliminary lemmas that are useful in characterizing the

core of NOSP and SP.

For some of our proofs it is convenient to think of SP as a two stage distribu-

tion of wealth, where the strategy s ∈ SP determines the utility transfers. Initially,

the buyer has M utility and all suppliers have zero utility. In the first stage, the

buyer gives β(b) to each supplier b ∈ A and loses an extra Bcost(A) from the initial

M utility. Also in the first stage, each supplier b ∈ A loses τ(b) of utility. In the

second stage, side payments are distributed.

Lemma 3.3.1. Let s ∈ SA∪µ be such that sµ = (A, pµ). If s guarantees the players

in A ∪ µ payoffs of at least π ∈ ℜ|A∪µ|, then there is a t ∈ SA∪µ such that

• All side payments from players in A ∪ µ to players in A ∪ µ are fixed to zero

in t

• tµ = (A, 0)

• t also guarantees payoffs of at least π.

Proof. We show how to sequentially remove the specified side payments while main-

taining the payoff guarantee.

Let a and b be suppliers in A. Let sa = (β(a), pa) and sb = (β(b), pb).

First, consider a supplier to supplier payment. Suppose that pa(b) = λ, that

is, supplier a pays λ to supplier b. Because both a and b are in A, we can achieve

the same utility transfer as the side payment by setting the side payment to zero

and changing β(a) to β(a)− λ and β(b) to β(b) + λ. Thus, we can zero out the side

payment from a to b.

Now, consider a supplier to buyer payment. Suppose that pa(µ) = λ. In other

words supplier a pays λ to the buyer. We can achieve the same utility transfer as

the side payment by setting the side payment to zero and changing β(a) to β(a)−λ.

Thus, we can zero out the side payment from a to µ.

A similar change works for a payment from the buyer to a supplier.
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Lemma 3.3.2. Let strategy vector s ∈ SP realize payoff vector π. If sµ = (A, pµ)

and there exists a ∈ C − A such that πa > 0, then π ∈ D(A ∪ µ) in both SP and

NOSP.

Proof. Since all side payments are zero in NOSP, it is impossible for πa to be greater

than zero. Thus, the statement is trivial for NOSP.

Consider the two stage distribution of wealth interpretation of SP. Since

there exists a ∈ C − A such that πa > 0, in s there is a net flow of side payments

from A∪ µ to C −A in stage two of SP. Instead of following strategy s, the players

in A ∪ µ can set to zero all side payments going from A ∪ µ to C − A. With this

action, at least πa more utility stays in A ∪ µ at the end of stage two. The players

in A ∪ µ can use side payments amongst themselves so that each player gets an

extra πa/(|A|+1) utility at the end of stage two than what the player received from

following strategy s. Moreover, since the players in C − A only have control over

the non-negative side payments flowing from C − A to A ∪ µ, we have shown that

the players in A∪ µ can guarantee themselves payoffs greater than the payoffs that

they received from following s. Thus, π ∈ D(A ∪ µ) in SP.

Lemma 3.3.3. If π is in the core of SP or NOSP, then πa ≥ 0 for all a ∈ P.

Proof. We prove the statement by contradiction. Suppose that πa < 0 for some

player a.

If a is a supplier, a can guarantee at least 0 utility with strategy (τ(a), 0) ∈
Sa. If a is the buyer, a can guarantee 0 utility with strategy (∅, 0). Thus, π ∈ D({a})
in both SP and NOSP. Thus, π is not in the core of either game.

Lemma 3.3.4. Let π be a payoff vector, and let s be a strategy vector in SP . If the

players in P can guarantee themselves payoffs of at least π by playing s, but s does

not realize π, then π is not in the core of either SP or NOSP.

Proof. Let sµ = (A, pµ).

We use a proof by contradiction. Assume π is in the core of either SP or

NOSP. By Lemma 3.3.3, we know that πa ≥ 0 for all a ∈ P. By Lemma 3.3.2, we

know that πa = 0 for all a ∈ C −A.

First, we derive a contradiction with the assumption that π is in the core of

SP.
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Consider the two stage distribution of wealth interpretation of SP. Since s

guarantees payoffs of at least π but s does not realize π, we know that πa ≤ ua(s)

for all a ∈ P and there is some a ∈ P such that πa < ua(s). Thus by following s, the

total wealth held by A ∪ µ in SP at the end of stage one is greater than
∑

a∈P πa.

In turn, we have
∑

a∈P πa ≥∑a∈A∪µ πa. Let λ be the difference between the total

wealth held by A ∪ µ at the end of stage one and
∑

a∈A∪µ πa.

Instead of following s, the players in A∪ µ can set to zero all side payments

from A∪µ to C−A. The players in A∪µ can use side payments amongst themselves

so that each player gets an extra λ/(|A| + 1) utility at the end of stage two than

what the player received in π. Moreover, since the players in C−A only have control

over the non-negative side payments flowing from C − A to A ∪ µ, we have shown

that the players in A∪ µ can guarantee themselves payoffs greater than the payoffs

that they received in π. Thus, we have constructed a new strategy t ∈ SA∪µ in SP

for the players in A ∪ µ which guarantees payoffs greater than π for each player in

A∪ µ. Thus, π ∈ D(A ∪ µ) in SP. This contradicts the assumption that π is in the

core of SP. Thus, π must be in the core of NOSP.

We now derive a contradiction with the assumption that π is in the core of

NOSP. By Lemma 3.3.1 and the fact that t guarantees payoffs greater than π for

each player in A ∪ µ, we also have π ∈ D(A ∪ µ) in NOSP. This contradicts the

assumption that π is in the core of NOSP.

3.3.2 Core Equivalence between SP and NOSP

In this section, we prove that the core of NOSP is the same as the core of SP. All

the lemmas in this section are used solely to prove the main result of the section,

Theorem 3.3.11.

Lemma 3.3.5. Let π be a payoff vector. If π ∈ D(A) in NOSP, then π ∈ D(A) in

SP.

Proof. The players in A can follow exactly the same strategy in SP as they would

in NOSP to guarantee payoffs greater than the payoffs in π; they simply fix all their

side payments to zero.

Lemma 3.3.6. Let π be a payoff vector. If π ∈ V (P) in SP and π is in the core of

SP, then π ∈ V (P) in NOSP.
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Proof. By Lemma 3.3.4, π is realized by some strategy vector s ∈ SP in SP. Let

sµ = (A, pµ).

Consider the two stage distribution of wealth interpretation of SP. By

Lemma 3.3.2, we have πa = 0 for all a ∈ C − A. Thus, at the end of stage two

of SP, there is no utility in C − A. Thus, the players can achieve the same utility

distribution by setting to zero all side payments except side payments from A ∪ µ

to A∪µ. Thus π is realized by a strategy vector with all zero side payments except

the side payments from A ∪ µ to A ∪ µ.

By Lemma 3.3.1, there is a strategy vector with all side payments fixed to zero

which guarantees payoffs of at least π for all the players in P. Thus π ∈ V (P).

Lemma 3.3.7. If payoff vector π is in the core of SP, then π is in the core of

NOSP.

Proof. The statement follows from Lemma 3.3.6 and the contrapositive of Lemma

3.3.5.

Lemma 3.3.8. Let π be a payoff vector. If π ∈ V (P) in NOSP, then π ∈ V (P) in

SP.

Proof. By the definition of V (P), the players in P can guarantee themselves payoffs

of at least π by playing some strategy s ∈ SP in NOSP. The players in P can follow

exactly the same strategy in SP to guarantee payoffs of at least π.

Lemma 3.3.9. If payoff vector π is in the core of NOSP, then for all A ⊆ P we

have π /∈ D(A) in SP.

Proof. We use a proof by contradiction. Suppose that π ∈ D(A) in SP for some

A ⊆ P. Thus, there is a strategy vector s ∈ SA in SP which guarantees each player

in A a greater payoff than the payoff given in π.

Since π is in the core of NOSP, by Lemma 3.3.3 we know πa ≥ 0 for all

a ∈ A.

We split the proof into two cases. In the first case, suppose that µ /∈ A. It is

impossible for s to guarantee a payoff greater than 0 for any player in A since the

buyer can always play ∅. Thus, we get a contradiction with the assumption that

π ∈ D(A) in SP.
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For the second case, suppose µ ∈ A. Let sµ = (B, pµ). There can not be

some supplier in B but not in A since that supplier can always play the strategy

(λ, 0) where λ > M to give the buyer a negative payoff. Since πµ ≥ 0, the existence

of a supplier in B −A contradicts the assumption that π ∈ D(A) in SP.

Thus, we have B ⊆ A− {µ}.
If there is some supplier a in A but not in B, since πa ≥ 0, we know that s

must guarantee a payoff greater than 0 for a. Let ν be the payoff vector realized

when the players in A follow s and each of the players in P −A follow the strategy

(0, 0). Thus, we have νa > 0 and νb > πb for all b ∈ A. By Lemma 3.3.2, we

have ν ∈ D(B ∪ µ) in SP. Since ν ∈ D(B ∪ µ) in SP, νb > πb for all b ∈ A, and

B ⊆ A− {µ}, we have π ∈ D(B ∪ µ) in SP.

Thus, we have sµ = (B, pµ) and π ∈ D(B ∪ µ) in SP. By Lemma 3.3.1, we

also have π ∈ D(B ∪ µ) in NOSP, which contradicts the fact that π is in the core of

NOSP.

Lemma 3.3.10. If payoff vector π is in the core of NOSP, then π is in the core of

SP.

Proof. The statement follows from Lemmas 3.3.8 and 3.3.9.

Theorem 3.3.11. The core of NOSP is equal to the core of SP.

Proof. Follows from Lemmas 3.3.7 and 3.3.10.

3.3.3 The Core of NOSP

In this section, we show a characterization of the core of NOSP with Theorem 3.3.20.

By Theorem 3.3.11, the same characterization is true of the core of SP. Throughout

the section, we refer to Equations (3.1), (3.2), and (3.3), whose definition comes

from Theorem 3.3.20. The lemmas in this section are solely used to prove the main

result of the section, Theorem 3.3.20. At the end of the section, as a corollary to the

theorem, we show Lemma 3.3.21, stating that the core does not change depending on

the decomposition chosen in the transformation from a combinatorial minimization

problem to a buyer-supplier game.

Lemma 3.3.12. If a payoff vector π is realized by some strategy vector s ∈ SP

where sµ = (A, 0), then πµ = M − Eval(A) −∑a∈C πa.

59



Proof. For any a ∈ C let sa = (β(a), pa). Since π is realized by s and all side

payments are zero, we have πa = β(a) − τ(a) for all a ∈ A. We also have that

πµ = M −
[

Bcost(A) +
∑

a∈A β(a)
]

. Substituting for β(a), we have πµ = M −
[

Bcost(A) +
∑

a∈A τ(a) +
∑

a∈A πa

]

. By the definition of Eval, we have πµ = M −
Eval(A) −∑a∈A πa.

Since all side payments are fixed to zero, we have πa = 0 for all a ∈ C − A.

Thus we can write πµ = M − Eval(A) −∑a∈C πa.

Lemma 3.3.13. If a payoff vector π is in the core of NOSP, then πµ = M −
MinEval(C) −∑a∈C πa.

Proof. Let F ⊆ C be such that Eval(F) = MinEval(C). We first show that any ν

realized by a strategy vector s with sµ = (A, 0) and Eval(A) 6= Eval(F) is not in

the core.

Let λ = (Eval(A) − Eval(F))/(|F| + 1). Since Eval(A) 6= Eval(F) and by

the definition of F , we have λ > 0. Construct a strategy vector t ∈ SF∪µ where

tµ = (F , 0)

ta = (νa + τ(a) + λ, 0) for all a ∈ F .

Since side payments are fixed to zero, the suppliers in C−F have no strategies which

can affect the payoffs of the players in F ∪ µ given that the players in F ∪ µ follow

t. Let u ∈ SP be any strategy vector with projection onto F ∪ µ equal to t.

Straight forward calculations with the game’s utility functions show that

ua(u) − νa = ua(u) − ua(s) = λ for each supplier a ∈ F .
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Consider

uµ(u) − νµ = uµ(u) − uµ(s)

= [M − Bcost(F) −
∑

a∈F

(νa + τ(a) + λ)]

− [M − Bcost(A) −
∑

a∈A

(νa + τ(a))]

= [−Eval(F) −
∑

a∈F

(νa + λ)] − [−Eval(A) −
∑

a∈A

νa]

= Eval(A) − Eval(F) −
∑

a∈F

λ + [
∑

a∈A

νa −
∑

a∈F

νa].

By the utility functions of NOSP and the definition of A and ν, we have νa = 0 for

all a ∈ C −A. Thus, the bracketed quantity in the above expression is at least zero.

Thus, we have

uµ(u) − νµ ≥ Eval(A) − Eval(F) −
∑

a∈F

λ = λ

where the equality comes from the definition of λ.

Thus, we have ν ∈ D(F ∪ µ).

We have shown that any vector in the core is realized by a strategy vector

s with sµ = (A, 0) where Eval(A) = Eval(F). The lemma statement follows from

Lemma 3.3.12 and the definition of F .

Lemma 3.3.14. If payoff vector π is in the core of NOSP, then

∑

a∈A

πa ≤ MinEval(C − A) − MinEval(C)

for all A ⊆ C.

Proof. We use a proof by contradiction. Assume π is in the core and
∑

a∈A πa >

MinEval(C − A)−MinEval(C) for some A ⊆ C. We show that π ∈ D(F ∪ µ) where

F ⊆ C −A is such that Eval(F) = MinEval(C − A).

Since π is in the core, by Lemma 3.3.4 it is realized by some strategy vector

s ∈ SP
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Let λ = (
∑

a∈A πa − Eval(F) + MinEval(C))/(|F| + 1). Since
∑

a∈A πa >

MinEval(C − A)−MinEval(C), we have λ > 0. Construct a strategy vector t ∈ SF∪µ

where

tµ = (F , 0)

ta = (πa + τ(a) + λ, 0) for all a ∈ F .

Since side payments are fixed to zero, the suppliers in C−F have no strategies which

can affect the payoffs of the players in F ∪ µ given that the players in F ∪ µ follow

t. Let u ∈ SP be any strategy vector with projection onto F ∪ µ equal to t.

Straight forward calculations with the game’s utility functions show that

ua(u) − πa = ua(u) − ua(s) = λ for each supplier a ∈ F .

Let sµ = (B, 0) and consider

uµ(u) − πµ = uµ(u) − uµ(s)

= [M − Bcost(F) −
∑

a∈F

(πa + τ(a) + λ)]

− [M − Bcost(B) −
∑

a∈B

(πa + τ(a))]

= [−Eval(F) −
∑

a∈F

(πa + λ)] − [Eval(B) −
∑

a∈B

πa]

= Eval(B) − Eval(F) −
∑

a∈F

λ + [
∑

a∈B

πa −
∑

a∈F

πa]

By the utility functions of NOSP and the definitions of B and π, we have πa = 0 for

all a ∈ C − B. Thus,
∑

a∈B πa =
∑

a∈C πa. Thus, we can write

uµ(u) − uµ(s) = Eval(B) − Eval(F) −
∑

a∈F

λ + [
∑

a∈C

πa −
∑

a∈F

πa]

= Eval(B) − Eval(F) −
∑

a∈F

λ +
∑

a∈A

πa + [
∑

a∈C−A

πa −
∑

a∈F

πa]

Since F ⊆ C − A, we know that the bracketed quantity in the above expression is

at least zero. Thus, we have

uµ(u) − uµ(s) ≥ Eval(B) − Eval(F) +
∑

a∈A

πa −
∑

a∈F

λ = λ
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where the equality comes from the definition on λ.

Thus, we have π ∈ D(F ∪ µ), which contradicts the fact that π is in the core

of NOSP.

Lemma 3.3.15. Payoff vectors in the core of NOSP satisfy Equations (3.1), (3.2),

and (3.3).

Proof. The statement follows from Lemmas 3.3.3, 3.3.14, and 3.3.13.

Lemma 3.3.16. If payoff vector π satisfies Equations (3.1), (3.2), and (3.3) then

π /∈ D(A) for A ⊆ P such that µ /∈ A.

Proof. We use a proof by contradiction. Suppose π ∈ D(A). In other words, the

players in A can guarantee payoffs greater than the payoffs given in π. But, we know

that πa ≥ 0 for all a ∈ A and the players in A can only guarantee 0 payoffs because

the buyer can always play (∅, 0). Thus, we have a contradiction with π ∈ D(A).

Lemma 3.3.17. If payoff vector π satisfies Equations (3.1), (3.2), and (3.3) then

π /∈ D(A) for A ⊆ P such that µ ∈ A.

Proof. We use a proof by contradiction. Suppose π ∈ D(A) for A ⊆ P such that

µ ∈ A. Thus, the players in A can follow a strategy s ∈ SA that guarantees payoffs

greater than the payoffs they are given in π.

Let t ∈ SP be any strategy vector with projection onto A equal to s. Let

tµ = (B, 0). Let the payoff vector realized by t be ν.

Since s guarantees payoffs greater than π for the players in A, all extentions

of s to a strategy vector in SP must realize payoff vectors π′ with π′
a > πa ≥ 0

for a ∈ A. The existance of some a ∈ B − A contradicts this statement, since

the supplier a sets their bid arbitrarily high in some extensions of s, resulting in a

negative utility for the buyer. Thus, we have that there is no such a and B ⊆ A.

Since π satisfies Equation (3.3) we have πµ = M − MinEval(C) −∑a∈C πa.

By Lemma 3.3.12, we have νµ = M − Eval(B) −∑a∈C νa.

Since following s guarantees a payoff greater than the payoff given in π for
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every player in A, we have πµ < νµ. Thus, we have

0 < νµ − πµ

= M − Eval(B) −
∑

a∈C

νa − [M − MinEval(C) −
∑

a∈C

πa]

= MinEval(C) − Eval(B) +
∑

a∈C

πa −
∑

a∈C

νa

Let F ⊆ C be such that Eval(F) = MinEval(C). From Equation (3.2) with the

singleton sets, we have that πa = 0 for all a /∈ F . From the definition of ν, we have

that νa = 0 for all a /∈ B. Let U = A− {µ}. Thus, we have

0 < MinEval(C) − Eval(B) +
∑

a∈F

πa −
∑

a∈B

νa

= MinEval(C) − Eval(B) +
∑

a∈F−U

πa + (
∑

a∈F∩U

πa −
∑

a∈F∩B

νa) −
∑

a∈B−F

νa

By the definition of ν and the utility functions in NOSP, we have that νa = 0 for

all a ∈ C − B. We also have νa > πa ≥ 0 for all a ∈ B. Thus, we can drop the last

term in the above expression to get

0 < MinEval(C) − Eval(B) +
∑

a∈F−U

πa + (
∑

a∈F∩U

πa −
∑

a∈F∩U

νa)

By the definitions of ν and U , we also have that νa > πa for all a ∈ U . Thus, we

can drop the parenthesized term in the above expression to get

0 < MinEval(C) − Eval(B) +
∑

a∈F−U

πa

Eval(B) − MinEval(C) <
∑

a∈F−U

πa

Let K = F −U . Since B ⊆ A and B ⊆ C, we have B ⊆ U . Thus, we have B ⊆ C−K.

By the definition of MinEval, we have MinEval(C − K) ≤ Eval(B). Thus, we have

MinEval(C − K) − MinEval(C) ≤ Eval(B) − MinEval(C) <
∑

a∈K

πa.

This statement contradicts the fact that π satisfies Equation (3.2) for K.
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Lemma 3.3.18. If payoff vector π satisfies Equations (3.1), (3.2), and (3.3), then

π ∈ V (P) in NOSP.

Proof. Let F ⊆ C be such that Eval(F) = MinEval(C). Define s ∈ SP such that

sµ = (F , 0)

sa = (πa + τ(a), 0) for all a ∈ F
sa = (0, 0) for all a ∈ C − F

Straight forward calculations with the game’s utility functions show that ua(s) = πa

for each supplier a ∈ F .

Consider

uµ(s) = M − [Bcost(F) +
∑

a∈F

(πa + τ(a))]

= M − [Eval(F) +
∑

a∈F

πa]

= M − Eval(F) −
∑

a∈F

πa

Since π satisfies Equation (3.2), we have πa = 0 for all a ∈ C − F . Thus, we have

uµ(s) = M − Eval(F) −
∑

a∈C

πa

= M − MinEval(C) −
∑

a∈C

πa

= πµ

where the second equality comes from the definition of F and the last equality comes

from the fact that π satisfies Equation (3.3).

Finally, we have ua(s) = πa for each supplier a ∈ C − F , since πa = 0 for

such a.

Thus, s realizes π and π ∈ V (P).

Lemma 3.3.19. If payoff vector π satisfies Equations (3.1), (3.2), and (3.3) then

π is in the core of NOSP.

Proof. The statement follows from Lemmas 3.3.16, 3.3.17, and 3.3.18.
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In the following theorem, the parameter τ is made explicit, though its value

is clear from the definition of the buyer-supplier game, NOSP.

Theorem 3.3.20. A payoff vector π is in the core of NOSP if and only if it satisfies

πa ≥ 0 for all a ∈ P (3.1)
∑

a∈A

πa ≤ MinEval(τ, C − A) − MinEval(τ, C) for all A ⊆ C (3.2)

πµ = M − MinEval(τ, C) −
∑

a∈C

πa (3.3)

Proof. The statement follows from Lemmas 3.3.15 and 3.3.19.

Lemma 3.3.21. Let Bcost∗(A) =
∑

a∈A τ(a) + Bcost(A). The core of the buyer-

supplier games defined by (C, τ, Bcost) and (C, 0, Bcost∗) is the same.

Proof. We have Eval(τ, Bcost,B) = Eval(0, Bcost∗,B) for all B ⊆ C by the definition

of Eval and Bcost∗. Thus, we have MinEval(τ, Bcost,A) = MinEval(0, Bcost∗,A)

for all A ⊆ C. The result follows from Theorem 3.3.20.

3.4 Polynomial Time Optimization Over the Core Vec-

tors

We define the separation problem on a set of linear inequalities A as follows. Given

a vector π, if π satisfies all of the inequalities in A, then do nothing; otherwise,

output a violated inequality a ∈ A. It is well known that the separation problem

is polynomial time equivalent to linear function optimization over the same set of

inequalities [41, p. 161].

Let (C, τ, Bcost) define a buyer-supplier game. In this section, to simplify

the notation, we will omit the parameter Bcost from Eval and MinEval since it is

fixed by the buyer-supplier game.

In this section, we will analyze an algorithm to solve the separation problem

for the exponentially sized set of inequalities given in Equations (3.1), (3.2), and

(3.3). We now give the algorithm, which we call the separation algorithm. Given

the payoff vector π as input,
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1 Iterate over Equations (3.1) and (3.3) to check that they hold. If some equation

does not hold, output that equation and halt.

2 Compute F ⊆ C such that Eval(τ,F) = MinEval(τ, C). If there is some a ∈
C − F with πa > 0, output the inequality from Equation (3.2) corresponding

to {a} and halt.

3 Define τ̂(a) = τ(a)+πa for a ∈ C. Now, compute F̂ ⊆ C such that Eval(τ̂ , F̂) =

MinEval(τ̂ , C). If Eval(τ̂ , F̂) < Eval(τ̂ ,F), output the inequality from Equa-

tion (3.2) corresponding to F − F̂ . Otherwise, halt.

Theorem 3.4.1. If given an input τ̂ : C → ℜ+ it is possible to compute both

Eval(τ̂ ,A), for any A ⊆ C, and F ⊆ C such that Eval(τ̂ ,F) = MinEval(τ̂ , C) in

polynomial time, then the separation problem for Equations (3.1), (3.2), and (3.3)

is solvable in polynomial time. By the equivalence of separation and optimization,

optimizing any linear function of π over Equations (3.1), (3.2), and (3.3) is also

possible in polynomial time.

Proof. It is clear that given the theorem’s assumptions, the separation algorithm

runs in polynomial time. The statement follows from Lemmas 3.4.2 and 3.4.3.

Lemma 3.4.2. If the separation algorithm returns an inequality on input π, then

π violates the returned inequality.

Proof. If the algorithm returns an inequality in step 1, then the inequality is violated

since the algorithm performed a direct check.

If the algorithm returns an inequality in step 2, then the inequality is violated

since πa > 0, but MinEval(τ, C − {a}) = MinEval(τ, C) = Eval(τ,F).

Suppose the algorithm returns an inequality in step 3. Thus, Eval(τ̂ , F̂) <

Eval(τ̂ ,F). Applying the definitions of Eval and τ̂ , we have
∑

a∈F̂ πa +Eval(τ, F̂) <
∑

a∈F πa + Eval(τ,F).

Since the algorithm reaches step 3, we know that πa = 0 for all a ∈ C − F .

Thus, we have
∑

a∈F̂∩F πa +Eval(τ, F̂) <
∑

a∈F πa +Eval(τ,F), which in turn gives

Eval(τ, F̂) − Eval(τ,F) <
∑

a∈F−F̂ πa.

Let A = F − F̂ . From the algorithm, we know that the set F satisfies

Eval(τ,F) = MinEval(τ, C). Since F̂ ⊆ C − A, the definition of MinEval im-

plies that MinEval(τ, C − A) ≤ Eval(τ, F̂). Thus, we have MinEval(τ, C − A) −
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MinEval(τ, C) ≤ Eval(τ, F̂) − Eval(τ,F) <
∑

a∈A πa, which shows that the inequal-

ity output by the algorithm is violated.

Lemma 3.4.3. If π violates some inequality in Equations (3.1), (3.2), and (3.3),

then the separation algorithm run on input π returns an inequality.

Proof. If the violation is in Equations (3.1) or (3.3), the violated inequality will be

output by the direct check in step 1. If some inequality is output by step 2, we are

done. Otherwise, since steps 1 and 2 output no inequality, we know that πa = 0 for

all a ∈ C − F , where F is as computed in the algorithm.

Now, suppose the inequality from Equation (3.2) for set A ⊆ C is violated.

In other words, we have,
∑

a∈A πa > MinEval(τ, C − A) − MinEval(τ, C). Let B be

such that Eval(τ,B) = MinEval(τ, C − A).

Thus, we have
∑

a∈A πa > MinEval(τ, C − A)−MinEval(τ, C) = Eval(τ,B)−
Eval(τ,F).

Since πa = 0 for all a ∈ C−F , we have Eval(τ,F)+
∑

a∈F∩A πa > Eval(τ,B).

Adding
∑

a∈F−A πa to both sides of the above inequality and substituting

the definition of Eval, we have Bcost(F) +
∑

a∈F τ(a) +
∑

a∈F πa > Bcost(B) +
∑

a∈B τ(a) +
∑

a∈F−A πa.

Since πa = 0 for all a ∈ C − F and B ⊆ C − A, we can alter the right hand

side of the above inequality to get Bcost(F) +
∑

a∈F τ(a) +
∑

a∈F πa > Bcost(B) +
∑

a∈B τ(a) +
∑

a∈B πa +
∑

a∈F−A−B πa.

By applying the definition of τ̂ and Eval, we have Eval(τ̂ ,F) > Eval(τ̂ ,B) +
∑

a∈F−A−B πa. We know that πa ≥ 0 for all a ∈ P since the algorithm does

not output anything in step 1. Thus, Eval(τ̂ ,F) > Eval(τ̂ ,B) ≥ MinEval(τ̂ , C) =

Eval(τ̂ , F̂), where F̂ is as computed in the algorithm. So, step 3 outputs an inequal-

ity.

The following lemma illustrates a key difference between Garg et al. and this

work.

Lemma 3.4.4. If suppliers are substitutes, then all but the |C| singleton equations of

Equation (3.2) are not constraining. Thus, if suppliers are substitutes, optimization

over the core of the buyer-supplier game is reduced to solving a polynomially sized

linear program.
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Proof. Suppose that the suppliers are substitutes. By the definition of suppliers are

substitutes, we have that Ṽ (P) − Ṽ (P −A) ≥ ∑

a∈A[Ṽ (P) − Ṽ (P − {a})] for all

A ⊆ C. By the definition of Ṽ , we have

MinEval(τ, Bcost, C − A) − MinEval(τ, Bcost, C)

≥
∑

a∈A

[MinEval(τ, Bcost, C − {a}) − MinEval(τ, Bcost, C)]

for all A ⊆ C. This implies that if the singleton equations in Equation (3.2) are

satisfied, then so are all equations in Equation (3.2). Thus, if suppliers are substi-

tutes, we may drop all non-singleton equations from Equation (3.2) and reduce the

number of inequalities to a polynomial in the number of players.

3.5 Inapproximability of Optimization Over Core Solu-

tions

Consider a buyer-supplier game defined by (C, τ, Bcost). We introduced the concept

of the focus point price in the introduction. The concept leads us to ask the natural

question: What is the difference between the best and worst core outcome for the

buyer? In other words, the value of interest is the solution to the linear program:

maximize
∑

a∈C πa subject to Equations (3.1), (3.2), and (3.3). This natural ques-

tion leads us to define the focus point price (FFP) problem as follows: on input

(C, τ, Bcost), output the optimal value of the afore mentioned linear program.

Define the Necessary Element (NEL) problem as follows. Given parameters

(C, τ, Bcost) return TRUE if there exist an element a ∈ C such that for all F ⊆ C
satisfying Eval(τ, Bcost,F) = MinEval(τ, Bcost, C) we have a ∈ F . Otherwise,

return FALSE.

Define the OPT-SET problem as follows. Given parameters (C, τ, Bcost),

return F such that Eval(τ, Bcost,F) = MinEval(τ, Bcost, C).

In this section, we will show that the FPP problem, the OPT-SET problem

and the NEL problem are polynomial time equivalent. In Section 3.5.1, we show how

to solve the OPT-SET problem in polynomial time if the NEL problem is solvable

in polynomial time. In Section 3.5.2, we show the polynomial time equivalence of

NEL, OPT-SET, and separation over Equations (3.1), (3.2), and (3.3).
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3.5.1 Polynomial Time Reduction from OPT-SET to NEL

In this section, we show that given a polynomial time algorithm to solve the NEL

problem, we can solve the OPT-SET problem in polynomial time. All of the lemmas

in this section are used solely to prove the section’s main result, Lemma 3.5.5.

For a fixed tuple (C, τ, Bcost) we say we extend the tuple to contain a shadow

element for an element a ⊆ C by creating the extended tuple (Ĉ, τ̂ , Bcost∗), where

Ĉ = C ∪ b with b /∈ C; τ̂ is the same as τ with the addition that τ̂(b) = τ(a);

and for A ⊆ Ĉ, if b /∈ A, then Bcost∗(A) = Bcost(A), otherwise Bcost∗(A) =

Bcost((A− {b}) ∪ {a}). We call b the shadow element corresponding to a.

The full shadow extension of (C, τ, Bcost) is the tuple (Ĉ, τ̂ , Bcost∗) resulting

from extending (C, τ, Bcost) to contain a shadow element for each element in C.

First, we reduce OPT-SET to NEL. To show the result, we analyze the

following algorithm, which we call the shadow algorithm.

On input (C, τ, Bcost),

1 Let (Ĉ∗, τ̂ , Bcost∗) be the full shadow extension of (C, τ, Bcost). Let the pro-

gram variable Ĉ equal Ĉ∗.

2 For each a ∈ C

• Remove a’s corresponding shadow element from Ĉ.

• Run NEL on (Ĉ, τ̂ , Bcost∗).

• If the return value is TRUE, then add the shadow element back to Ĉ.

• If the return value is FALSE, then remove a from Ĉ.

3 Return Ĉ ∩ C. In other words, we return all elements from C remaining in Ĉ,

disregarding any shadow elements.

Lemma 3.5.1. Let (C, τ, Bcost) be the input to the shadow algorithm. Let the triple

(Ĉ∗, τ̂ , Bcost∗) be the full shadow extension of (C, τ, Bcost). If for all A ⊆ Ĉ∗ the

NEL problem on input (A, τ̂ , Bcost∗) is solvable in polynomial time, then the shadow

algorithm runs in polynomial time.

Proof. Creating Ĉ∗ takes polynomial time since there are O(|C|) elements. Defin-

ing τ̂ takes polynomial time since there are O(|C|) inputs. Queries to Bcost∗ can
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be implemented with polynomial overhead on top of queries to Bcost. Thus, the

initialization step of the algorithm takes polynomial time.

Consider a single loop iteration. The first, third and forth lines of the loop

each take O(|C|) time. The second step takes polynomial time by the lemma as-

sumption. Thus, a single loop iteration takes polynomial time.

There are |C| loop iterations and computing the intersection in the algo-

rithm’s final step takes O(|C|) time. Thus the algorithm runs in polynomial time.

Lemma 3.5.2. The shadow algorithm maintains the invariant

MinEval(τ, Bcost, C) = MinEval(τ̂ , Bcost∗, Ĉ).

Proof. Initially, MinEval(τ, Bcost, C) = MinEval(τ̂ , Bcost∗, Ĉ) by the definitions of

Ĉ, τ̂ , and Bcost∗.

Consider the loop iteration for a ∈ C. Let the corresponding shadow el-

ement be b. When we remove or add b to Ĉ, we have MinEval(τ, Bcost, C) =

MinEval(τ̂ , Bcost∗, Ĉ) by the definitions of τ̂ , and Bcost∗ and the fact that a is

still in Ĉ.

We only remove both a and b if NEL returned FALSE before the removal

of a. Let Ĉa and Ĉ′
a be the value of the variable Ĉ before and after the removal

of a, respectively. Since NEL returned FALSE on (Ĉa, τ̂ , Bcost∗), there exists some

F ⊆ Ĉa such that a /∈ F and Eval(τ̂ , Bcost∗,F) = MinEval(τ̂ , Bcost∗, Ĉa). Thus,

F ⊆ Ĉ′
a and MinEval(τ̂ , Bcost∗, Ĉa) = MinEval(τ̂ , Bcost∗, Ĉ′

a).

Thus, throughout the algorithm the value of MinEval(τ̂ , Bcost∗, Ĉ) does not

change, which concludes the proof.

Lemma 3.5.3. Let Ĉa be the value of the variable Ĉ at the end of iteration cor-

responding to a ∈ C. If a ∈ Ĉa, then a is in all OPT-SET solutions on input

(A, τ̂ , Bcost∗) where A = Ĉa ∩ C.

Proof. Let the arguments of the NEL problem which is solved during the iteration

corresponding to a be (B, τ̂ , Bcost∗).

Since a ∈ Ĉa, NEL returns TRUE during the iteration corresponding to a.

Suppose there is a solution F ⊆ C to OPT-SET on input (A, τ̂ , Bcost∗)

which does not contain a. Consider F and F̂ where F̂ contains all the shadow

elements of the elements of F . The sets F and F̂ are disjoint and both subsets of B.
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Also, by the definition of F , τ̂ and Bcost∗, Eval(τ̂ , Bcost∗,F) = Eval(τ̂ , Bcost∗, F̂) =

MinEval(τ̂ , Bcost∗,B). Thus, the NEL problem run during the iteration correspond-

ing to a should return FALSE, which is a contradiction.

Lemma 3.5.4. Let Ĉa be the value of the variable Ĉ at the end of iteration corre-

sponding to a ∈ C. We have MinEval(τ, Bcost, C) = MinEval(τ, Bcost, Ĉa ∩ C).

Proof. Let F be such that Eval(τ̂ , Bcost∗,F) = MinEval(τ̂ , Bcost∗, Ĉa). If we have

Eval(τ̂ , Bcost∗,F) = M , then let F̂ = ∅; otherwise, let F̂ be F with each shadow

element replaced by the corresponding element in C. By the definitions of τ̂ and

Bcost∗, we have Eval(τ̂ , Bcost∗,F) = Eval(τ̂ , Bcost∗, F̂). But, by the construction

of F̂ , we have F̂ ⊆ Ĉa ∩ C.

Thus,

MinEval(τ̂ , Bcost∗, Ĉa) = Eval(τ̂ , Bcost∗,F)

= Eval(τ̂ , Bcost∗, F̂) ≥ MinEval(τ̂ , Bcost∗, Ĉa ∩ C).

Also, by the definition of MinEval, we have that MinEval(τ̂ , Bcost∗, Ĉa) is at most

MinEval(τ̂ , Bcost∗, Ĉa ∩ C). So, we have

MinEval(τ̂ , Bcost∗, Ĉa) = MinEval(τ̂ , Bcost∗, Ĉa ∩ C).

Combining Lemma 3.5.2 with the result from the last paragraph, we have

MinEval(τ, Bcost, C) = MinEval(τ̂ , Bcost∗, Ĉa) = MinEval(τ̂ , Bcost∗, Ĉa ∩ C).

And, by the definition of τ̂ and Bcost∗, we have MinEval(τ̂ , Bcost∗, Ĉa ∩ C) equals

MinEval(τ, Bcost, Ĉa ∩ C).

Lemma 3.5.5. Let (C, τ, Bcost) be the input to the shadow algorithm. Let the triple

(Ĉ∗, τ̂ , Bcost∗) be the full shadow extension of (C, τ, Bcost). If for all A ⊆ Ĉ∗ the NEL

problem on input (A, τ̂ , Bcost∗) is solvable in polynomial time, then the OPT-SET

problem on input (C, τ, Bcost) is solvable in polynomial time.

Proof. By Lemma 3.5.1, the shadow algorithm runs in polynomial time.

Let Ĉ′ be the value of the variable Ĉ at the end of the algorithm. By

Lemma 3.5.4, Ĉ′ ∩ C is a superset of a solution to the OPT-SET problem. By
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Lemma 3.5.3, Ĉ′ ∩C is a subset of a solution to the OPT-SET problem. Thus, value

returned by the shadow algorithm, Ĉ′ ∩ C, is a solution to the OPT-SET problem.

3.5.2 Polynomial Time Equivalence of NEL, OPT-SET, and Sepa-

ration

In this section we show a polynomial time equivalence between the NEL problem,

the OPT-SET problem and the separation problem over Equations (3.1), (3.2), and

(3.3). The lemmas in this section are used to show the section’s main result, Theo-

rem 3.5.8. As a byproduct of the proofs, we also show an hardness of approximation

result for the FPP problem with Lemma 3.5.9.

Lemma 3.5.6. The solution to the FPP problem on input (C, τ, Bcost) is 0 if and

only if the solution to the NEL problem on input (C, τ, Bcost) is FALSE.

Proof. First, we prove that if the solution to the NEL problem is FALSE, then

the solution to the FPP problem is zero. Consider all of the inequality pairs

πa ≤ MinEval(τ, Bcost, C − {a}) − MinEval(τ, Bcost, C) and πa ≥ 0. Since the so-

lution to the NEL problem is FALSE, for each a ∈ C there is a Fa ⊆ C such that

Eval(Fa, Bcost, C) = MinEval(τ, Bcost, C) and a /∈ Fa. Thus the first inequality in

the pair reduces to πa ≤ 0, and the pair of inequalities imply πa = 0. This is true

for all a ∈ C. Thus, optimal value of the FPP linear program is zero.

Second, we prove that if the solution to the NEL problem is TRUE, then the

solution to the FPP problem is greater than zero. If the solution to NEL is TRUE,

then there is some a ∈ C such that if Eval(τ, Bcost,F) = MinEval(τ, Bcost, C) then

a ∈ F . In other words, a is in all solutions to the OPT-SET problem on input

(C, τ, Bcost).

Thus, for all A ⊆ C with a ∈ A, we have

MinEval(τ, Bcost, C − A) − MinEval(τ, Bcost, C) > 0.

Let λ = minA⊆C
a∈A

[MinEval(τ, Bcost, C − A)−MinEval(τ, Bcost, C)]. Consider the vec-

tor π with πb = 0 for all b ∈ C−{a} and πa = λ and πµ = M−MinEval(τ, Bcost, C)−
λ. Since λ ≤ M−MinEval(τ, Bcost, C), this vector is feasible in the focus point price

linear program and achieves a objective function value greater than zero.
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Lemma 3.5.7. If it is possible to approximate the solution to the FPP problem on

input (C, τ, Bcost) within any multiplicative factor, then the NEL problem on input

(C, τ, Bcost) is solvable in polynomial time.

Proof. Follows from Lemma 3.5.6.

A set of (C, τ, Bcost) instances is proper if the following conditions hold:

• Given that (C, τ, Bcost) is in the set, then so is (C, τ̂ , Bcost), where τ̂(a) =

τ(a) + πa for a vector π ∈ ℜ|C|
+ .

• Given that (C, τ, Bcost) is in the set, then so is (A, τ̂ , Bcost∗), where the triple

(Ĉ, τ̂ , Bcost∗) is the full shadow extension of (C, τ, Bcost) and A is a subset of

Ĉ.

The definition of proper has a natural interpretation when applied to the

transformations of combinatorial minimization problems to buyer-supplier games.

For example, for the shortest path problem, the first condition implies that the set

of instances is closed with respect to lengthening the edges of the graph. On the

other hand, the second condition implies that the set of instances is closed with

respect to adding parallel edges or removing a subset of the edges.

Theorem 3.5.8. On a proper set of instances, the separation problem over Equa-

tions (3.1), (3.2), and (3.3), the NEL problem and the OPT-SET problem are poly-

nomial time equivalent.

Proof. If we can solve the NEL problem on a proper set of instances in polynomial

time, then, by Lemma 3.5.5, we can solve the OPT-SET problem in polynomial

time.

If we can solve the OPT-SET problem on a proper set of instances in poly-

nomial time, then, by Theorem 3.4.1, we can solve the separation problem over

Equations (3.1), (3.2), and (3.3) in polynomial time.

If we can solve the separation problem over Equations (3.1), (3.2), and (3.3)

on a proper set of instances in polynomial time, then, by the polynomial time equiva-

lence of separation and optimization, we can optimize linear objective functions over

Equations (3.1), (3.2), and (3.3) in polynomial time. If we can optimize linear ob-

jective functions in polynomial time, by Lemma 3.5.7 we can solve the NEL problem

in polynomial time.
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Lemma 3.5.9. On a proper set of instances, if it is not possible to solve the OPT-

SET problem in polynomial time, it is not possible to approximate the solution to

the FPP problem to within any multiplicative factor in polynomial time.

Proof. Follows from Theorem 3.5.8 and Lemma 3.5.7.

3.6 A Complementary Combinatorial Algorithm

In this section, we present an efficient combinatorial algorithm for solving the FPP

problem for the buyer-supplier minimum spanning tree (MST) game. Before we go

on to give the algorithm in Section 3.6.2, we present a useful simplification of the

linear program representing the FPP problem for general buyer-supplier games that

may be of independent interest.

3.6.1 A Simplification of the FPP Problem

In this section, we give a simplified linear program that may be used to solve the

FPP problem.

For this section, fix a buyer-supplier game defined by (C, τ, Bcost). Let

the buyer-supplier game be derived from the combinatorial minimization problem

MinProb as described in Section 3.1. We omit the parameters τ and Bcost from

MinEval since they are fixed by the game.

Lemma 3.6.1. For all A ⊆ C, we have MinEval(A) = min(M, MinProb(A)).

Proof. By the definition of MinEval and Eval, we have

MinEval(A) = min
B⊆A

[Eval(B)]

= min
B⊆A

[Bcost(B) +
∑

a∈B

τ(a)]

We explicitly instantiate the case when B = ∅. Since Bcost(∅) = M , we have

MinEval(A) = min(M, min
B ⊆ A

[Bcost(B) +
∑

a∈B

τ(a)])
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Since P (B) = 0 implies Bcost(B) = M and since τ(a) ≥ 0 for all a ∈ C, we have

MinEval(A) = min(M, min
B ⊆ A

P (B) = 1

[Bcost(B) +
∑

a∈B

τ(a)])

= min(M, MinProb(A))

Consider the linear program from the FPP problem for the given game.

In particular, consider the variable πµ. The variable can be viewed as a slack

variable for the constraint arising from Equation (3.3). In specific, we can write

0 ≤ πµ = M−MinEval(C)−∑b∈C πb, where the inequality comes from the constraint

πµ ≥ 0 and the equality comes from the constraint arising from Equation (3.3).

Thus, the following linear program is equivalent to the linear program from the

FPP problem

max
∑

b∈C

πb

s.t.
∑

b∈A

πb ≤ MinEval(C − A) − MinEval(C) for all A ⊆ C
∑

b∈C

πb ≤ M − MinEval(C)

πb ≥ 0 for all b ∈ C.

Which, in turn, by Lemma 3.6.1 is equivalent to

max
∑

b∈C

πb

s.t.
∑

b∈A

πb ≤ min(M, MinProb(C − A)) − min(M, MinProb(C)) ∀A ⊆ C
∑

b∈C

πb ≤ M − min(M, MinProb(C))

πb ≥ 0 ∀b ∈ C.

Call the above linear program LP1 and let its optimal value be O1.
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Consider the following linear program

max
∑

b∈C

πb

s.t.
∑

b∈A

πb ≤ MinProb(C − A) − MinProb(C) for all A ⊆ C

πb ≥ 0 for all b ∈ C.

Call the above linear program LP2 and let its optimal value be O2.

Lemma 3.6.2. If MinProb(C) ≥ M , then O1 = 0.

Proof. Consider the inequality that must be satisfied by all vectors feasible in LP1,
∑

b∈C πb ≤ min(M, MinProb(C − C))−min(M, MinProb(C)). The right hand side of

this inequality is equal to 0, since M ≤ MinProb(C) and MinProb(∅) = ∞. Thus,

we know that O1 ≤ 0. We also have O1 ≥ 0 since the all zero vector is feasible for

LP1.

Lemma 3.6.3. If MinProb(C) < M and O2 ≤ M − MinProb(C), then O1 = O2.

Proof. Since MinProb(C) < M , for any A ⊆ C we have

min(M,MinProb(C − A)) − min(M, MinProb(C))

= min(M, MinProb(C − A)) − MinProb(C)

≤ MinProb(C − A) − MinProb(C)

Thus, if a vector π is feasible in LP1, then π is also feasible in LP2. Thus, we have

O1 ≤ O2.

Let π∗ be an optimal vector for LP2. Let A be any subset of C. Since π∗ is

feasible in LP2, we have

∑

b∈A

π∗
b ≤ MinProb(C − A) − MinProb(C).

Since O2 ≤ M − MinProb(C) we also have

∑

b∈A

π∗
b ≤

∑

b∈C

π∗
b = O2 ≤ M − MinProb(C).
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Thus, we have

∑

b∈A

π∗
b ≤ min(M, MinProb(C − A)) − MinProb(C)

= min(M, MinProb(C − A)) − min(M, MinProb(C))

Thus, π∗ is feasible in LP1. Thus, we have O1 ≥ O2.

Thus, O1 = O2.

Lemma 3.6.4. If MinProb(C) < M and O2 > M − MinProb(C), then O1 = M −
MinProb(C).

Proof. Let π∗ be an optimal vector for LP2. Thus, we have

∑

a∈C

π∗
a = O2 > M − MinProb(C)

Let ν∗ ∈ ℜ|C| be any vector such that

0 ≤ ν∗
a ≤ π∗

a for all a ∈ C
∑

a∈C

ν∗
a = M − MinProb(C)

We know that such a ν∗ exists since we can decrease each of the coordinates of π∗

in turn, not decreasing any coordinate past zero, until we have
∑

a∈C ν∗
a = M −

MinProb(C).

Thus, ν∗ is feasible in the constraint
∑

a∈C ν∗ ≤ M − min(M, MinProb(C))

of LP1.

Let A be any subset of C. We have

∑

a∈A

ν∗
a ≤

∑

a∈C

ν∗
a = M − MinProb(C).

Since π∗ is feasible in LP2, we also have

∑

a∈A

ν∗
a ≤

∑

a∈A

π∗
a ≤ MinProb(C − A) − MinProb(C).
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Thus,

∑

a∈A

ν∗
a ≤ min(M, MinProb(C − A)) − MinProb(C)

= min(M, MinProb(C − A)) − min(M, MinProb(C))

and ν∗ is feasible in LP1.

The value of LP1 for vector ν∗ is M − MinProb(C). But, the constraint
∑

a∈C ν ≤ M −min(M, MinProb(C)) of LP1, which must be satisfied by all feasible

vectors ν, tells us that the value of LP1 can be at most M −MinProb(C). Thus, we

have O1 = M − MinProb(C).

By Lemmas 3.6.2, 3.6.3, and 3.6.4, finding the value of MinProb(C) and the

solution to LP2 is sufficient to solve the FPP problem for given buyer-supplier game.

3.6.2 The Combinatorial Algorithm

Let a graph G = (V, E) and edge weights w : E → ℜ+ be given. Let MSTVal :

2E → ℜ+ be a function that takes as input a set of the edges A ⊆ E and returns the

weight of the minimum spanning tree of the graph induced by the edges of A. If no

spanning tree exists, MSTVal returns ∞.

By the transformation in Section 3.1 and Lemma 3.3.21 in the buyer-supplier

minimum spanning tree game, we have C = E , τ(a) = w(a), and Bcost(A) = M if

A does not connect all nodes in V, or 0 otherwise. We omit the parameters τ and

Bcost from MinEval, since they are fixed by the game.

We begin with some basics on MSTs.

Lemma 3.6.5. Let H = (V1, E1) be any graph. Let T = (V1, E ′
1) be a minimum

spanning tree of the graph H. For e ∈ E ′
1 let the cut created in T by the removal of

e be (Ae,Be) for some Ae ⊆ V1 and Be ⊆ V1.

• The edge e is a minimum weight edge spanning the cut (Ae,Be).

• The tree T restricted to vertices in Ae is a minimum spanning tree of the graph

induced by the vertices Ae. A symmetric statement is true for Be

• Let U be the set of edges spanning the cut and let a = arg minb∈U−{e}w(b).

We have w(a) − w(e) = MSTVal(E1 − {e}) − MSTVal(E1).
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Proof. We use a proof by contradiction. Suppose there is some other edge e′ which

spans the cut such that w(e′) < w(e). Then, we could get a new spanning tree T ′

of the graph H by replacing the edge e in E ′
1 with the edge e′. The tree T ′ has a

strictly smaller weight than the tree T since w(e′) < w(e), contradicting the fact

that T is a minimum spanning tree of H.

Similarly, if T restricted to the vertices in Ae is not a minimum spanning

tree of the graph induced by the vertices in Ae, we can construct a spanning tree of

H with weight strictly smaller than T by connecting e, the tree T restricted to Be,

the minimum spanning tree induced by the vertices in A.

By first second result of this lemma, a minimum spanning tree of the graph

induced by E1 − {e} can be obtained by keeping the portions of T which lie wholly

in exactly one of Ae or Be and attaching the smallest weight edge which spans the

cut. Thus, we get w(a) − w(e) = MSTVal(E1 − {e}) − MSTVal(E1).

The following lemma is due to Bikhchandani et al., who show that in the

MST buyer-supplier game, the suppliers are substitutes [9].

Lemma 3.6.6. Suppose the graph G is connected and thus MSTVal(E) is finite. For

any set A ⊆ E, we have MSTVal(E − A)−MSTVal(E) ≥∑e∈A[MSTVal(E − {e})−
MSTVal(E)]

Let LP2 be as in Section 3.6.1 with MinProb equal to MSTVal.

Lemma 3.6.7. The inequalities corresponding to singleton sets {e} for e ∈ E form

an optimal basis for LP2. In particular, setting πe = MSTVal(E − {e})−MSTVal(E)

for all e ∈ E gives an optimal vector for LP2.

Proof. For A ⊆ E , by Lemma 3.6.6, we have

∑

e∈A

πe =
∑

e∈A

[MSTVal(E − {e}) − MSTVal(E)]

≤ MSTVal(E − A) − MSTVal(E).

Thus, π is feasible in LP2. Each inequality of type πe ≤ MSTVal(E − {e}) −
MSTVal(E) is tight, thus it is not possible to increase any coordinate of π. Thus π

is an optimal vector and the singleton inequalities form an optimal basis.
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We give a modified Kruskal Algorithm which can be used to compute the

optimal value of LP2.

Run Kruskal Algorithm with the following modifications.

• Throughout the algorithm’s execution we will keep an auxiliary set of edges,

A, which is initially empty.

• When edge e is added to the minimum spanning forest, also add e to the set

A.

• Suppose edge e is rejected from addition to the minimum spanning Forest

because it creates a cycle. Let the cycle created be H = (V ′, E ′). For each

edge a ∈ E ′ − {e}, if a ∈ A, label a with w(e) − w(a) and remove a from A.

Lemma 3.6.8. Let G be connected and T = (V1, E1) be the minimum spanning tree

computed by the modified Kruskal Algorithm when it is run on G = (V, E). If e ∈ E1

has been labeled, the label is equal to MSTVal(E − {e}) − MSTVal(E). Otherwise,

MSTVal(E − {e}) − MSTVal(E) = ∞.

Proof. Let U be the set of edges spanning the cut created in T by the removal of e.

Also, let a′ be any arg minb∈U−{e}w(b). By Lemma 3.6.5 we have w(a′) − w(e) =

MSTVal(E − {e}) − MSTVal(E).

Let e be labeled by the modified Kruskal Algorithm when the edge a creates

a cycle. For the first part of the lemma, all we must show is a = a′.

Let K be the set of edges which create a cycle involving e during the algo-

rithm. If b ∈ E − U , then b does not span the cut created in T by the removal of

e. Thus, both vertices of b lie on the same side of the cut. Thus, b cannot create a

cycle involving e, since all edges in the cycle except b must be in the tree T . Also,

the edge e cannot form a cycle with itself. Thus, we have K ⊆ U − {e}.
Consider any b ∈ U − {e}. The edge b must be rejected by the modified

Kruskal algorithm, otherwise the edge would be in T and wouldn’t span the cut

created in T by the removal of e. Thus, b must create a cycle during the algorithm.

Since all edges except b which make up the cycle must be in T and b spans the cut

created by e, the cycle created by b includes e. Thus, we have U − {e} ⊆ K, and

U − {e} = K.

Since the modified Kruskal Algorithm process edges of G in ascending order

of weight and e is labeled by the element from K which is processed first, we know
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a = arg minb∈Kw(b). Since K = U , we also have a = a′ and we have shown the first

part of the lemma.

If e is not labeled, then K must be empty. Since K = U , the set U must also

be empty. And thus, the removal of e must disconnect the graph G. Thus we have,

MSTVal(E − {e}) − MSTVal(E) = ∞.

By Lemmas 3.6.7 and 3.6.8, we can find the optimal value to LP2 using

the modified Kruskal algorithm. By Lemmas 3.6.2, 3.6.3, and 3.6.4, the minimum

spanning tree weight of G and the optimal value of LP2 give us the optimal value

of LP1 which is the focus point price of the buyer-supplier minimum spanning tree

game on graph G.
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Chapter 4

Incomplete Information

4.1 Introduction

Motivated by applications related to auctions, mechanism design, and revenue man-

agement, Babaioff et al. recently introduced a generalization of the secretary problem

called the online matroid problem [8]. In the online matroid problem, the goal is to

build a maximum weight independent set, but we are constrained from knowing the

full input to the problem. Instead, the matroid elements are revealed one at a time,

and we must immediately decide whether to include the revealed element in the

independent set. In such a setting, an online algorithm is said to be c-competitive

if it is able to produce an independent set with weight within a factor of c of the

weight of a maximum weight independent [11]. We say that an online algorithm is

competitive if it is c-competitive for some constant c.

Babaioff et al. present competitive algorithms for the online matroid prob-

lem on bounded left-degree transversal matroids and graphic matroids. They also

present a reduction showing that if we have a competitive algorithm for a matroid

M , then we can construct a competitive algorithm for a truncated version of M .

Babaioff et al. leave open the general online matroid problem and the central case

of transversal matroids. As discussed later in this section, the case of transversal

matroids unifies the existing results on the online matroid problem. In this chapter

we present a competitive online algorithm for weighted matching in transversal ma-

troids, generalizing the results of Babaioff et al. Along with the reduction in Babaioff

et al., our results also lead to competitive algorithms on truncated transversal ma-
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troids.

Informally, the online weighted transversal matroid matching problem can

be described as follows. Consider a bipartite graph, with a set of m left-vertices and

a set of n right-vertices. All edges adjacent to the same left-vertex have the same

weight – we associate this weight with the left-vertex. The weighted transversal

matroid matching problem (WTMM) asks us to find a maximum weight matching

in this bipartite graph, and is solvable with the standard matroid greedy algorithm.

In the online weighted transversal matroid matching problem (OWTMM), we are

initially given only the total number of left-vertices, and then a uniformly random

permutation of the left-vertices is revealed, one left-vertex at a time. When a vertex

is revealed, we learn of both its weight and its incident edges. Upon seeing a

particular left-vertex, without knowing the details of the remaining unrevealed left-

vertices, we must immediately decide which right-vertex to match it to, if any. An

open problem left by Babaioff et al. is to find an algorithm for OWTMM returning

a matching with expected weight within a constant of the optimal matching in the

corresponding WTMM problem. Theorem 4.7.1 presents such an algorithm.

In the literature, a transversal matroid is often specified by a set of elements

E, and a set of subsets A1, . . . , An of E [33]. A subset I = {a1, . . . , ak} of E is

considered independent if there is an injective function f mapping I to {A1, . . . , An}
such that x ∈ f(x) for all inputs x. In our presentation, the set of elements E

corresponds to the left-vertices, the sets A1, . . . , An correspond to the right-vertices,

and there is an edge between an element of E and a set Aj if the element belongs

to the set. An independent set then corresponds to a set of left-vertices for which

there exists a matching to the right-vertices.

Perhaps the most well studied online matroid problem is the secretary prob-

lem, which first appeared as a folklore problem in the 1950’s and has a long his-

tory [20, 21]. The problem was first solved by Lindley, who also presents a competi-

tive algorithm for the secretary problem [36]. Competitive algorithms also exist for

uniform matroids [32], bounded left-degree transversal matroids, graphic matroids,

and truncated matroids [8]. For general matroids, the best known competitive ratio

is O(log r) where r is the rank of the matroid [8].

With the exception of truncated matroids, where the result depends on

Karger’s matroid sampling theorem [30], all of the matroids for which a compet-

itive algorithm is known are a special case of the transversal matroid. For example,
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the secretary problem is a transversal matroid with a single right-vertex. The uni-

form matroid of rank r is a transversal matroid on a complete bipartite graph with

r right-vertices. Of course, bounded left-degree transversal matroids are a special

case of the transversal matroids. And, finally, the competitive results for graphic

matroids follow from a reduction to bounded left-degree transversal matroids. Thus,

indeed, transversal matroids play a central role to the theory. For some remarks

on the strong connection between general matroids and transversal matroids, see

Section 4.8.

4.1.1 Algorithm Motivations

Recall that the secretary problem is OWTMM with a single right-vertex and consider

the following classic algorithm for the secretary problem. We sample the first m/2

left-vertices we see, rejecting all of them, but recording their edge weights. We set a

price for the right-vertex equal to the maximum weight edge we see in the sample.

We then match the right-vertex with the first non-sampled left-vertex whose edge

weight exceeds the price, if we see such a left-vertex. The algorithm is competitive

since with probability at least 1/4, the second heaviest edge is sampled and the

heaviest edge is not sampled.

This simple sample-and-price algorithm is the motivation for most of the

competitive algorithms known for online matroid problems, again with the exception

of truncated matroids. However, extending this algorithm to work for all, general

transversal matroids is not straightforward. For example, Babaioff et al. show that

a sample-and-price algorithm with an adaptive sampling time which sets the same

price for all the right-vertices does not work. Babaioff et al. also show that a

more complicated scheme, where the price required of a non-sampled left-vertex is

determined by a circuit of sampled left-vertices also does not work.

One of the main issues that arises in trying to generalize the sample-and-

price algorithm is a tension between the need to use sampled heavy left-vertices

to price the right-vertices and the requirement that we not over-price too many

right-vertices. Consider the example in Figure 4.1a. If in the sample we see the

left-vertex of weight 2, we should not over-price all the right-vertices at 2, since

that prevents us from matching a large number of vertices of weight 1. The figure

is only meant as an illustration, but can be extended to a counter-example for a
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(a) Example 1 (b) Example 2

Figure 4.1: Two example transversal matroids exhibiting the tension between us-
ing sampled heavy left-vertices for pricing and over-pricing the right-vertices. The
figures are meant only to be illustrative, but can be extended to become counter-
examples for certain pricing strategies. In 4.1a, we do not want to price all the
right-vertices at 2, since we would miss many left-vertices of weight 1. In 4.1b,
we want to price the bottom right-vertex at 2, since otherwise we would miss the
infinite weight left-vertex.

heavy pricing method by adding log m clones of the left-vertex of weight 2. On

the other hand, consider the example in Figure 4.1b. If we do not set a price of

2 for the bottom-most right-vertex, we would prematurely match that right-vertex

to a left-vertex of weight 1 instead of the infinite weight left-vertex. It is natural

to consider more complex pricing schemes, such as dynamic prices that change

throughout processing, or picking a random subset of the neighbors of a heavy left-

vertex and pricing only those neighbors. However, it is both unclear if such schemes

are effective and it is difficult to analyze them as they often introduce complicated

probabilistic dependencies. It is this tension that leads Babaioff et al. to consider

bounded left-degree transversal matroids.

For our results, we avoid the difficulties arising from more complex schemes

with the concept of “candidate edges.” The candidate edges we introduce have the

following important properties. First, each left-vertex i has at most one candidate

edges, uniquely determined by the sampled left-vertices heavier than i. In other

words, given the sampled left-vertices heavier than i, the candidate edge is the

same regardless of whether i is sampled, or where in the random order of non-

sampled vertices it appears. Second, the candidate edges of the sampled left-vertices

constitute a matching that is within a constant-factor of the max-weight matching

on the sampled subgraph.
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The analysis following from our definition of candidate edges is essentially

the original sample-and-price analysis from the secretary problem, but applied to

each right-vertex separately. The algorithm prices right-vertices using only the can-

didate edges. Furthermore, a non-sampled left-vertex can only be matched using

its candidate edge. For a particular right-vertex, as in the secretary problem, we

hope that the second-heaviest left-vertex with a candidate edge to the right-vertex

is sampled, but the heaviest left-vertex with a candidate edge to the right vertex

not sampled. Similarly to the secretary problem, this happens with at least 1/4

probability.

The overall argument structure is as follows. In Section 4.2, we define some

useful notation. In Section 4.3, we define candidate edges and show that they con-

stitute a matching with weight within a constant factor of optimal on the sampled

subgraph. In Section 4.4, to avoid any confusion from probabilistic dependencies,

we analyze sampled and non-sampled matchings through counting arguments. Our

counting argument immediately imply that a matching resulting from candidate

edges of non-sampled left-vertices has expected weight within a constant factor of

the expected weight of the matching of candidate edges of sampled left-vertices. In

Section 4.5, we show that the expected weight of the sampled candidate edge match-

ing is within a constant factor of the max-weight matching on the entire graph. This

completes the main technical arguments, since the non-sampled matching is within

a constant factor of the sampled matching, which is within a constant of the opti-

mal matching on the whole graph. In Section 4.6, we present a small but clarifying

intermediate algorithm between the final online algorithm and the counting argu-

ments presented earlier. Finally, in Section 4.7, we present the online algorithm and

conclude the analysis.

4.2 Definitions

In this section, we formally define some quantities and notation we will use through-

out the chapter.

Fix a set of n right-vertices, numbered 0 to n − 1.

Fix a set of m left-vertices, where each left-vertex i is described by a triple

of 1) a real number weight, w(i) 2) a unique integer ID and 3) a subset of the right

vertices, Right(i). We define a total order on the left-vertices: we say a left-vertex i
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is less than a left-vertex i′ if w(i) > w(i′) or w(i) = w(i′) and i has a smaller unique

integer ID. We draw the reader’s attention to the fact that smaller left-vertices have

greater weight. From here on, we use the integers to denote the left-vertices, with

0 denoting the minimum left-vertex, 1 denoting the second minimum left-vertex

and so forth. We draw the reader’s attention to the fact that the ordering on the

left-vertices is the same as the ordering on the corresponding integers.

For a nonempty subset A of left-vertices or right-vertices let Min(A) return

the minimum vertex, as defined by the corresponding total order.

An edge is a pair (i, j), where i is a left-vertex and j belongs to Right(i). A

matching is a set of edges M such that each vertex appears in at most one edge.

For a matching M , let Left(M), Right(M), denote the left-vertices, right-vertices,

in the matching, respectively.

For a set of left-vertices, A, we say w(A) =
∑

i∈A w(i). For a matching M ,

we say w(M) = w(Left(M)).

To facilitate our proofs, we define the following notation. For a subset of

left-vertices L, let Prefix(L, i) = {i′ ∈ L | i′ < i}. Similarly, for a matching M , let

Prefix(M, i) = {(i′, j) ∈ M | i′ < i}.

4.3 Algorithm A

In this section we define candidate edges and show the two main properties discussed

in Section 4.1.1. The first property, “each left-vertex i has exactly zero or one

candidate edges, uniquely determined by the sampled left-vertices heavier than i”

corresponds to Lemmas 4.3.1 and 4.3.2. The second property, “the candidate edges

of the sampled left-vertices constitute a matching that is within a constant-factor of

the max-weight matching on the sampled subgraph” corresponds to Lemma 4.3.5.

First, we define a function Cands(i, M) that receives a left-vertex i and a

matching M , and returns an edge set. The Cands(i, M) function is as follows:

M ′ := Prefix(M, i)

A := Right(i) − Right(M ′)

if A = ∅
return ∅

else

return {(i,Min(A))}.
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Lemma 4.3.1. For any left-vertex i and matching M , Cands(i, M) either returns

the empty set, or {(i, j)}, where j is a right-vertex unmatched in Prefix(M, i).

Proof. Follows from the definition of Cands.

Lemma 4.3.2. For any left-vertex i and matchings M and M ′ with Prefix(M, i) =

Prefix(M ′, i), we have Cands(i, M) = Cands(i, M ′).

Proof. Follows from the definition of Cands.

We now define an algorithm for WTMM. Algorithm AlgA(L) takes a subset

of left-vertices L and returns a matching and the algorithm is performed as follows:

M := ∅
for i in increasing order in L

M := M ∪ Cands(i, M)

return M

Recall that the total order on left-vertices is defined such that i is less than i′ if

w(i) > w(i′) or w(i) = w(i′) and i has a smaller unique integer ID.

Lemma 4.3.3. For a subset of left-vertices L, let M̃ = AlgA(L), then M̃ is a

matching on L and M̃ = ∪k∈LCands(k, M̃).

Proof. We prove the lemma by first proving the following loop invariant in AlgA(L):

M is a matching on Prefix(L, i) and M = ∪k∈Prefix(L,i)Cands(k, M).

The claimed invariant hold initially since M := ∅ and i = Min(L). Suppose

the claim is true for M and i on entering the loop on which we process i. Let

M ′ = M ∪ Cands(i, M) and i′ be the next left-vertex in order from L. We must

show the claim holds for M ′ and i′.

Let A = Cands(i, M). We split the analysis in two cases. First, suppose

A = ∅. Then, M ′ = M and the claim holds for M ′ and i′ simply because it holds

for M and i.

Second, suppose A = {(i, j)}, for a right-vertex j unmatched in Prefix(M, i)

(Lemma 4.3.1). Since Prefix(L, i′) = Prefix(L, i)∪{i}, the first part of the invariant

holds.
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For the second part of the invariant, we have

M ′ = M ∪ Cands(i, M)

=
⋃

k∈Prefix(L,i)

Cands(k, M) ∪ Cands(i, M)

=
⋃

k∈Prefix(L,i′)

Cands(k, M)

=
⋃

k∈Prefix(L,i′)

Cands(k, M ′).

The second equality holds because the loop invariant holds for M and i, the third

equality holds by the definition of i′, and the final equality holds by Lemma 4.3.2.

This proves the invariant.

The lemma statement follows from following the same reasoning as in the

inductive step above, but taken for the final iteration of the loop.

Lemma 4.3.4. Let M∗ be a max-weight matching on L and M be the matching

returned by AlgA(L). If (i, j) ∈ M∗ and i is unmatched in M , then there is a i′

such that (i′, j) ∈ M and w(i′) ≥ w(i).

Proof. By Lemma 4.3.3, M = ∪k∈LCands(k, M). Since i is not matched in M and

by Lemma 4.3.1, we have ∅ = Cands(i, M). By the definition of Cands, the empty

set can only be returned if Right(i) ⊆ Right(Prefix(M, i)). In other words, every

right-vertex in Right(i) is matched to a left-vertex less than i in M , completing the

proof.

Lemma 4.3.5. Let M∗ be a max-weight matching on L, and M be the matching

returned by AlgA(L). Then w(M) ≥ 1
2w(M∗).

Proof. By summing the inequality in Lemma 4.3.4 over left-vertices matched in

M∗ − M , we have w(M) ≥ w(M∗ − M). By definition of intersection, we have

w(M) ≥ w(M∗∩M). Combining the two inequalities, we have 2w(M) ≥ w(M∗).

4.4 Counting Arguments

In this section, to avoid confusion with probabilistic dependencies, we analyze sam-

pled and non-sampled matchings through counting arguments. As stated in Section
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4.1.1, our counting arguments, in specific Lemma 4.4.9, immediately imply that a

matching resulting from candidate edges of non-sampled left-vertices has expected

weight at least 1/4 of the expected weight of the matching of candidate edges of

sampled left-vertices. From this section we only export Lemma 4.4.1, which is used

to connect the counting arguments with the final online algorithm, and Lemma

4.4.9.

Let α be a binary string and αi be the i’th character in the string. Intuitively,

the reader should think of a 0 in the i’th position of α as sampling the left-vertex i

and of a 1 in the i’th position as not sampling i. For two binary strings α and β,

let αβ denote concatenation. For a binary string α of length at most m, we define

the sets of edges M0(α), M2(α), E0(α) recursively as follows.

M0(ǫ) = E0(ǫ) = ∅
M2(α) = Cands(|α|, M0(α))

M0(α0) = M0(α) ∪ M2(α)

M0(α1) = M0(α)

E0(α0) = E0(α)

E0(α1) = E0(α) ∪ M2(α)

Finally, we also define E1(α) = M0(α) ∪ E0(α) and M1(α) to be {(i, j) ∈ E0(α) | j

appears at most once in E0(α)}. It is not difficult to show that M0(α), M1(α) and

M2(α) are matchings while E0(α) and E1(α) are sets of edges.

We give the reader a loose intuitive interpretation of these definitions. Intu-

itively, one can think of processing the left-vertices in order of increasing weight as we

increase the length of α. Then, M2(α) represents the |α|’th candidate edge; M0(α)

represents a matching created from the sampled left-vertices; E0(α) represents a

set of edges created from the non-sampled left-vertices such that each non-sampled

left-vertex appears at most once; E1(α) represents a set of all candidate edges, re-

gardless of whether the corresponding left-vertex is sampled; and M1(α) represents

a matching created from the non-sampled left-vertices.

Lemma 4.4.1. For a binary string α of length at most m, let A = {i | αi = 0}
and B = {i | αi = 1}. We have, M0(α) =

⋃

i∈A Cands(i, M0(α)) and E0(α) =
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⋃

i∈B Cands(i, M0(α)).

Proof. We prove the claim by induction on the length of α. For α = ǫ, the claim

follows from the definition of M0(ǫ) and E0(ǫ). The inductive claim follows from

Lemma 4.3.2 and the recursive definitions of M0(α) and E0(α).

For a set of edges A, let deg(A, j) denote the degree of the right-vertex j in

A. For a left-vertex i and a right-vertex j, we partition the set of binary strings to

assist in our counting arguments as follows.

α ∈ S0(i, j) if |α| < i,deg(E1(α), j) = 0

α ∈ S1(i, j) if |α| = i,deg(E1(α), j) = 0, M2(α) = {(i, j)}
α ∈ S2(i, j) if deg(E0(α), j) = deg(E1(α), j) = 1, α = βγ, β ∈ S1(i, j)

α ∈ S3(i, j) if deg(E0(α), j) = 1, deg(E1(α), j) > 1, α = βγ, β ∈ S2(i, j)

α ∈ S4(i, j) otherwise.

We give the reader some intuitive interpretation of the above sets. For a

particular pair (i, j): S0(i, j) represents strings where j has never been returned

by Cands and we have not yet reached i; S1(i, j) represents strings where Cands

has never before returned j, we have just now reached i and Cands returns {(i, j)};
S2(i, j) represents strings where j has been returned exactly once by Cands, when j

was returned by Cands it was along with i and i was non-sampled; S3(i, j) represents

strings where the first time Cands returned j it was along with i and i was non-

sampled, then j was returned again with some other, sampled vertex i′; finally,

S4(i, j) represents all other strings.

Lemma 4.4.2.

α ∈ S1(i, j) ⇒ α0 ∈ S4(i, j), α1 ∈ S2(i, j)

α ∈ S2(i, j),∃i′M2(α) = {(i′, j)} ⇒ α0 ∈ S3(i, j), α1 ∈ S4(i, j)

α ∈ S2(i, j),∀i′M2(α) 6= {(i′, j)} ⇒ α0, α1 ∈ S2(i, j)

α ∈ S3(i, j) ⇒ α0, α1 ∈ S3(i, j)

α ∈ S4(i, j) ⇒ α0, α1 ∈ S4(i, j)
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Proof. The statement follows straightforwardly by case analysis from the recur-

sive definitions of M0(α), E0(α), E1(α) and the partition S0(i, j), S1(i, j), S2(i, j),

S3(i, j), S4(i, j). We provide some intuitive discussion.

For the first implication, appending 0 to α places {(i, j)} in M0, which places

α0 in S4. On the other hand, appending 1 to α places {(i, j)} in E0, which places

α1 in S2.

For the second implication, appending 0 to α places {(i′, j)} in M0, which

places α0 in S3. On the other hand, appending appending 1 to α places {(i′, j)} in

E0, which places α1 in S4.

For the third implication, neither appending 0 nor 1 to α increases the degree

of j in E1, so both extensions of α are in S2.

For the fourth implication, since α is in S3, we know that j is in M0. This

means that j can no longer be returned by Cands (Lemma 4.3.1). Thus regardless

of the appended character, the extension of α is in S3.

For the fifth implication, since appending a character to α does not decrease

the length of the string or decrease the degree of j in E0 or E1, both extensions of

α are in S4.

Lemma 4.4.3. For any right-vertex j, left-vertex i and integer k such that i < k ≤
m, we have

|S2(i, j) ∩ {0, 1}k| + 2|S3(i, j) ∩ {0, 1}k| = 2k−i−1|S1(i, j)|.

Proof. We prove the lemma by induction on k with a base case k = i + 1.

For the base case, we have |S2(i, j) ∩ {0, 1}i+1| ≥ |S1(i, j)| since for every

α ∈ S1(i, j) we have that |α| = i by the definition of S1(i, j) and by Lemma 4.4.2 we

have α1 ∈ S2(i, j). By the definition of S2(i, j), all strings in S2(i, j) have length at

least i + 1. Also by the definition of S2(i, j), all strings of length i + 1 in S2(i, j) are

equal to α1 for some string in S1(i, j). Thus, we have |S2(i, j)∩{0, 1}i+1| ≤ |S1(i, j)|.
By the definition of S3(i, j), all strings in S3(i, j) have length at least i + 2. Thus,

|S3(i, j) ∩ {0, 1}i+1| = 0, completing the base case.

To show the inductive step, notice that the right-hand side of the claimed

equality exactly doubles as we increase k by one. We must show that the left-hand
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side of the equality also exactly doubles. By Lemma 4.4.2, for every α ∈ S2(i, j),

either α0 ∈ S3(i, j) or both α0, α1 ∈ S2(i, j). In either case, the count from the first

summand of the left-hand side of the equality doubles when we increase k by one.

Again, by Lemma 4.4.2, for every α ∈ S3(i, j), we have α0, α1 ∈ S3(i, j). So, the

count from the second summand of the left-hand side of the equality also doubles.

So the left-hand side at least doubles when we increase k by one.

By Lemma 4.4.2, the only ways for a string extended by one character to be

in S2(i, j) or S3(i, j) is by extending a string in S1(i, j), S2(i, j) or S3(i, j). In the

previous paragraph, we accounted for extensions from strings in S2(i, j) or S3(i, j).

All strings in S1(i, j) have length i, but in the inductive case k > i + 1. Thus, the

left-hand side of the claimed equality exactly doubles.

Lemma 4.4.4. For any right-vertex j, left-vertex i and integer k such that i < k ≤
m, we have

|(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k| ≥ 2k−i−2|S1(i, j)|.

Proof. By Lemma 4.4.3, we have that |S2(i, j) ∩ {0, 1}k| + 2|S3(i, j) ∩ {0, 1}k| =

2k−i−1|S1(i, j)|. We can increase the left-hand side to get 2|S2(i, j) ∩ {0, 1}k| +

2|S3(i, j) ∩ {0, 1}k| ≥ 2k−i−1|S1(i, j)|. Since S2(i, j) and S3(i, j) are disjoint, we

have |(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k| ≥ 2k−i−2|S1(i, j)|.

Lemma 4.4.5. For any right-vertex j and integer k such that k ≤ m, we have

∑

α∈{0,1}k

w(M1(α), j) ≥
∑

0≤i<k

w(i)2k−i−2|S1(i, j)|,

where w(M1(α), j) denotes the weight of the left-vertex matched to j in M1(α) or

zero if j is unmatched.

Proof. By the definitions of M1, S2 and S3, we have that (i, j) ∈ M1(α) if and only

if α ∈ (S2(i, j) ∪ S3(i, j)). Furthermore, by the definition of M1, if α has length

k, then only left-vertices less than k can be matched in M1. The left-hand side of

the claimed inequality is thus equal to
∑

0≤i<k w(i)|(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k|.
Applying Lemma 4.4.4 gives the desired result.

94



Lemma 4.4.6. For any integer k such that k ≤ m, we have

∑

α∈{0,1}k

w(M1(α)) ≥
∑

0≤i<k

∑

0≤j<n

w(i)2k−i−2|S1(i, j)|.

Proof. Follows from summing the result of Lemma 4.4.5 over all 0 ≤ j < n.

Lemma 4.4.7. For any right-vertex j and integer k such that k ≤ m, we have

∑

α∈{0,1}k

w(M0(α), j) ≤
∑

0≤i<k

w(i)2k−i|S1(i, j)|,

where w(M0(α), j) is equal to the weight of the left-vertex matched to j in M0(α) or

zero if j is unmatched.

Proof. To prove this lemma, we first introduce some helpful claims and definitions.

For any binary string α of length at most k define f(α) as the set of proper prefixes

β of α such that M2(β) = {(|β|, j)}. The following two claims follow directly from

the definitions.

Claim 1: For any binary string α of length at most k, we have deg(E1(α), j) =

|f(α)|.
Claim 2: For any binary string α of length at most k, we have |f(α)| = 0

implies w(M0(α), j) = 0.

Let A denote all α ∈ {0, 1}k such that f(α) 6= ∅. For all α ∈ A let g(α)

denote the shortest string in f(α).

Claim 3: For any α in A, we have f(g(α)) = ∅. Since any proper prefix of

g(α) is also a proper prefix of α.

Claim 4: For any α in A, we have deg(E1(g(α)), j) = 0 and M2(g(α)) =

{(|g(α)|, j)}. Follows from Claims 1 and 3.

Claim 5: For any α in A, we have 0 ≤ |g(α)| < k and g(α) ∈ S1(|g(α)|, j).
Follows from Claim 4, the definition of S1 and since g(α) ∈ f(α).

Claim 6: For any α in A, we have w(M0(α), j) ≤ w(|g(α)|). Since M0(α) is

a matching, deg(M0(α), j) is either zero or one. If it is zero, the claim is trivial. If

it is one, then M0(α) contains a unique (i, j) for some left-vertex i. Thus, M2(β) =

{(i, j)} for some proper prefix β of α of length i. By the definition of g, |g(α)| ≤
|β| = i. So, the claim follows.
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Claim 7: For all 0 ≤ i < k and β in S1(i, j) we have |g−1(β)| ≤ 2k−i. Since

β ∈ S1(i, j) , we have |β| = i. Since g(α) is a prefix of α, |g−1(β)| is at most the

number of k bit extensions of β, which is 2k−i.

We are now ready to prove the lemma

∑

α∈{0,1}k

w(M0(α), j) =
∑

α∈A

w(M0(α), j)

=
∑

0≤i<k

∑

β∈S1(i,j)

∑

α∈g−1(β)

w(M0(α), j)

≤
∑

0≤i<k

∑

β∈S1(i,j)

∑

α∈g−1(β)

w(|g(α)|)

=
∑

0≤i<k

∑

β∈S1(i,j)

∑

α∈g−1(β)

w(i)

≤
∑

0≤i<k

∑

β∈S1(i,j)

w(i)2k−i

=
∑

0≤i<k

w(i)2k−i|S1(i, j)|,

where the first step follows from Claim 2 and the definition of A; the second step

follows from Claim 5; step three follows from Claim 6; step four follows since α ∈
g−1(β) and β ∈ S1(i, j) implies i = |β| = |g(α)|; step five follows from Claim 7; and

step 6 is immediate.

Lemma 4.4.8. For any integer k such that k ≤ m, we have

∑

α∈{0,1}k

w(M0(α)) ≤
∑

0≤i<k

∑

0≤j<n

w(i)2k−i|S1(i, j)|.

Proof. Follows from summing the result of Lemma 4.4.7 over all 0 ≤ j < n.

Lemma 4.4.9. For any integer k such that k ≤ m, we have

∑

α∈{0,1}k

w(M1(α)) ≥ 1

4

∑

α∈{0,1}k

w(M0(α)).

Proof. Follows from Lemmas 4.4.8 and 4.4.6.
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4.5 Analysis Under a Probability Distribution

In this section we begin working with probability distributions and show that the

expected weight of the sampled candidate edge matching is within a constant factor

of the max-weight matching on the entire graph (Lemma 4.5.2). We tie these results

with Section 4.4, to show that the expected weight of the non-sampled matching is

within a constant the weight of a max-weight matching on the entire graph (Lemma

4.5.4), completing the main technical portion of the argument. The only result

exported from this section is Lemma 4.5.4.

Define a function Sample, which takes an m-bit binary string string α such

that Sample(α) = {i | αi = 0}. We introduce a probability distribution P on m-bit

binary strings α. In P, each αi independently has an equal chance of αi = 0 and

αi = 1.

Lemma 4.5.1. Let M∗ be a max-weight matching and Mα denote a max-weight

matching on the subgraph induced by Sample(α) for a binary string α. Then,

Exp[w(Mα)] ≥ 1
2w(M∗).

Proof. We have Exp[w(Mα)] ≥ ∑

i∈Left(M∗) Pr[αi = 0]w(i) = 1
2w(M∗), where the

first step follows from the linearity of expectation and observing that the matching

Mα as a weight at least as big as the weight of a matching M ′
α = {(i, j) ∈ M∗ | αi =

0}.

Lemma 4.5.2. Let M∗ be a max-weight matching. Then, the following inequality

holds:

Exp[w(AlgA(Sample(α)))] ≥ 1

4
w(M∗).

Proof. Let Mα be a max-weight matching on Sample(α), for a string α. Then, we

have

Exp[w(AlgA(Sample(α)))] ≥ Exp[
1

2
w(Mα)]

≥ 1

4
w(M∗),

where the first step follows from Lemma 4.3.5 and the second step follows from

Lemma 4.5.1 and the linearity of expectation.
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Lemma 4.5.3. Let α be any m-bit binary string and A = Sample(α). We have

M0(α) = AlgA(A).

Proof. Follows from the definition of AlgA and M0.

Lemma 4.5.4. Let M∗ be a max-weight matching. We have Exp[w(M1(α))] ≥
1
16w(M∗).

Proof. We have

Exp[w(M1(α))] ≥ 1

4
Exp[w(M0(α))]

=
1

4
Exp[w(AlgA(Sample(α)))]

≥ 1

16
w(M∗),

where the first inequality follows from Lemma 4.4.9, the equality follows from

Lemma 4.5.3, and the final inequality follows from Lemma 4.5.2.

4.6 Intermediate Algorithm

In this section we analyze a useful intermediate algorithm between the counting

arguments and the final online algorithm. In specific, in the counting argument, we

process the non-sampled left-vertices in decreasing order of weight. In this section

we use Lemma 4.4.1 to argue that we can process the non-sampled left-vertices in

an arbitrary order. This is similar to what happens in the original sample-and-price

algorithm in the secretary problem. In the secretary problem, we depend on the

fraction of time when the second highest bidder is sampled and the highest bidder

is not. When this happens, we can process the non-sampled bidders in an arbitrary

order, since only one of them meets the required price.

We define an algorithm AlgB(α) that takes an m-bit binary string α, and

returns a matching. The AlgB(α) function is as follows:

M := AlgA(Sample(α))

A := {0, . . . , m} − Sample(α)

E := ∅
for i in arbitrary order from A:
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E := E ∪ Cands(i, M)

return the matching of pairs (i, j) in E where j appears at

most once in E.

Lemma 4.6.1. For any m-bit binary string α, we have AlgB(α) = M1(α).

Proof. The results of Lemma 4.5.3 give that for any m-bit binary string α we have

M0(α) = AlgA(Sample(α)). Applying Lemma 4.4.1, we also have that E0(α) =
⋃

i∈A Cands(i, M0(α)), where A is as in AlgB. Thus, at the end of the loop in AlgB,

E is equal to E0(α). The lemma statement follows from the definition of M1(α) and

the last line of AlgB.

4.7 Online Algorithm

In this section, we define and analyze the final online algorithm, which is closely

related to the algorithm in Section 4.6. The main difference between the two algo-

rithms is that the online algorithm must rely on the random permutation of left-

vertices for sampling whereas up to now we have discussed a simpler direct sampling

method, where each element has an equal chance of being sampled or not. With

Lemma 4.7.2 we show that the direct sampling method and the method of sampling

from the random permutation induce the same distribution. The main theorem

follows immediately from our previous results.

Define the online algorithm as follows. Initially, we are given the set of

right-vertices, and the total number of left-vertices we will see, m. The algorithm

ONLINE proceeds in two phases.

First phase:

k := Bin(m, 1
2), where Bin is the binomial distribution.

Reject the first k vertices, not matching them to anything.

Let B be the set of all the rejected vertices.

M0 := AlgA(B).

Second phase:

We are given M0 from the first phase.

We build a matching M1, initialized to ∅.
On receiving a left-vertex i:

A := Cands(i, M0)
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if A 6= ∅ and the right-vertex in A is unmatched in M1

M1 := M1 ∪ A

return the matching M1

Lemma 4.7.1. Let α be a m-bit binary string, B = Sample(α) and MB
1 be a match-

ing returned by ONLINE when B is sampled in the first phase. Then, w(MB
1 ) ≥

w(AlgB(α)).

Proof. ONLINE and AlgB perform the same operations on the vertices that are not

sampled, with the small optimization that ONLINE matches a right vertex j to the

first left-vertex i such that {(i, j)} = Cands(i, M0), while AlgB does not match any

right-vertex j that is returned twice by Cands.

Lemma 4.7.2. Consider a set A of m elements. Let P be the probability distribution

where each a ∈ A independently has an equal chance of being sampled or not sampled.

Let P ′ be the probability distribution where we first pick a k from Bin(m, 1
2).

Then, from a uniformly random permutation of A, we only sample the first k ele-

ments.

The probability distributions P and P ′ are equal.

Lemma 4.7.2. We simply prove that each particular sample set B ⊆ A appears

with the same probability in both distributions. The probability of any particular

sample B under P is 1
2m . We must show the same is true under P ′. Let |B| = k′. The

probability of B under P ′ is
[

k′!(m−k′)!
m!

]

·
[

m!
k′!(m−k′)!

1
2m

]

, where the first term comes

from the probability that the elements in B come first in the random permutation,

and the second term comes from the probability that k′ is chosen as the cutoff for

the sampling.

Theorem 4.7.1. Let M∗ be a max-weight matching. Given a uniformly random

permutation of the left-vertices, ONLINE returns a matching whose weight is least
1
16w(M∗) in expectation.

Proof. Let P and P ′ be as defined in Lemma 4.7.2. We must show that the expected

weight of the matching produced by ONLINE under P ′ is at least 1
16w(M∗).

By Lemma 4.7.1, for each possible sample selection ONLINE returns a match-

ing with weight at least as large as the matching returned by AlgB on the same
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sample. Thus, the expectation of ONLINE under P ′ is at least as large as the ex-

pectation of AlgB under P ′. Lemma 4.7.2, gives us the result that the expectation

of AlgB(α) when α is drawn from P ′ is the same as that when α is drawn from

P. Lemma 4.6.1 gives us the result that the expectation of AlgB(α) under P is the

same as the expectation of M1(α) under P. Finally, Lemma 4.5.4 shows that the

expectation of M1(α) under P is at least 1
16w(M∗), completing the result.

4.8 Concluding Remarks

In this section we make some remarks on the strong connection between transversal

matroids and general matroids. The connection comes from the following charac-

terization of a basis: B is a basis of a matroid M iff B is a minimal set having

non-empty intersection with every co-circuit of M [43]. With this characterization,

one can think of a general matroid as a bipartite graph in the following way. Let

the matroid elements be the left-vertices and co-circuits be the right-vertices. Let

there be an edge between an element and a co-circuit if the element belongs to the

co-circuit. An independent set in the general matroid is then a combinatorial struc-

ture which is close to a matching, but not the same. Consider taking a particular

element into an independent set we are constructing. On taking in the element,

we cover all the co-circuits containing that element because they have non-empty

intersection with the constructed independent set. After that, to increase the inde-

pendent set, we can only take elements which cover some uncovered co-circuits. So,

in a sense, independent sets match left-vertices to subsets of right-vertices. Perhaps

it is possible to come up with a sample-and-price scheme for pricing co-circuits to

extend the results of this chapter to general matroids, solving the online matroid

problem?
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Chapter 5

Summary and Future Directions

5.1 Summary

In this document, we present our contributions to three main algorithmic concerns

arising from large-scale distributed computing: dynamic membership, selfishness,

and incomplete information.

To address the concern of dynamic membership, in Chapter 2, we address

load balancing in distributed hash tables by analyzing variants of a related graph-

based coupon collector process. Using the scaffold of a delay sequence argument, we

show that several variants of the graph-based coupon collector lead to linear cover

times, both in expectation and with high probability. These results directly imply

load balance guarantees in distributed hash tables. We also show super-linear lower

bounds for the cover times of several variants, showing that slight differences in the

process specification affect the cover time results.

To address the concern of selfishness, in Chapter 3, we study optimization

over the core of buyer-supplier games. After describing a method to obtain buyer-

supplier games from combinatorial minimization problems, we show that the trans-

ferable utility core and non-transferable utility core of buyer-supplier games have

the same characterization. Using that characterization, we show both positive and

negative results on optimization over the core. We show that optimizing over the

core of a buyer-supplier game is polynomial time equivalent to solving the underlying

combinatorial minimization problem.

To address the concern of incomplete information, in Chapter 4, we present
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our results on the online matroid problem. Specifically, we show a competitive

algorithm for solving the online weighted transversal matroid matching problem.

Our results generalize several previous results on the online matroid problem and

are based on a novel sample-and-price algorithm. When combined with a previously

known reduction, our results also give competitive algorithms for the truncations of

transversal matroids.

5.2 Future Directions

In this section we briefly list several other problems of interest related to dynamic

membership, selfishness, and incomplete information.

Can we show load-balance results for joining and leaving a DHT?

In Chapter 2, we analyzed a random process related to load balance in a distributed

hash table. As discussed in Chapter 1, an O(n) cover time can be used to show

that, under the described DHT join procedure, if the DHT initially has a single

machine with a load of 1, then after n − 1 machines join the DHT, the load of

every machine is O( 1
n) with high probability. However, our analysis does not extend

to machines dynamically joining and leaving the distributed hash table. Can we

show load-balance guarantees after a sequence of n arbitrarily ordered join/leave

operations?

Can we find a combinatorial algorithm for the FPP problem on the

buyer-supplier shortest path game? In Chapter 3, we presented a combinatorial

algorithm for the FPP problem on the buyer-supplier MST game. But, as discussed

in that chapter, in the buyer-supplier MST game, suppliers are substitutes. This

property makes the FPP problem particularly easy, as it can be expressed by a

polynomially sized linear program. In the buyer-supplier shortest path game, on

the other hand, suppliers are not substitutes. Currently, even though the shortest

path problem itself can be solved by a simple greedy algorithm, the only known

method of solving the FPP problem on the buyer-supplier shortest path game is the

ellipsoid method.

Can we find algorithms to compute the focus point price in games

other than buyer-supplier games? In Chapter 3, we presented our results on

computing the focus point price in buyer-supplier games with respect to the core

solution concept. The focus point price concept is widely applicable and easily

103



Figure 5.1: An example showing that the algorithm for the online transversal ma-
troid problem presented in Chapter 4 does not produce a truthful mechanism. Sup-
pose that the left-vertices with bids 10 and 1 are sampled and used to price the
corresponding right-vertices. If the left-vertex, labeled ?, has a true weight of 11, it
has incentive to be untruthful. Reporting 11 would result in being matched to the
top right-vertex and a utility of 1, while reporting 2, would result in being matched
to the bottom right-vertex and a utility of 10.

extends to scenarios other than the core of buyer-supplier games. The focus point

price concept can be applied to any combination of a solution concept and a game.

We are interested to see if we can find bounds on the focus point price, or algorithms

to compute the focus point price in a wide class of games other than the buyer-

supplier games which we have already studied.

When do repeated auctions lead to core solutions? There have al-

ready been investigations into the relationship between the core and auctions. For

example, Bikhchandani and Ostoy show that under certain conditions, the outcome

of a VCG auction is in the core of a corresponding game between the buyers and

the auctioneer [10]. As we suggested in Chapter 1, the core solution concept was

developed with the notion that players communicate freely in advance of playing

the game. We are interested in whether repeatedly executing an auction, where

each execution is done without communication, leads to core solutions. The idea

behind this investigation is that the history of previous games serves as sufficient

communication to lead to a core outcome. Indeed, investigations on the connections

between competitive equilibria, such as Nash equilibria, and cooperative equilibria,

such as the core, exist. However, many of the existing results deal with convergence

as the number of players goes to infinity, or are limited to repeating a specific game

between a small number of players [38, 57, 61].

Is there an algorithm for online weighted transversal matroid match-

ing that produces a truthful mechanism? Several of the previous results on the
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online matroid problem produce truthful auctions [8, 32]. Our algorithm, perhaps

due to its more complex nature, does not produce a truthful auction. To illustrate

this point, consider Figure 5.1. Suppose that the left-vertices with bids 10 and 1 are

sampled and used to price the corresponding right-vertices. Furthermore, suppose

that the left-vertex labeled ? has a true weight of 11. This third left-vertex has

incentive to not be truthful, since reporting 11 would result in being matched to the

top right-vertex and a utility of 1. On the other hand, reporting 2, would result in

being matched to the bottom right-vertex and a utility of 10. This motivates our

interest in an algorithm for the online transversal matroid matching problem that

produces a truthful mechanism.

Can we solve the online matroid problem? In Chapter 4, we present

an algorithm for solving the online weighted transversal matroid matching problem.

At the end of the chapter, we discuss the connections between transversal matroids

and general matroids. We are interested in resolving the general case of the online

matroid problem. We do not have strong evidence or beliefs on whether there exists

an algorithm for the general case. Either an algorithm, or a lower-bound result

would be an interesting resolution to the online matroid problem.

Large-scale distributed computing has a rich algorithmic landscape with

many unexplored problems. It is certain that the algorithmic concerns of dynamic

membership, selfishness, and incomplete information will increase in prominence as

future systems include interactions between larger numbers of individuals.
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