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Peer-to-peer computing is an emerging paradigm that has the potential of

harnessing enormous amounts of under-utilized computational resources (e.g., home

computers). A central problem in peer-to-peer computing is how to organize the

network nodes so that sophisticated applications can be efficiently supported. The

cornerstone of a peer-to-peer network is a dynamic network topology that determines

the neighbor relationships to be maintained by the network nodes. This dissertation

is concerned with algorithmic and concurrency issues in dynamic network topologies.

We present Ranch (random cyclic hypercube), a simple, recursive topology

consisting of a collection of rings. Ranch is a scalable topology. In particular, it

has logarithmic in-degree, out-degree, and diameter, and it uses only a logarithmic

number of messages for a node to join or leave the network. Ranch also has a number

of additional desirable properties, including locality awareness and fault tolerance.

We show how to build a name resolution scheme for Ranch that enables the peer-to-

peer network to find data items efficiently. Our results include a name replication

scheme and a fault-tolerant lookup algorithm.
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We address the problem of topology maintenance in peer-to-peer networks,

that is, how to properly update the neighbor variables when nodes join and leave the

network, possibly concurrently. We design, and prove the correctness of, protocols

that maintain the ring topology, the basis of several peer-to-peer networks, in the

fault-free environment. Our protocols handle both joins and leaves actively (i.e.,

they update the neighbor variables as soon as a join or a leave occurs). We use an

assertional method to prove the correctness of our protocols, that is, we first design

a global invariant for a protocol and then show that every action of the protocol

preserves the invariant. Our protocols are simple and our proofs are rigorous and

explicit.

We extend our results on the maintenance of rings to address the maintenance

of Ranch. We present active and concurrent maintenance protocols that handle both

joins and leaves for Ranch, along with their assertional correctness proofs. The

protocols for Ranch use the protocols for rings as a building block. The protocols

and the correctness proofs for Ranch substantially extend those for rings.

We present simulation results that demonstrate the scalability and locality

awareness of Ranch.
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Chapter 1

Introduction

Peer-to-peer computing is an emerging paradigm that has the potential of harnessing

enormous amounts of under-utilized computational resources (e.g., home comput-

ers). For example, the SETI@Home project [56], which utilizes the idle CPU cycles

of home computers to analyze radio telescope data, has in a way become the most

powerful computer in the world. Before the potential of peer-to-peer computing can

be realized, significant technical issues remain to be addressed. Combining many

aspects of distributed computing, computer networking, and parallel computation,

peer-to-peer computing poses many challenges.

A central problem in peer-to-peer computing is how to organize the network

nodes so that sophisticated applications can be efficiently supported. A dynamic

network topology, which determines the neighbor relationships between the network

nodes, is the cornerstone of a peer-to-peer network. A peer-to-peer network that has

stringent requirements on its topology is called a structured peer-to-peer network.

We first introduce a few concepts related to topologies. Nodes form a topol-

ogy via their neighbor variables. By drawing a directed edge from each node to each

of its neighbors, we obtain a directed graph, which represents the topology of the

network. For example, a set of nodes may form a unidirectional ring by maintaining
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a single neighbor variable at each node that points to its neighbor in the ring. In

a topology, the in-degree of a node is the number of nodes that have the node as a

neighbor; the in-degree of a topology is the maximum in-degree of all the nodes. The

out-degree of a node is the number of neighbors that the node has; the out-degree of

a topology is the maximum out-degree of all the nodes. The diameter of a topology

is the maximum number of edges on the shortest path from any node to any other

node.

Designing a dynamic network topology is by no means a trivial task. A

good topology should have a number of properties. Firstly, the topology should

be scalable, that is, it should have small in-degree, out-degree, and diameter. This

requirement rules out naive topologies such as a ring or a complete graph, because a

ring has high diameter and a complete graph has high degree. Secondly, the topol-

ogy should be locality-aware, that is, it should take into account the difference in

communication costs between different pairs of nodes in the network. Since peer-to-

peer networks often spread throughout the Internet, communication costs between

different pairs of nodes can vary significantly (e.g., between two continents or within

the same building). This requirement implies that many well-known topologies in

parallel computing, such as hypercubes and butterflies, should be reevaluated be-

fore being applied to peer-to-peer networks, because their design assumes uniform

communication cost between any pair of nodes. (See, e.g., Leighton’s text [30] for

a detailed discussion of these topologies.) The ideas behind these topologies, how-

ever, have inspired the design of several dynamic network topologies for peer-to-peer

networks (e.g., [16, 24, 40]). Thirdly, the topology should be fault-tolerant. Many

fault tolerance issues can be addressed in peer-to-peer network topologies. For ex-

ample, the faults of a small fraction of nodes or communication links should not

severely disrupt the functioning of the network, and faults should not severely ham-

per the functioning of the network. This requirement disqualifies simple topologies
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like trees, where the failure of the root disconnects the topology. Fourthly, the topol-

ogy should handle nodes joining and leaving the network, correctly and efficiently,

because peer-to-peer networks are highly dynamic, with nodes joining and leaving

all the time. In particular, when nodes join and leave, the neighbor variables should

be properly updated so that the designated topology is maintained.

This dissertation addresses several key issues in the design of dynamic net-

work topologies for structured peer-to-peer networks. Our contributions are sum-

marized in Sections 1.1 and 1.2.

1.1 The Ranch Topology

We present Ranch (random cyclic hypercube), a simple, recursive dynamic network

topology [34, 35]. The main idea of Ranch is to arrange the network nodes in a

collection of logical rings. Ranch has a number of desirable properties, including

scalability, locality awareness, and fault tolerance. Ranch has logarithmic in-degree,

out-degree, and diameter with high probability (whp). We say that an event happens

with high probability or whp if it fails to occur with probability at most n−c, where

n is the number of nodes in the network and c is a positive constant that can be

set arbitrarily large by adjusting other constants in the relevant context. Joins

and leaves only take a logarithmic number of messages whp. Ranch is locality

aware; it exploits locality by correlating the logical rings with the physical locations

of the nodes. Compared to other topologies, the main advantages of Ranch are

its simplicity and strong performance bounds. The benefits of its simplicity have

proven important for the maintenance of its topology, a topic to be discussed in

Section 1.2.

We present a name resolution scheme for Ranch. A name resolution scheme,

commonly known as a distributed hash table (DHT), enables a peer-to-peer network

to locate data items. Inserting, looking up, and deleting data items in the scheme
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all take a logarithmic number of messages. We present a name replication strategy

that further reduces the expected number of messages needed by a lookup. We

present a fault-tolerant lookup algorithm that preserves the efficiency and locality

awareness of fault-free lookups in a random fault model where each node has a

constant probability of being faulty.

1.2 Active and Concurrent Topology Maintenance

Peer-to-peer networks are highly dynamic: over time, nodes may join and leave the

network. Since nodes can join or leave the network on their own, joins and leaves

may happen concurrently and interleave arbitrarily. Yet a structured peer-to-peer

network relies on its topology to function correctly. Therefore, a central problem for

structured peer-to-peer networks is topology maintenance, that is, how to properly

update neighbor variables when nodes join and leave.

The active approach to topology maintenance updates neighbor variables

once a join or a leave occurs. Existing work on active topology maintenance has

several shortcomings: the protocols only handle joins actively or only leaves actively,

they are complicated, and their correctness proofs are operational, informal, and

sketchy. It is well known, however, that concurrent programs often contain subtle

errors and operational reasoning is unreliable for proving their correctness.

We first address the maintenance of the ring topology [31, 33], the basis of

several peer-to-peer networks (e.g., [19, 34, 41, 57]). We design, and prove the

correctness of, protocols that maintain a bidirectional ring in the fault-free environ-

ment. Our protocols handle both joins and leaves actively. We use an assertional

method to prove the correctness of our protocols. In particular, we first identify a

global invariant for a protocol and then show that every action of the protocol pre-

serves the invariant. We show that, although the ring topology may be tentatively

disrupted during membership changes, our protocols restore the ring topology once

4



the messages associated with each pending membership change are delivered. In

practice, it is likely that message delivery time is much shorter than the mean time

between membership changes. Hence, in practice, our protocols maintain the ring

topology most of the time. Our protocols are based on an asynchronous communi-

cation model where only reliable delivery is assumed, that is, message delivery takes

finite, but otherwise arbitrary, amount of time. The protocols are simple and the

proofs are rigorous and explicit.

Using the ring maintenance protocols as a building block, we present topology

maintenance protocols for Ranch [32]. We again use an assertional method to prove

the correctness of the protocols. The protocols and proofs for the maintenance of

Ranch make use of, yet substantially extend, those for the maintenance of rings.

1.3 Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 discusses related

work. Chapter 3 presents the Ranch topology. Chapter 4 discusses how to maintain

the ring topology. Chapter 5 discusses how to maintain Ranch. Chapter 6 presents

some simulation results. Chapter 7 provides some concluding remarks.
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Chapter 2

Related Work

Research on peer-to-peer computing has flourished in recent years. Numerous con-

ferences and workshops are devoted to research on peer-to-peer computing. In this

section, we discuss work that is most relevant to this dissertation. In particular,

we discuss related work on scalable topologies, topology maintenance, and locality

awareness.

2.1 Scalable Topologies

In recent years, much research effort has been invested in the design of dynamic

network topologies and a number of topologies have been proposed [5, 6, 7, 16, 19,

24, 40, 41, 43, 46, 49, 52, 54, 57, 60, 58]. The list is long and growing. A comparison

between Ranch and other proposed topologies is thus in order.

Structured versus unstructured peer-to-peer networks. Peer-to-peer networks

belong in two general categories, structured and unstructured, depending on whether

they have stringent requirements on their topologies. While unstructured networks

are simpler (e.g., topology maintenance is easier to achieve), they provide less effi-

cient support for many applications. For example, name resolution is typically done

6



by some sort of flooding in unstructured networks. Although progress has been made

on improving the efficiency of lookups in unstructured networks [11, 13, 14, 38], the

performance gap between unstructured networks and structured networks is still

substantial. Furthermore, we believe that structured networks have the potential

to support more sophisticated applications than file sharing. In fact, a number of

such applications have been built, e.g., application-level multicast [9, 53, 61] and

web caching [23].

Ranch versus constant-degree topologies. Ranch is a topology with logarith-

mic degree and diameter. If one only intends to achieve logarithmic diameter, con-

stant degree suffices. For example, shuffle-exchange networks and de Bruijn graphs

are well-known topologies that have constant degree and logarithmic diameter. (For

details of these topologies, see, e.g., Leighton’s text [30].) Schemes based on these

topologies have been proposed (e.g., [16, 24, 40, 51]). Constant-degree topologies

have lower degree, and are thus easier to maintain, and perhaps easier to reason

about under concurrency. Why then do we propose a logarithmic degree topology?

Firstly, logarithmic degree allows for better exploitation of locality because a node

can choose its neighbors from larger sets of candidates. Secondly, logarithmic-degree

topologies are more fault-tolerant in the sense that it is harder to separate a set of

nodes from the rest of the network.

Ranch versus other logarithmic-degree topologies. Several logarithmic-degree

topologies have been proposed, including PRR and its variants (e.g., Tapestry [60],

Pastry [54]), Chord [57], and CAN [52]. Compared to these topologies, Ranch has

a number of advantages. Firstly, Ranch improves over Chord on the time bound

on topology maintenance: Ranch requires O(lg n) while Chord requires Ω(log2 n).

Secondly, Ranch is simple and clean. Thirdly, the recursive structure of Ranch

makes it easier to design topology maintenance protocols and reason about their

correctness (see Chapter 5).
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Ranch versus other skip-list-like topologies. At a high level, Ranch bears

some resemblance to a skip list [50], a randomized dictionary data structure whose

applications to peer-to-peer computing has recently gained attention. For exam-

ple, a data structure called metric skip list have been proposed to solve the nearest

neighbor problem on growth-restricted metric spaces [25]. Shortly after the pub-

lication of our paper and technical report [34, 35], several skip-list-like topologies

were independently proposed: skip graphs [5], Hyperrings [6], and SkipNets [19].

While similar to Ranch at the high level, the primary design objectives underlying

the work in [5, 6, 19] (e.g., range queries, fault-tolerant connectivity, repairability,

congestion) are different from those of our work, and consequently the details of the

constructions and analyses differ substantially. For example, the name resolution

schemes proposed in [5, 19] follow the usual skip list lookup procedure, while our

lookup follows a bit-correcting procedure. Furthermore, as far as topology mainte-

nance is concerned, Ranch and skip graphs have two key differences: (1) in Ranch,

a new process can be added to an arbitrary position in the base ring (i.e., the ring

that consists of all the nodes in the network), while in skip graphs, a new process

has to be added to an appropriate position; (2) in Ranch, the order in which the

processes appear in, say, the α0-ring need not be the same as the order in which they

appear in, say, the α-ring, while in skip graphs, they have to be. These additional

flexibilities allow us to design simple maintenance protocols for Ranch.

2.2 Topology Maintenance

Structured peer-to-peer networks rely on the proper maintenance of its designated

topology to function correctly. Topology maintenance hence is a central problem

for structured peer-to-peer networks. While unstructured peer-to-peer networks

do not have stringent requirements on the network topology, it is still desirable

to maintain certain properties (e.g., connectivity). For example, Pandurangan et

8



al. [48] have proposed how to build connected unstructured networks with constant

degree and logarithmic diameter. While topology maintenance is a central problem

for structured peer-to-peer networks, many proposed topologies only briefly discuss

this issue, or assume that joins and leaves only affect disjoint sets of the neighbor

variables. Clearly, this assumption does not always hold.

Chord [57] takes the passive approach to topology maintenance. Liben-

Nowell et al. [36] investigate the bandwidth consumed by repair protocols and show

that Chord is within a polylogarithmic factor of optimal in this regard. Hildrum et

al. [22] focus on choosing nearby neighbors for Tapestry [60], a topology based on

PRR [49]. In addition, they propose an active join protocol for Tapestry, together

with a correctness proof. Furthermore, they describe how to handle leaves (both

voluntary and involuntary) in Tapestry. However, the description of voluntary (i.e.,

active) leaves is high-level and is mainly concerned with individual leaves. Liu and

Lam [37] have also proposed an active join protocol for a topology based on PRR.

Their focus, however, is on constructing a topology that satisfies the bit-correcting

property of PRR; in contrast with the work of Hildrum et al., proximity considera-

tions are not taken into account.

The work of Aspnes and Shah [5] is closely related to ours. They give a

join protocol and a leave protocol, but their work has some shortcomings. Firstly,

concurrency issues are addressed at a high level. For example, the analysis does not

capture the system state when messages are in transit. Secondly, the join protocol

and the leave protocol of [5], if put together, do not handle both joins and leaves.

(To see this, consider the scenario where a join occurs between a leaving process

and its right neighbor.) Thirdly, for the leave protocol, a process may send a leave

request to a process that has already left the network; the problem persists even if

ordered delivery of messages is assumed. Fourthly, the protocols rely on the search

operation, the correctness of which under topology change is not established.
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In their position paper, Lynch et al. [39] outline an approach to ensuring

atomic data access in peer-to-peer networks and give the pseudocode of the ap-

proach for the Chord ring. The pseudocode, excluding the part for transferring

data, gives a topology maintenance protocol for the Chord ring. Although [39] pro-

vides some interesting observations and remarks, no proof of correctness is given,

and the proposed protocol has several shortcomings, some of which are similar to

those of [5] (e.g., it does not work for both joins and leaves and a message may be

sent to a process that has already left the network).

Assertional proofs of distributed algorithms appear in, e.g., Ashcroft [4],

Lamport [27], and Chandy and Misra [10]. Our work on topology maintenance can

be described in the closure and convergence framework of Arora and Gouda [3]: the

protocols operate under the closure of the invariants, and the topology converges to

a ring once the messages related to membership changes are delivered.

2.3 Locality Awareness

As pointed out before, since the communication costs between different pairs of

nodes can vary significantly, locality awareness is an important issue in the design

of dynamic network topologies for peer-to-peer networks. Much research effort has

been devoted to locality considerations in peer-to-peer networks. In fact, almost all

proposed topologies include some discussions on how to improve locality awareness.

While experimental efforts to improve locality awareness abound (e.g., [8, 59] and the

citations therein), we mainly discuss efforts that provide provable locality properties.

Some efforts focus on how to provide provable locality properties on various

classes of metric spaces. The PRR topology [49] provides provable locality properties

on a certain class of growth-restricted metric spaces. However, maintaining the PRR

neighbor variables is a nontrivial task, especially if the distance function is changing,

or if nodes are frequently joining or leaving the network. Although recent research
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results have reduced the restriction on the metric spaces [1, 21, 22, 25], providing

similar locality properties on general metric spaces remains an open problem. Recent

research efforts investigate other directions in providing locality properties. For

example, Hilrum et al. [20] propose a scheme where the neighbor table size of a

node depends on the local density of the node, but not the global growth rate of the

metric space. Manku et al. [42] investigate the benefit of greedy routing where a

node takes into account not only its own neighbor, but also its neighbor’s neighbor

when making routing decisions.

Our work in this dissertation makes some initial investigation into the locality

awareness of Ranch. Ranch exploits locality by correlating the logical rings with the

physical locations of the nodes. We demonstrate the effectiveness of this simple

method via rigorous analysis on the ring metric (see Section 3.4) and via simulation

on the two-dimensional Euclidean space (see Section 6.3). However, the effectiveness

of this method on other metric spaces remains to be investigated. We discuss some

future work in Chapter 7.
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Chapter 3

The Ranch Topology

An important problem in peer-to-peer networks is how to organize the network nodes

so that sophisticated applications can be efficiently supported. An example of such

an application is name resolution. Given a name, the task of name resolution is

to determine the value to which the name is mapped. Since peer-to-peer networks

often use name resolution to locate data items (i.e., mapping data items to their host

machines), name resolution in peer-to-peer networks is also known as distributed data

lookup, a name resolution scheme is also called a distributed hash table (DHT), and

a peer-to-peer network that supports name resolution is called a content-addressable

network.

One way to provide efficient support for name resolution is to organize the

network nodes into a certain topology. Without an appropriate topology, name

resolution is either done by using central servers [47] or by flooding [17]. Clearly,

neither of these approaches is scalable: central servers cannot support too many

nodes, and flooding uses too much resource (e.g., bandwidth).

This chapter presents Ranch (random cyclic hypercube), a simple, recursive

dynamic network topology. Ranch is composed of a collection of rings and routing

(i.e., going from one node to another) is done by bit-correcting and ring traversal.
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Ranch has a number of desirable properties, including scalability, locality awareness,

and fault tolerance. On arbitrary metric spaces, Ranch has logarithmic in-degree,

out-degree, and diameter with high probability (whp). (See page 3 for the defini-

tion of whp.) Joins and leaves only take a logarithmic number of messages whp.

Ranch is locality-aware; it exploits locality by correlating the logical rings with the

physical locations of the nodes. Compared to other proposed topologies, the main

advantages of Ranch are its simplicity and strong performance bounds. The bene-

fits of simplicity and recursive structure become evident when we discuss topology

maintenance in Chapters 4 and 5.

We present a name resolution scheme for Ranch, in which inserting, looking

up, and deleting data items all take a logarithmic number of messages whp. We

propose a name replication strategy that effectively reduces the expected number

of messages needed by a lookup. We propose a fault-tolerant lookup algorithm that

preserves the efficiency and locality awareness of fault-free lookups in a random fault

model where each node has a constant probability of being faulty.

This chapter is organized as follows. Section 3.1 presents Ranch. Section 3.2

presents a name resolution scheme. Section 3.4 presents a name replication strategy.

Section 3.5 presents a fault-tolerant lookup algorithm.

3.1 Ranch

We consider a fixed and finite set of nodes denoted by V . Every node has a dynamic

random binary string as its identifier (ID). IDs may be empty and need not be unique

or of the same length. The first bit of a nonempty ID is bit 0. We sometimes identify

a node with its ID when no confusion can arise.

We first introduce a few notations. Let ε be the empty string, Vα be the set

of nodes prefixed by bit string α, α[i] be bit i of α, α[i..j] be the bit string from α[i]

to α[j], and α[i..j) be the bit string from α[i] to α[j − 1]. We call two nonempty bit
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Figure 3.1: Basic implementation of the Ranch topology. Bits in identifiers are
numbered from left to right. For example, if id = 01, then id [0] = 0 and id [1] = 1.

strings conjugates of each other if they are of the same length and they only differ

in the last bit.

We next define the Ranch topology. For a set of nodes to form a Ranch

topology, the first requirement is as follows.

(Requirement 1) For every bit string α, arrange the nodes in Vα into a ring.

We call the ring consisting of the nodes in Vα the α-ring, and we call a node

prefixed by α an α-node. Figure 3.1 shows an example of the Ranch topology. Ranch

is a recursive structure: a Ranch topology is composed of two Ranch topologies, one

consisting of the 0-nodes and the other the 1-nodes. It is worth emphasizing that

(1) in Ranch, a new node can be inserted into any position in the base ring (i.e.,

the ε-ring), (2) the order of nodes appearing in one ring need not be consistent with

that in another. For example, in Figure 3.1, the order of nodes appearing in the

0-ring is different from that in the ε-ring. The simplicity, recursive structure, and

flexibility of Ranch have proven conducive to concurrent topology maintenance, a

topic to be discussed in detail in Chapter 5.

Requirement 1 given above does not ensure that Ranch is a scalable topology.

For example, if the IDs of all the nodes are ε, then they are arranged in a ring,
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which can be considered a Ranch topology. A ring, however, is not a scalable

topology because it has high diameter. To provide scalability (i.e., low degree and

diameter), we impose the second requirement. With this additional requirement,

Ranch becomes a scalable topology whp. We analyze the scalability properties in

Section 3.3.

(Requirement 2) All the ID bits are randomly generated, and all node IDs suffi-

ciently long so that are unique.

Besides scalability, it is desirable for a topology to be locality-aware. That

is, the topology should take into account the different communication costs between

different pairs of nodes. Since peer-to-peer networks can spread throughout the

Internet, the difference in communication costs can be substantial. For example, a

10-hop route within the same building is far more superior to a 10-hop interconti-

nental route. To model the communication costs between nodes, we assume that

the nodes in the peer-to-peer network are embedded in a metric space. A metric

space is a pair (U, d), where U is a set of points and d is an interpoint distance

function such that, for all u, v, w ∈ U , the following conditions hold: (1) d(u, v) ≥ 0,

(2) d(u, v) = 0 iff u = v, (3) d(u, v) = d(v, u), (4) d(u, v) + d(v, w) ≥ d(u,w). Of

course, in practice, the internode distances may or may not form a metric space.

A metric space, however, is typically a good first-order approximation of the actual

distances. To construct a locality-aware topology, we impose the third requirement

and we discuss locality awareness in detail in Section 3.4.3.

(Requirement 3) The arrangement of the rings are correlated with the underlying

metric space.

Therefore, we have separated the concerns for constructing the Ranch topol-

ogy: correctness, scalability, and locality awareness. By imposing additional re-

quirements, we can make Ranch satisfy additional properties.
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Ranch admits several implementations. In each implementation, nodes main-

tain different neighbor variables. In this dissertation, we mainly discuss the following

two implementations.

• Basic implementation. In this implementation, nodes are arranged in bidi-

rectional rings, allowing transmission to and from either of its neighbors. In

order to identify the two neighbors of a node in a ring, we impose an arbitrary

orientation on every ring and call one of the neighbors right and the other left.

The bit-i right neighbor of node u, denoted by u.r[i], where 0 ≤ i ≤ |u.id |,
is the right neighbor of u in the α-ring, where α = u.id [0..i). The bit-i left

neighbor of node u, denoted by u.l[i], is similarly defined.

• Efficient implementation. In this implementation, nodes are arranged in uni-

directional rings via their right neighbors. The bit-i right neighbor of node u is

similarly defined as in the basic implementation. In addition, nodes have flip

neighbors that enable them to “jump” to other rings. The bit-i flip neighbor

of node u, denoted by u.flip[i], where 0 ≤ i < |u.id |, is an arbitrary node in

Vα, where α is the conjugate of u.id [0..i]. Figure 3.2 shows the flip neighbors

in a Ranch topology.

In the rest of this chapter, we assume the efficient implementation; in Chapter 5, we

assume the basic implementation. We emphasize, however, that all the performance

bounds established in this chapter applies to either implementation.

A dynamic network topology supports two basic operations: join, which adds

a node to the network, and leave, which removes a node from the network. Sequential

joins and leaves (i.e., only one join or leave at any time) are straightforward: a

node simply joins and leaves a set of rings one by one. The problem is much more

challenging when joins and leaves are concurrent. We address this issue in Chapters 4

and 5.
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Figure 3.2: Efficient implementation of the Ranch topology. The flip[0] neighbor
enables the 01-node to reach a 1-node; the flip[1] neighbor enables the 01-node to
reach a 00-node.

3.2 A Name Resolution Scheme

We present in this section a name resolution scheme, commonly known as a dis-

tributed hash table or DHT, for the Ranch topology. The task of a name resolution

scheme is to find the value to which a given name is mapped. A name resolution

scheme supports three basic operations: lookup, insert, and delete, for looking up,

inserting, and deleting names. For the sake of simplicity, we assume a name is

simply a bit string in this dissertation.

In Ranch, when a name is inserted, the name is stored at a certain node,

called the handler of the name, which is responsible for resolving the name. Each

node u maintains a local name database, denoted by u.db, to store the names for

which it is responsible. Handlers are assigned as follows. Let the best match set of

a name α, denoted by Φα, be the set of nodes that have the longest common prefix

with α. We call the length of the common prefix the depth of the best match set.

When a name α is inserted, the insert request is forwarded via the flip neighbors

until some node in Φα is reached. This node is designated as the handler of the

name. When a name is later looked up or deleted, additional work has to be done
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to locate the handler of the name because there may be multiple nodes in the best

match set. Note that all the nodes in the best match set are arranged in a ring by

their r[i] neighbors, for some i.

We next explain the lookup operation in Ranch. To highlight the essence

of the lookup operation, for the sake of simplicity, we now assume that names

and node IDs are sufficiently long and are unique. A lookup operation is divided

into two phases: the jumping phase, during which a node in the best match set is

reached, and the walking phase, during which the nodes in the best match set are

traversed by following the right neighbors until the handler of the name is found.

The lookup operation for the efficient implementation is shown in Figure 3.3. The

insert and delete operations are quite similar. We remark that certain optimizations

are possible in actual implementation. For example, messages sent to a node itself

can be replaced by function calls. Therefore, these messages are not counted in our

analysis. We have omitted such optimizations in Figure 3.3 in order to highlight the

key steps in a lookup.

Figure 3.4 shows the lookup operation for the efficient implementation with-

out any assumption on names and IDs (i.e., names and IDs can be arbitrary bit

strings). In this protocol, we check for the name and ID lengths and interleave the

jumping (i.e., bit-correcting) and walking phases.

Figure 3.5 shows the lookup operation for the basic implementation without

any assumption on names and node IDs. The code is even simpler, and hence is

omitted, if we assume names and node IDs are sufficiently long and are unique.

3.3 Analysis

In this section, we analyze the scalability properties of Ranch and its associated

name resolution scheme. Our main result is that all operations, including join,

leave, lookup, insert, and delete, take O(log n) constant-size messages whp. For
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process p

var id : dynamic bit string; db : name database;
a : bit string; x, y : V ; i : integer

begin

true → a := arbitrary name; send jump(p, a, 0) to p

[] rcv jump(x, a, i) from q →
if a[i] = id [i] → send jump(x, a, i + 1) to p

[] a[i] 6= id [i] ∧ flip[i] 6= nil → send jump(x, a, i + 1) to flip[i]
[] a[i] 6= id [i] ∧ flip[i] = nil → send walk(x, p, a, i) to p fi

[] rcv walk (x, y, a, i) from q →
if a 6∈ db ∧ r[i] 6= y → send walk (x, y, a, i) to r[i]
[] a ∈ db ∨ r[i] = y → send reply(a, p.resolve(a)) to x fi

end

Figure 3.3: The lookup operation for the efficient implementation. Names and IDs
are assumed to be unique and sufficiently long. Hence, we need not check whether
the length of a name or an ID has been exceeded. We prefix the resolve function by
“p.” to indicate that it is a local function.

process p

var id : dynamic bit string; db : name database;
a : bit string; x, y : V ; i : integer

begin

true → a := arbitrary name; send lookup(p, p, a, 0) to p

[] rcv lookup(x, y, a, i) from q →
if |a| > i ∧ k > i ∧ a[i] = id [i] → send lookup(x, p, a, i + 1) to p

[] |a| > i ∧ k > i ∧ a[i] 6= id [i] ∧ flip[i] 6= nil →
send lookup(x,flip [i], a, i + 1) to flip[i]

[] |a| ≤ i ∨ k ≤ i ∨ (a[i] 6= id [i] ∧ flip[i] = nil) →
if a 6∈ db ∧ r[i] 6= y → send lookup(x, y, a, i) to r[i]
[] a ∈ db ∨ r[i] = y → send reply(a, p.resolve(a)) to x fi fi

end

Figure 3.4: The lookup operation for the efficient implementation. Names and IDs
can be arbitrary. We use k as a shorthand for |id |.
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process p

var id : dynamic bit string; db : name database;
a : bit string; x, y : V ; i : integer

begin

true → a := arbitrary name; send lookup(p, p, a, 0) to p

[] rcv lookup(x, y, a, i) from q →
if |a| > i ∧ k > i ∧ a[i] = id [i] → send lookup(x, p, a, i + 1) to p

[] (|a| > i ∧ k > i ∧ a[i] 6= id [i]) ∨ |a| ≤ i ∨ k ≤ i →
if a 6∈ db ∧ r[i] 6= y → send lookup(x, y, a, i) to r[i]
[] a ∈ db ∨ r[i] = y → send reply(a, p.resolve(a)) to x fi fi

end

Figure 3.5: The lookup operation for the basic implementation. Names and IDs can
be arbitrary. We use k as a shorthand for |id |.

join and leave, this represents an improvement over the Ω(log2 n) message bound

established by Chord [57]. For the sake of simplicity, in what follows, we assume

that names and IDs are sufficiently long and are unique, that is, we use the code in

Figure 3.3.

We next present a series of lemmas and theorems. One important observation

is that given any node u and bit i, each of the remaining nodes v independently

has a probability of exactly 2−i−1 of belonging to Vα where α is the conjugate of

u.id [0..i]. This observation allows us to use Chernoff bounds [12] to establish several

of the claims below. A few useful inequalities can be found in Appendix A.

Lemma 3.3.1 Whp, |Vα| = Θ(log n), where α is an arbitrary bit string of length

lg n − lg lg n − c, for some sufficiently large constant c.

Proof: Clearly, E [|Vα|] = 2c lg n. Chernoff bounds imply that |Vα| lies within a

constant factor of its expectation whp. Thus, |Vα| = Θ(log n) whp.

Lemma 3.3.2 In a lookup operation, both the jumping phase and the walking phase

take O(log n) messages whp.
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Proof: By Lemma 3.3.1, when we look up a name α, then within lg n − lg lg n − c

bit-correcting hops, the lookup request reaches a node in Vα, where α is a bit string

of length lg n − lg lg n − c, for some sufficiently large constant c. Subsequent hops

only visit the nodes in Vα and |Vα| = Θ(log n) whp. Thus, both the bit-correcting

and walking phases take O(log n) messages whp.

Theorem 3.3.1 The insert, lookup, and delete operations all take O(log n) mes-

sages whp.

Proof: Immediate from Lemma 3.3.2.

Lemma 3.3.3 The expected depth of the best match set is lg n + O(1).

Proof: Let X denote the depth of the best match set. Then

E [X] =
∑

i≥1

Pr [X = i] · i

=
∑

i≥1

Pr [X ≥ i]

=
∑

i≥1

(

1 −
(

1 − 1

2i

)n)

=
lg n−1
∑

i=1

(

1 −
(

1 − 1

2i

)n)

+
∑

i≥lg n

(

1 −
(

1 − 1

2i

)n)

≤ lg n − 1 +
∑

i≥lg n

(

1 −
(

1 − 1

2i

)n)

= lg n − 1 +
∑

i≥0

(

1 −
(

1 − 1

2i · n

)n)

We observe

(

1 − 1

2i · n

)n

=

(

(

1 − 1

2i · n

)2i·n−1

·
(

1 − 1

2i · n

)

)2−i

≥
(

1

e

(

1 − 1

2i · n

))2−i

≥
(

1

2e

)2−i

.
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The first inequality in the above derivation holds because

(

1 − 1

n

)n

≤ 1

e
≤
(

1 − 1

n

)n−1

,

which is implied by the following more general inequality:

(

1 +
x

p

)p

≤ 1

e
≤
(

1 +
x

p

)p+x

2

, for all positive reals x and p.

For a proof of this inequality, see, e.g., [45]. Thus,

E [X] ≤ lg n − 1 +
∑

i≥0

(

1 −
(

1

2e

)2−i
)

≤ lg n + O(1).

The series
∑

i≥0

(

1 −
(

1
2e

)2−i
)

is bounded by a constant because the ratio between

successive terms is 1 +
(

1
2e

)2−i

, which is at least 1 + 1
2e .

Lemma 3.3.4 The expected size of the best match set is constant.

Proof: Without loss of generality, assume the name α to be looked up is all 0’s. Let

X be the size of the best match set and let nj be the number of nodes prefixed by j

0’s. Consider the maximum k such that nk ≥ i. In order for X = i, it is necessary

that nk = i and nk+1 = 0. Hence,

Pr [X = i] ≤ Pr [nk = i ∧ nk+1 = 0]

= Pr [nk+1 = 0 | nk = i] · Pr [nk = i]

≤ Pr [nk+1 = 0 | nk = i]

= 2−i.

Therefore, E [X] =
∑

i≥1 i · Pr [X = i] = O(1).

Theorem 3.3.2 The expected number of messages needed by a insert, lookup, or

delete operation is 1
2 lg n + O(1).
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Proof: The expected number of messages needed in the bit-correcting phase is half

of the depth of the best match set. The expected number of messages needed in

the walking phase is bounded by the size of the best match set. By linearity of

expectation and Lemmas 3.3.3 and 3.3.4, the number of messages needed by a name

operation is 1
2 lg n + O(1).

The next lemma bounds the number of flip neighbors for every node. An

implication of the lemma is that a node have a local method of estimating the

logarithmic of the network size: the number of flip neighbors is (1+ o(1)) · lg n whp.

Lemma 3.3.5 Every node has at most lg n + O(
√

lg n) flip neighbors whp.

Proof: Let u be the node under consideration. Starting from bit 0, we divide the

ID of u into three segments A, B, and C, such that A has length lg n, B has length

c lg n, where c is a sufficiently large constant, and C has the rest of the ID length.

Let XA, XB , and XC be the number of flip neighbors in segments A, B, and C,

respectively. We next bound XA, XC , and XB . Clearly, XA ≤ lg n at all times. To

bound XC , we first define sets Gi, for all i ≥ 0, as

Gi = {v : v 6= u ∧ |u ◦ v| ≥ i}.

Then for any node v, Pr [v ∈ Gi] = 2−i and thus, E [|Gi|] = 2−i(n − 1) ≤ 2−in. We

observe that XC ≤ |G(c+1) lg n|. Thus,

E [XC ] ≤ E
[

|G(c+1) lg n|
]

≤ 2−(c+1) lg nn

= n−c.

Markov’s inequality implies Pr [XC ≥ 1] ≤ E [XC ] = n−c, that is, XC = 0 whp. Let

F (u, i) be the set of nodes that can correct bit-i of u, i.e.,

F (u, i) = {v : u ◦ v = i}.
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To bound XB , we first observe that for any node v, Pr [v ∈ F (u, i)] = 2−i−1 and

E [|F (u, i)|] = 2−i−1(n − 1) ≤ 2−i−1n. Again, by Markov’s inequality, we have

Pr [F (u, i) 6= ∅] = Pr [|F (u, i)| ≥ 1]

= E [F (u, i)]

≤ 2−i−1n.

Thus,

Pr
[

XB ≥ c′
√

lg n
]

≤
(

c lg n

c′
√

lg n

)

Pr







lg n+c′
√

lg n−1
∧

i=lg n

F (u, i) 6= ∅







≤
(

c lg n

c′
√

lg n

) lg n+c′
√

lg n−1
∏

i=lg n

Pr [F (u, i) 6= ∅]

≤ (c lg n)c′
√

lg n

lg n+c′
√

lg n−1
∏

i=lg n

Pr [F (u, i) 6= ∅]

= no(1) ·
c′
√

lg n−1
∏

i=1

1

2i

= no(1) · 2(c′
√

lg n−c′2 lg n)/2

≤ no(1) · 2(c′ lg n−c′2 lg n)/2

= no(1)+c′/2−c′2/2.

The second inequality in the above derivation holds because the dependence between

Pr [F (u, i) 6= ∅] for different i’s is in our favor. That is, having a flip neighbor at a

certain bit decreases the probability of having a forward neighbor at a different bit.

Thus, XA + XB + XC ≤ lg n + O(
√

lg n) whp.

Lemma 3.3.6 Every node has O(log n) right neighbors whp.

Proof: For any bit string α such that |α| = c · lg n, E [|Vα|] = 2−c lg n · n = n−c′ .

Hence, by Markov’s inequality, |Vα| ≤ 1 whp.
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Lemma 3.3.7 The out-degree of every node is O(log n) whp.

Proof: Immediate from Lemmas 3.3.5 and 3.3.6.

So far we have shown several scalability properties assuming the efficient

implementation of Ranch with Requirements 1 and 2. The next lemma, which states

that the in-degree of every node is O(log n) whp, clearly holds if we assume the basic

implementation, because every node belongs to a logarithmic number of rings. For

the efficient implementation, if we do not impose any additional requirement on the

arrangement of the rings, then the next lemma may not hold. To see this, consider

the scenario where all the 0-nodes have their flip[0] neighbor point to a particular

1-node. Hence, we impose an additional requirement as follows.

(Requirement 1’) Make all the rings consistent with the ε-ring and let all the nodes

choose their flip neighbors according to the ε-ring. For example, a node u

chooses its flip[i] neighbor to be the first α-node clockwise from u on the ε-

ring, where α is the conjugate of u.id [0..i]. Figure 3.6 shows an example of

this requirement.

Then the following lemma holds for the efficient implementation as well. The proof

of the following lemma assumes the efficient implementation with Requirement 1’.

Lemma 3.3.8 The in-degree of every node is O(log n) whp.

Proof: Fix a node u. Without loss of generality, assume that the ID of u is all 0’s.

Let the sequence of nodes that precede u on the logical ring, starting from the closest

one, be 〈v1, v2, . . . , vn−1〉. We start by inspecting bit 0 of the IDs of this sequence of

nodes. Once we see a 0, we start inspecting bit 1 of those subsequent nodes prefixed

by 0, once we see a 0 on bit 1, we start inspecting bit 2 of those subsequent nodes

prefixed by 00, and so forth. We keep inspecting until we return to the node u. The

key observation is that the nodes inspected in this process are exactly those that have

25



0

01

0

1

1

00

1

[1]flip

flip[0]

u

v

w

Figure 3.6: The Ranch topology with Requirement 1’. Note that in this figure, all
the rings are consistent with the ε-ring. Node v is the first clockwise 1-node from
u. Node w is the first clockwise 00-node from u.

u as one of their flip neighbors. Furthermore, by Lemma 3.3.5, no node has a flip

neighbor at a bit higher than c lg n. Since every node inspected has an independent

probability of 1
2 to increment the index of the bit to be inspected, a Chernoff bound

argument implies that the number of nodes inspected can be bounded by O(log n)

whp. Moreover, Lemma 3.3.6 implies that the number of nodes that have u as one of

their predecessors is O(log n) whp. Finally, at most one node has u as its successor.

Hence, the in-degree of every node is O(log n) whp.

Theorem 3.3.3 A join or leave operation takes O(log n) messages whp. The num-

ber of existing neighbor table entries that need to be modified is O(log n) whp.

Proof: Immediate from Lemmas 3.3.7 and 3.3.8.

3.4 Name Replication

In the previous section, we have shown that Ranch is a simple topology in a basic

fault-free environment. In practice, many techniques can be employed to improve

various aspects of performance (e.g., load balance, locality awareness, and fault toler-
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ance). A standard technique in this regard is replication. We propose in this section

a simple name replication strategy that improves load balance, locality awareness,

and fault tolerance. Since achieving the fault tolerance results that we seek requires

additional extension to the topology, we defer the discussion on fault tolerance until

Section 3.5.

3.4.1 A Name Replication Strategy

Roughly speaking, our replication strategy is to replicate a name at nodes that

match the name well (to be precisely defined below). There are two variations

on this strategy: exact replication, which replicates a name at an exact number

of nodes, and approximate replication, which replicates a name at a ring that has

approximately the desired size.

The primary goal of exact replication is to reduce the expected distance

traveled by a lookup. To achieve exact r-fold replication, a node first replicates the

name at the highest level ring to which it belongs (which contains only the node

itself), then at the next highest ring that it belongs to, and so on, until the name is

replicated at exactly r nodes. If a ring is of size larger than the remaining number

of replicas, then the name is replicated at an arbitrary subset of that ring. We show

in Section 3.4.3 that on the ring metric, r-fold replication reduces the expected

distance traveled by a lookup to O
(n

r

)

.

The primary goal of approximate replication is to achieve load balance and

fault tolerance. In particular, we propose a method to achieve Θ(log n)-fold replica-

tion. In a random fault model where every node has a constant probability of being

down, a name has to be replicated at Ω(log n) nodes to ensure that at least one

node that handles the name is up whp. In fact, Chernoff bounds implies that if a

name is replicated at Ω(log n) nodes, then Ω(log n) of these nodes are up whp. For

the sake of simplicity, we do not consider coding techniques (e.g., error-correcting
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codes) that may reduce the number of replicas needed.

One difficulty associated with achieving Θ(log n)-fold replication is that the

network is dynamic and a node does not know the exact value of the network size

n. We next propose a method that enables a node to estimate log n. Define the

dimension of u, denoted by u.dim , to be

u.dim = max {i : |W (u, i)| ≥ δ · i}

for a sufficiently large constant δ, where W (u, i) is a shorthand for Vu.id [0..i). The

exact conditions that δ should satisfy are explained below. Let u.sim be W (u, u.dim)

and we call the nodes in u.sim (except u itself) the similarity neighbors of u. The

replication strategy is as follows.

(Replication strategy) The handler of a name replicates the name at all of its

similarity neighbors.

We remark that this method is quite local: as the network grows or shrinks,

a node only needs to monitor the size of its set of similarity neighbors, and choose

a different dimension value if necessary. The following lemmas show that the above

method closely estimates the logarithm of the network size.

Lemma 3.4.1 For every node u, u.dim = lg n − lg lg n − O(1).

Proof: A simple Chernoff bound argument implies that

|W (u, lg n − lg lg n − c)| ≤ 2c+1 lg n

whp, for a sufficiently large constant c. We then choose a sufficiently large δ such

that

2c+1 lg n ≤ δ(lg n − lg lg n − c).

Similarly, we can choose a sufficiently large constant c′ such that

|W (u, lg n − lg lg n − c′)| ≥ 2c′−1 lg n
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whp and

2c′−1 lg n ≥ δ(lg n − lg lg n − c′).

Hence,

lg n − lg lg n − c′ ≤ u.dim ≤ lg n − lg lg n − c

whp.

Lemma 3.4.2 For all nodes u and v, |u.dim − v.dim | ≤ 1.

Proof: Let d denote blg n−lg lg nc. It suffices to prove that by choosing appropriate

constants δ (real) and k (integer), we can ensure that for every node u,

d − k ≤ u.dim ≤ d − k + 1

whp. We next derive the properties that δ and k should satisfy. Let X = |W (u, d−
k + 2)|. Then

E [X] = n · 2−d+k−2

= n · 2k−2

2blg n−lg lg nc

≤ n · 2k−1 lg n

n

= 2k−1 lg n.

A Chernoff bound argument implies that X ≤ 6
5 · 2k−1 lg n = 3

5 · 2k lg n whp, for

sufficiently large k. By choosing δ sufficiently large such that 3
5 · 2k ≤ 9

10 · δ (i.e.,

δ ≥ 2
3 · 2k), we have X ≤ 9

10 · δ lg n < δ(d − k + 2) (i.e., u.dim ≤ d − k + 1) whp, for

sufficiently large n. Let Y = |W (u, d − k)|. Then

E [Y ] = n · 2−d+k

= n · 2k

2blg n−lg lg nc

≥ n · 2k lg n

n

= 2k lg n.
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A Chernoff bound argument implies that Y ≥ 3
4 ·2k lg n whp, for sufficiently large k.

By choosing δ sufficiently small such that 3
4 · 2k ≥ δ, we have Y ≥ δ lg n ≥ δ(d − k)

whp (i.e., u.dim ≥ d− k whp). Therefore, by choosing k sufficiently large such that

X ≤ 3
5 · 2k lg n and Y ≥ 3

4 · 2k lg n whp, and by choosing δ such that

2

3
· 2k ≤ δ ≤ 3

4
· 2k,

we can ensure that d − k ≤ u.dim ≤ d − k + 1 whp.

Lemma 3.4.3 For every node u, |u.sim | = Θ(log n) whp.

Proof: Immediate from Lemmas 3.3.1 and 3.4.1, and a Chernoff bound argument.

3.4.2 Load Balancing

We show in this section how name replication helps to improve load balance. Define

the load of a node to be the number of names it handles. Define the imbalance

of the network to be the ratio between the maximum load and the average load.

We assume that there are exactly n names in the entire network. The imbalance

improves if there are more names. At first sight, it appears that by a standard

balls-and-bins argument, the imbalance of the network is O
(

log n
log log n

)

whp. This

impression, however, is inaccurate. The imbalance of the network, as shown by the

following theorem, is in fact worse. Roughly speaking, the reason is that when the

node IDs are determined, they may result in bins of unequal sizes (i.e., node IDs

responsible for segments of unequal sizes in the ID space).

Theorem 3.4.1 If every name is only handled by one node, then the imbalance of

the network is Θ(log n) whp.

Proof: We first show the O(log n) bound. Consider an arbitrary bit string α of

length lg n−lg lg n−c, where c is a sufficiently large constant. Chernoff bound implies
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that for an arbitrarily small constant ε, (1±ε)·2c lg n nodes are prefixed by α, as long

as c is sufficiently large. By a similar argument, (1±ε) ·2c lg n names are prefixed by

α. Therefore, no node needs to handle more than (1± ε) · 2c lg n = O(log n) names.

Thus the imbalance of the network is O(log n) whp.

We then show the Ω(log n) bound. That is, with at least constant probability,

there exists a node that has to handle Ω(log n) names. To see this, consider all the

bit strings of length lg n− lg lg n+c, where c is a sufficiently large constant. A balls-

and-bins argument implies that, with at least constant probability, there exists a

bit string β of this length that is the prefix of exactly one node. On the other hand,

Chernoff bound implies that, with at least constant probability, Ω(log n) names are

prefixed by β. Hence, the node has to handle all the Ω(log n) names prefixed by β

and the imbalance of the network is thus Ω(log n).

The O(log n) bound on imbalance is in fact shared by most proposed name

resolution schemes (e.g., Chord [57]). Chord uses virtual nodes to improve imbal-

ance. That is, every physical node simulating Θ(log n) logical nodes. While virtual

nodes can be used by Ranch as well, we propose using name replication to achieve

the same goal, because name replication improves other performance aspects apart

from load balance (e.g., locality awareness, fault tolerance).

Theorem 3.4.2 If every node uses the approximate replication strategy discussed

in the previous section, then the imbalance of the network is O(1) whp.

Proof: Consider an arbitrary node u and let α be the prefix of u with length u.dim .

Lemma 3.3.1 implies that whp, Θ(log n) nodes and Θ(log n) names are prefixed by

α. All these Θ(log n) names are replicated at each node. (In fact, some nodes

prefixed by α may not replicate their names on every node because they may have

a higher dimension.) Thus, every node handles Θ(log n) names and the imbalance

of the network is O(1).
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3.4.3 Exploiting Locality

Peer-to-peer networks should take locality (i.e., the distance traveled by a lookup)

into account. For example, a 10-hop path in a global peer-to-peer network in which

each hop is intercontinental is likely to be dramatically inferior to a 10-hop path in

which most or all of the hops are “local” (e.g., within a single college campus). The

importance of locality is widely recognized. Although providing provable locality

properties (i.e., those established in [22, 25, 49]), is possible on growth-restricted

metric spaces, providing similar properties on general metric spaces, however, re-

mains an open problem. Hence, in practice, most name resolution schemes exploit

locality heuristically.

Ranch exploits locality heuristically by correlating the logical rings with the

physical location of the nodes. Ranch exploits locality less effectively than PRR.

On some metric spaces, however, Ranch may exploit locality as well as PRR. For

example, consider a tree metric and the basic implementation (where nodes keep

right and left neighbors). If we arrange the nodes in a pre-order traversal of the

tree, then Ranch neighbors are the same as PRR neighbors.

We next analyze the locality property of Ranch on the ring metric. A ring

metric is a metric space where the n nodes can be mapped to an n-vertex cycle

where the length of each edge is one and the distance between every two nodes is

the length of the shortest path between the two corresponding vertices. Although

the ring metric is somewhat artificially simple, we remark that it is not totally

unrealistic. For example, consider a peer-to-peer network composed of nodes on

different universities on different continents. We can arrange the nodes located in

the same university in a contiguous region of the ring, and arrange the universities

located in the same continent in a bigger nearby region, and so forth. Since we are

considering the ring metric, we can assume that the logical rings satisfy Requirement

1’.

32



Theorem 3.4.3 On the ring metric, if a name is replicated at r nodes using the

exact replication strategy, then the expected distance traveled by a lookup operation

is O
(n

r

)

.

Proof: Let α be the name being looked up. Let X denote the size of the best match

set. Let d be the distance traveled by the entire lookup operation. Let d1 be the

distance traveled in the jumping (i.e., bit-correcting) phase. Let d2 be the distance

traveled in the walking phase. By the linearity of expectation, E [d] = E [d1]+E [d2].

To bound E [d2], we first observe that if X ≤ r, then d2 = 0; if X > r, then

d2 ≤ n(X − r). By Lemma 3.3.4, we know that Pr [X = i] ≤ 1
2i−1

. Thus, we can

bound E [d2] as follows:

E [d2] ≤
∑

i≥r+1

n(i − r) · Pr [X = i]

≤ n
∑

i≥r+1

i − r

2i − 1

= O

(

n

2r

)

= O

(

n

r

)

.

We next bound d1. Let R be the set of nodes at which name α is replicated, m

be the smallest integer such that all the nodes that match α in at least m prefix

bits are in R, R′ be {v : |v ◦ α| ≥ m}, and Y be |R′|. We first observe that, in

the bit-correcting phase, the lookup operation does not travel beyond the node in

R′ that is clockwise closest to the originating node. Thus, E [d1] is bounded by the

average distance between two nodes in R′, which is O
( n

Y

)

. Thus,

E [d1] ≤
∑

1≤i≤r

Pr [Y = i] · O
(

n

i

)

= O(n) ·
∑

1≤i≤r

1

i
· Pr [Y = i]

= O(n)





∑

1≤i≤ r

4

1

i
· Pr [Y = i] +

∑

r

4
<i≤r

1

i
· Pr [Y = i]




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= O(n)





∑

1≤i≤ r

4

Pr [Y = i] +
4

r
· Pr

[

Y >
r

4

]





= O(n) · Pr

[

Y ≤ r

4

]

+ O

(

n

r

)

≤ O(n) · e− r

16 + O

(

n

r

)

= O

(

n

r

)

.

The last inequality above is due to the observation that Pr
[

Y ≤ r
4

] ≤ e−
r

16 . We now

explain why this is so. As in the proof of Lemma 3.3.4, without loss of generality,

assume the name α to be looked up is all 0’s. Let nj be the number of nodes

prefixed by j 0’s. Consider the maximum k such that nk ≥ i. In order for Y = i, it

is necessary that nk > r and nk+1 = i. Hence, for i ≤ r
4 ,

Pr [Y = i] ≤ Pr [nk+1 = i ∧ nk > r]

= Pr [nk+1 = i | nk > r] · Pr [nk > r]

≤ Pr [nk+1 = i | nk > r]

=

(

nk

i

)

2−nk

≤
(

r

i

)

2−r.

Therefore,

Pr

[

Y ≤ r

4

]

=
∑

1≤i≤ r

4

Pr [Y = i]

≤
∑

1≤i≤ r

4

(

r

i

)

2−r

= Pr

[

Z ≤ r

4

]

,

where Z ∼ B
(

1
2 , r
)

. By a Chernoff bound argument, Pr
[

Z ≤ r
4

] ≤ e−
r

16 .
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3.5 Fault-Tolerant Lookups

In the previous sections, we have demonstrated the efficiency and locality awareness

of lookups in the fault-free model. A peer-to-peer network should be fault-tolerant.

Many fault tolerance issues can be addressed in peer-to-peer networks. In this

section, we focus on the following issue: how to preserve the efficiency and locality-

awareness of the fault-free lookup algorithm in a random random fault environment

where each node has a constant probability of being down (i.e., faulty). We only

consider fail-stop faults, but not Byzantine faults. To this end, we propose in this

section an extension to the basic topology and a fault-tolerant lookup algorithm.

We show that the extension and the algorithm, together with the name replication

strategy proposed in Section 3.4, enable us to achieve our objective.

We remark that, being a logarithmic-degree topology, Ranch is fault-tolerant

is some regard. For example, in the random fault environment specified above, a

node is connected with the rest of the network whp, because it has logarithmic

number of neighbors.

3.5.1 Extensions to the Basic Ranch Topology

Clearly, to ensure that whp, there exists an up node in the network that can handle

a name, the name has to be replicated at Ω(log n) nodes. For the sake of simplicity,

we do not consider coding methods (e.g., the use of error-correcting codes) that

may reduce the number of replicas needed. We can use the approximate replica-

tion strategy discussed in Section 3.4.1 to achieve Θ(log n)-fold replication. Name

replication alone, however, does not suffice to achieve our desired fault tolerance

property. Therefore, we extend the basic topology as follows.

(Extension to the basic topology) Every node u maintains neighbors to all the

nodes in u.sim , as well as the order in which they appear on the locality ring.
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Thus, u.sim can be viewed as a circular list. Define next(u.sim , v) to be the

first node in u.sim clockwise from v. By Lemma 3.4.3, |u.sim | = Θ(log n) whp.

Therefore, the degree of every node remains O(log n).

3.5.2 A Fault-Tolerant Lookup Algorithm

The fault-tolerant lookup algorithm is a simple extension of the fault-free lookup

algorithm. The idea is to “bypass” down neighbors by successively trying higher-bit

flip neighbors and then trying similarity neighbors. We assume that a node is able

to detect if a node is down, and we assume a constant cost in doing so. When a node

u needs to correct bit i but detects that u.flip[i] (also denoted by w for simplicity)

is down, it successively tries its higher flip neighbors until an up one, u.flip[j] (also

denoted by v for simplicity), is found. The lookup request is then forwarded to

v, which tries to correct bit i. If a node exhausts all of its flip neighbors, then it

successively tries its similarity neighbors. If a node exhausts all of its similarity

neighbors, then the lookup fails. We will show, however, that a lookup fails with

only polynomially-small probability. Figure 3.7 shows an example of correcting a

single bit in the fault-tolerant lookup algorithm.

A slight complication arises when a node u tries to correct a bit i that is higher

than its dimension (i.e., i ≥ u.dim). Since nodes may choose different dimension

values, u does not stop searching and report that the name is not found. Instead,

u continues the lookup by forwarding the lookup request to one of its similarity

neighbors, which may match the name at fewer bits than i.

We remark that sometimes the fault-tolerant lookup algorithm may not ter-

minate. This happens when all the similarity neighbors of a node are up but none

of them can correct the current bit. Under such circumstance, the lookup algorithm

may traverse the similarity neighbors forever without being able to correct the bit.

This happens only with polynomially-small probability. This situation can be fixed
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Figure 3.7: Correcting a bit in the fault-tolerant lookup algorithm. Node u attempts
to correct bit 0. The arrows represent flip neighbors. The numbers associated with
the arrows indicate the sequence of flip neighbors tried during the lookup.

by adding a time-to-live (TTL) field to the lookup message, and if the field becomes

one, the lookup is aborted. A node can set the TTL value to a constant times the

dimension value, ensuring that a lookup takes only O(log n) messages.

3.5.3 Analysis of the Fault-Tolerant Lookup Algorithm

We next prove the efficiency and locality awareness of the fault-tolerant lookup

algorithm, stated in the following two theorems.

Theorem 3.5.1 Every fault-tolerant lookup takes O(log n) messages whp.

Theorem 3.5.2 On the ring metric, the expected total distance traveled by all the

messages in a fault-tolerant lookup is O
(

n
log n

)

.

Our proof strategy is to first convert the ring to a line consisting n nodes,

where the leftmost node is the initiator of the lookup. If the lookup ever travels

beyond the rightmost node, we consider the lookup terminated (although on the

ring, the lookup can actually wrap around and continue). We then establish certain

results on the line, most important of which is that the distance of a lookup on the

line is at most n
4 whp. Thus, the results established on the line are also valid on the

ring whp. Since the primary goal of our analysis is to establish asymptotic bounds,

we do not attempt to optimize the constants in the analysis below.
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Let Ml be the total number of messages used by a lookup on the line, Dl

be the total distance of a lookup on the line, Mr be the total number of messages

used by a lookup on the ring, and Dr be the total distance of a lookup on the ring.

A lookup is divided into phases, where phase i consists of the messages associated

with correcting bit i. In the analysis below, we assume that for every node u and

v, |u.dim − v.dim | ≤ 1. We can make this assumption because by Lemma 3.4.2,

this happens whp, and a trivial upper bound of Mr and Dr is O(n) and O(n2),

respectively. Therefore, the case in which this assumption does not hold will not

affect the bounds we establish below.

Lemma 3.5.1 On the line, the sets of nodes probed in different phases are disjoint.

Proof: Consider phase i. Let α be the name being looked up, Ai be the set of nodes

that are probed to correct bit i, and Bi be the set of nodes that are probed to bypass

a down bit-i flip neighbor. We observe that for every u in Ai, |α◦u| > i. For every u

in Bi, |α◦u| = i or i+1. Normally, |α◦u| = i because the messages trying to bypass

the down bit-i neighbor are either higher-bit flip neighbors or similarity neighbors

and they match α at exactly i bits. It is possible, however, that |α ◦u| = i+1. This

happens when i = u.dim and u.flip[i] is down. The bypass messages are then sent

to the similarity neighbors of u, some of which may match α at i + 1 bits. We only

need to show that neither Ai nor Bi will be reprobed in subsequent phases.

• Consider a node u in Ai. If u is up, then the lookup request is forwarded to u

and future messages are all sent to the nodes to the right of u. So u will not

be reprobed in subsequent phases. If u is down, let v be the node that probes

u. Since u is down and is the first node on the right of v that matches the

name better than v, when bit i is eventually corrected at a node w, w is on

the right of u. Hence, u will not be reprobed in subsequent phases.

• Consider a node u in Bi. If |α ◦ u| = i, then u will not be reprobed in
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subsequent phases, because the nodes probed in subsequent phases match α

at more than i bits. If |α ◦ u| = i + 1 and u is up, then bit i is corrected at

u and the lookup continues from u; if |α ◦ u| = i + 1 and u is down, then bit

i will be corrected on a node to the right of u. In either case, u will not be

reprobed in subsequent phases.

During a single phase, however, a down node may be reprobed. Reprobing

happens under one of the following two circumstances:

• When node u attempts to correct bit i, where i < u.dim , and finds that

u.flip[i] (also call it v) is down, u forwards the lookup request to a higher bit

flip neighbor or a similarity neighbor, call it w, so that w can try to correct

bit i. It is possible, however, that w is closer to u than v is, in which case

w.flip [i] = v and v is reprobed.

• When node u attempts to correct bit i, where i = u.dim, and finds that u.flip[i]

(also call it v) is down, u forwards the lookup request to a similarity neighbor,

which may be the same node as v.

The next lemma bounds the effect of reprobing.

Lemma 3.5.2 On the line, each successive path considered in a given phase has a

constant probability of terminating the phase.

Proof: When a node u wants to correct a bit i, it first tries to do so using a path

of length one, that is, by sending a jump message to u.flip[i]. If u.flip[i] is down,

our fault-tolerant lookup proceeds by successively trying to correct bit i by using

paths of length two, where the first hop leads to a node matching u in bits 0 to i−1

and the second hop corrects bit i. Thus, the entire lookup process can be viewed as

exploring a sequence of paths.

39



Fix a path P that we are about to explore. We claim that with constant

probability, all of the nodes in P are up. To establish this claim, first observe that

if P is the first path of this phase (i.e., P consists of only one node u), then by

Lemma 3.5.1, u has not been probed before and thus has an independent constant

probability of being up. If u is up, then bit i is corrected and phase i is terminated.

If u is down, the algorithm then tries to correct bit i by using paths of length two.

Note that we have only revealed that u is down, but we have not revealed the IDs

of the nodes on the right of the current node (i.e., we have not revealed the distance

from the current node to u). By the principle of deferred decisions, the first node

of a length-two path (call it v) has a constant probability of being on the right of

u, because v has to satisfy a bit pattern at least as longer as u does. Thus v is at

least as likely to be on the right of u as v is on the right of u. Once v is to the right

of u, v.flip[i] is a node never been probed before and has a constant probability of

being up.

Lemma 3.5.3 Ml = O(log n) whp.

Proof: By Lemma 3.5.2 and Chernoff bound.

Lemma 3.5.4 Dl ≤ n
4 whp.

Proof: We prove that Dl = O(n) whp. The lemma then follows from choosing

appropriate constants (e.g., a sufficiently large δ). As discussed above, a lookup

process can be viewed as exploring a sequence of paths (each of length 1 or 2).

Hence, the total distance of a lookup is the sum of all the paths it explores. A path

is called low if it consists of all messages sent from a node to a flip neighbor, and

is called high if it consists of a message sent from a node to a similarity neighbor

followed by a message sent from a node to a flip neighbor. Let Lij be the length of

low path j (j ≥ 0) in phase i (i ≥ 0), and let Hij be the length of high path j in
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phase i. Let ε be the maximum failure probability that a path fails to correct a bit.

As established by Lemma 3.5.2, ε is bounded away from 1. Then

Dl =
d
∑

i=0

d−i
∑

j=0

Lij +
d
∑

i=0

∑

j≥0

Hij.

We next establish high probability bounds for Lij and Hij.

First consider Lij. If we are about to explore low path j in phase i and if we

know nothing (e.g., node IDs, whether a node is up or down) about the nodes on

the right of the current node, then clearly E [Lij] = O(εj(2i+j + 2i)) = O(εj2i+j),

and thus Lij = O(εj2i+j log n) whp. (In fact, depending on the location of the

current node on the line, Lij may be smaller, because if the lookup travels beyond

the rightmost node, we consider the lookup terminated.)

As the algorithm unfolds, however, certain information is revealed. Conse-

quently, when a particular message is sent by the algorithm, we cannot assume that

all of the node IDs are still random. In particular, there are three kinds of informa-

tion that we learn about as the algorithm proceeds. Below we discuss each of these

kinds of information in turn and sketch how to bound their effect on our analysis.

• For any node u that has received a previous message (or would have received

a previous message but was determined to be down), we know that the ID of

u is inconsistent with any prefix that we will subsequently search for. Thus, if

we happen to encounter such a node u while searching for the destination of a

subsequent message, the probability that u is the desired destination is 0 (as

opposed to, e.g., Θ(2−i) for Li0). Since Lemma 3.5.3 tells us that whp there

are O(log n) such nodes, it is straightforward to argue that the total extra

distance incurred by retraversing these nodes is O(log n) whp.

• For any node u that has been passed over in a search for the destinations of

previous messages, we know that u does not match certain prefixes. Fortu-

41



nately, this information only tends to (slightly) increase the probability that

such a node u is a match for a subsequent search.

• Finally, as the algorithm unfolds, we learn information concerning the dimen-

sions of certain nodes. This information tells us something about the total

number of nodes in that equivalence class. However, Lemma 3.4.2 shows that

every node has almost the same dimension. Thus, regardless of whether the di-

mension of an equivalence class is revealed or not, the probability that a node

belonging to that equivalence class is 2− lg n+lg lg n+O(1) = Θ
(

log n
n

)

. Thus,

even if all dimensions are revealed, the probability of a node satisfying a bit

pattern is not affected by more a constant factor.

By a similar argument, Hij = O
(

εd−i+jj · n
log n

)

whp. Therefore, whp,

Dl =
d
∑

i=0

d−i
∑

j=0

Lij +
d
∑

i=0

∑

j≥0

Hij

=
d
∑

i=0

d−i
∑

j=0

O(εj2i+j log n) +
d
∑

i=0

∑

j≥0

O

(

εd−i+jj · n

log n

)

=
d
∑

i=0

O(2i log n) ·
d−i
∑

j=0

(2ε)j +
d
∑

i=0

εd−i · O
(

n

log n

)

∑

j≥0

εjj

≤ {α = max

(

2

3
, ε

)

, to avoid the complication of 2ε = 1}
d
∑

i=0

O(2i log n) · O((2α)d−i) + O

(

n

log n

)

·
d
∑

i=0

εd−i

= O(2d log n) ·
d
∑

i=0

αd−i + O

(

n

log n

)

= O(n) + O

(

n

log n

)

= O(n).
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Lemma 3.5.5 Dr ≤ n
4 whp.

Proof: By Lemma 3.5.4, the algorithm uses at most n
4 distance whp when operating

on the line. Its behavior on the line is thus indistinguishable whp from that on the

ring. Hence, the bounds established in Lemma 3.5.4 are still valid on the ring.

Lemma 3.5.6 E [Dl] = O
(

n
log n

)

.

Proof: By the reasoning of Lemma 3.5.4,

E [Dl] =
d
∑

i=0

d−i
∑

j=0

O(εj · 2i+j) +
d
∑

i=0

∑

j≥0

O

(

εd−i+j · j · n

log n

)

=
d
∑

i=0

O(2i)
d−i
∑

j=0

(2ε)j +
d
∑

i=0

d−i
∑

j=0

O

(

n

log n

)

· εd−i · (jεj)

=
d
∑

i=0

O(2i) · (2ε)d−i + O

(

n

log n

)

·
d
∑

i=0

εd−i

= O(2d) + O

(

n

log n

)

= O

(

n

log n

)

.

Theorem 3.5.3 Mr = O(log n) whp and E [Dr] = O
(

n
log n

)

.

Proof: Immediate from Lemmas 3.5.3, 3.5.5, and 3.5.6.

As pointed out before, the lookup algorithm may fail because it cannot reach

an up node that handles the name. The following theorem, however, shows that the

probability that the lookup algorithm fails is quite small.

Theorem 3.5.4 The lookup algorithm succeeds whp.

Proof: The algorithm fails only if all the paths attempted in a phase cannot correct

a bit. Clearly, this happens with polynomially small probability.
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Chapter 4

Maintenance of Rings

Peer-to-peer networks are dynamic: over time, nodes may join or leave the network,

possibly concurrently. In structured peer-to-peer networks, when joins and leaves

occur, the neighbor variables should be properly updated to maintain the topology.

This problem, known as topology maintenance, is a central problem for structured

peer-to-peer networks.

There are two general approaches to topology maintenance: the passive ap-

proach and the active approach. In the passive approach, when membership changes,

the neighbor variables are not immediately updated after a join or a leave occurs.

Instead, a repair protocol runs in the background periodically to restore the topol-

ogy. In the active approach, the neighbor variables are immediately updated. It is

worth noting that joins and leaves may be treated using the same approach or using

different approaches (e.g., passive join and passive leave [36], active join and passive

leave [22, 37], active join and active leave [5, 39]).

Existing work on topology maintenance has several shortcomings. For the

passive approach (e.g., Chord [36]), since the neighbor variables are not immedi-

ately updated, the network may diverge significantly from its designated topology.

Furthermore, the passive approach is not as responsive to membership changes and
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requires considerable background traffic (i.e., the repair protocol). For the active

approach, since the topology of a structured peer-to-peer network is stringently de-

fined, it is often complicated to update the neighbor variables, difficult to design

maintenance protocols, and even more difficult to reason rigorously about their cor-

rectness. As a result, some existing work gives protocols without proofs [39], some

handle joins actively but leaves passively [22, 37], and some handles joins and leaves

actively but separately [5] (i.e., a protocol that handles joins and a separate protocol

that handles leaves). It is not true, however, that an arbitrary join protocol and

an arbitrary leave protocol, if put together, can handle both joins and leaves (e.g.,

the protocols in [5] cannot; see a detailed discussion in Chapter 2). Finally, existing

protocols tend to be complicated and their correctness proofs are operational, infor-

mal, and sketchy. It is well known, however, that concurrent programs often contain

subtle errors and operational reasoning is unreliable for proving their correctness.

In this chapter, we address the maintenance of the ring topology, the basis of

several peer-to-peer networks [19, 34, 41, 57], in the fault-free environment. We de-

sign, and prove the correctness of, protocols that maintain a bidirectional ring under

both joins and leaves. Our protocols handle both joins and leaves actively. Using

an assertional proof method, we prove the correctness of a protocol by first com-

ing up with a global invariant and then explicitly showing that every action of the

protocol preserves the invariant. We show that, although the ring topology may be

tentatively disrupted during membership changes, our protocols eventually restore

the ring topology once the (at most four) messages associated with each pending

membership change are delivered, assuming that no new changes are initiated. In

practice, it is likely that message delivery time is much shorter than the mean time

between membership changes. Hence, in practice, our protocols maintain the ring

topology most of the time. Our protocols are based on an asynchronous communi-

cation model where only reliable delivery is assumed, that is, message delivery takes
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a finite, but otherwise arbitrary, amount of time.

Unlike the passive approach, which handles leaves as fail-stop faults, we han-

dle leaves actively (i.e., we handle leaves and faults differently). Although treating

leaves and faults the same is simpler, we have several reasons to believe that han-

dling leaves actively is worth investigating. Firstly, leaves may occur more frequent

than faults. In such situations, handling leaves and faults in the same way may

lead to some drawbacks in terms of performance (e.g., delay in response, substantial

background traffic). To see this, note that only four messages is needed to handle an

active leave (see Section 4.5), while a linear number of messages is needed to detect

a passive leave. Saroiu et al. [55] report that half of Gnutella and Napster sessions

terminate within an hour. Since the termination of sessions are so frequent, it is

likely that many of them are terminated by the users (i.e., they are active leaves),

instead of by faults (i.e., link or node failures). Secondly, while it appears more con-

venient for a node to omit executing a leave protocol and simply leave the network

silently (i.e., stop responding to messages related to the peer-to-peer network), we

remark that nodes in peer-to-peer networks cooperate with each other all the time,

by following a join protocol, forwarding messages for each other, or storing contents

for each other. Hence, it is reasonable to assume that a node will execute a leave

protocol. Thirdly, as an analogy, communication protocols like TCP have “open

connection” and “close connection” phases, even though they handle faults as well.

The work in this dissertation, however, is only the first step towards provid-

ing peer-to-peer networks with topology maintenance protocols that have rigorous

foundations. Many issues worth further investigation. We outline some future work

in Chapter 7.

This chapter is organized as follows. Section 4.1 provides some preliminaries.

Section 4.2 shows how to maintain a unidirectional ring under joins. Section 4.3

shows how to maintain a bidirectional ring under joins. Section 4.4 shows how to
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Figure 4.1: Adding a process to a ring.
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Figure 4.2: Removing a process from a ring.

maintain a bidirectional ring under leaves. Section 4.5 shows how to maintain a

bidirectional ring under both joins and leaves. Section 4.6 shows how to extend the

bidirectional ring protocol to provide the additional property that a process that

has left the network does not have any incoming messages. Section 4.7 presents a

protocol that maintains the Chord ring.

4.1 Preliminaries

We consider a fixed and finite set of nodes (or interchangeably, processes) denoted

by V . Let V ′ denote V ∪ {nil}, where nil is a special process that does not belong

to V . In what follows, symbols u, v, and w are of type V , and symbols x, y, and

z are of type V ′. We use u.a to denote variable a of process u, and u.a.b stands

for (u.a).b. By definition, the nil process does not have any variable (i.e., nil.a is

undefined). We call a variable x of type V ′ a neighbor variable. We assume that

there are two reliable and unbounded communication channels between every two
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distinct processes in V , one in each direction. There is one channel from a process

to itself and there is no channel from or to process nil. Message transmission in any

channel takes a finite, but otherwise arbitrary, amount of time.

We first give a formal definition of a ring. For this dissertation, it may not

seem necessary to introduce a formal definition of a ring. However, one of our future

goals is to obtain machine-checked proofs for our protocols. Hence, we introduce a

formal definition that does not relying on a graphical interpretation of a ring. In

words, for any neighbor variable x, the x processes form a ring if for all x processes

u and v (which may be equal to each other), there is a path of positive length from

u to v. Formally, we write ring(x) to mean that the x processes form a ring, i.e.,

ring(x) = 〈∀u, v : u.x 6= nil ∧ v.x 6= nil : path+(u, v, x)〉,

where path+(u, v, x) means 〈∃i : i > 0 : u.xi = v〉 and where u.xi means u.x.x . . . x

with x repeated i times. We first state three useful lemmas.

Lemma 4.1.1 If ring(x) holds, then distinct processes in the ring has distinct x

neighbors.

Proof: Let k be the number of processes u such that u.x 6= nil. Let d−(u) be the

number of processes v such that v.x = u. Then
∑

u∈V d−(u) = k. We observe that

d−(u) > 0 iff u.x 6= nil, because d−(u) > 0 implies that 〈∃v :: v.x = u〉 and then

ring(x) implies that u.x 6= nil; on the other hand, u.x 6= nil and ring(x) imply

that 〈∃i : i > 0 : u.xi = u〉, that is, (u.xi−1).x = u, which implies that d−(u) > 0.

Observing that there are k x processes, we conclude that 〈∀u : u.x 6= nil : d−(u) = 1〉.

Lemma 4.1.2 Suppose ring(x) ∧ u.x = w ∧ v.x = nil holds before the execution of

an action. And suppose that the action changes u.x to v and changes v.x to w, but

preserves all other x values. Then ring(x) holds after the action.
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Proof: We first make the key observation that all paths are preserved by the ac-

tion, though some may become longer. To see this, consider any two consecutive

processes, w and w′, on the path from u to v before the action (hence w′ = w.x).

Note that w 6= v because v.x = nil. Hence, w.x is affected by the action only if

w = u. If w 6= u, then w.x = w′ after this action; if w = u, then w.x2 = w′ after this

action. Hence, the path is preserved. The lemma then follows from the definition

of ring(x).

Lemma 4.1.3 Suppose ring(x) ∧ u.x = v ∧ v.x = w holds before the execution of

an action. And suppose that the action changes u.x to w and changes v.x to nil,

but preserves all other x values. Then ring(x) holds after the action.

Proof: Similar to the proof of Lemma 4.1.2.

Lemmas 4.1.2 and 4.1.3 show how an action may preserve a ring when adding

or removing a process. Figures 4.1 and 4.2 give an intuitive explanation of these

two lemmas, yet we stress that u and w in these figures need not be distinct.

We next give a formal definition of a bidirectional ring. For any neighbor

variables x and y, we write biring(x, y) to mean that the x processes and the y

processes form a bidirectional ring, i.e.,

biring(x, y) = ring(x) ∧ ring(y)

∧ 〈∀u : u.x 6= nil : u.x.y = u〉 ∧ 〈∀u : u.y 6= nil : u.y.x = u〉.

Note that biring(x, y) is a stronger condition than simply ring(x) ∧ ring(y); the

strengthening prevents the situation of two separate rings. The following two lemmas

are analogous to Lemmas 4.1.2 and 4.1.3.

Lemma 4.1.4 Suppose biring(x, y)∧u.x = w∧ v.x = nil holds before the execution

of an action (hence w.y = u ∧ v.y = nil). And suppose that the action changes u.x
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Figure 4.3: Adding a process to a bidirectional ring.
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Figure 4.4: Removing a process from a bidirectional ring.

to v, w.y to v, v.x to w, and v.y to u, but preserves all other x and y values. Then

biring(x, y) holds after the action.

Lemma 4.1.5 Suppose biring(x, y) ∧ u.x = v ∧ v.x = w holds before the execution

of an action (hence v.y = u∧w.y = v). And suppose that the action changes u.x to

w, w.y to u, v.x to nil, and v.y to nil, but preserves all other x and y values. Then

biring(x, y) holds after the action.

The proofs to the above two lemmas are similar to those of Lemmas 4.1.2

and 4.1.3 and hence are omitted. Figures 4.3 and 4.4 give an intuitive explanation

of these two lemmas, yet we stress that u and w in these figures need not be distinct.

4.2 Joins for a Unidirectional Ring

We begin by considering joins for a unidirectional ring. We discuss this seemingly

simple problem for two reasons. Firstly, we introduce several key concepts and ideas
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as we discuss this problem. Secondly, our solution to this problem exemplifies our

techniques for solving the harder problems discussed later in this dissertation.

4.2.1 The Protocol

The join protocol for a unidirectional ring is quite simple. Let r, the right neighbor,

be a neighbor variable, and assume that ring(r) holds initially. When process u

wishes to join the ring, we assume that u is able to find a member v of the ring (if

there is no such process, then u creates a ring consisting of only u itself). Process u

then sends a join message to v. Upon receiving the join message, v places u between

v and its right neighbor w (which can be equal to v), by setting v.r to u and sending

a grant(w) message back to u. Upon receiving the grant(w) message, u sets u.r to

w. Figure 4.5 shows an execution of the protocol where a join request is granted.

Figure 4.6 describes the join protocol. We have written our protocol as a

collection of actions, using a notation similar to Gouda’s abstract protocol nota-

tion [18]; Appendix B gives a brief explanation of the notation. An execution of

a protocol consists of an infinite sequence of actions. We assume a weak fairness

model where each action is executed infinitely often; execution of an action with a

false guard has no effect on the system. We assume that the contact() function in

action T1 returns a non-out process if there is one, and it returns the calling process

otherwise. Initially all processes are out and all channels are empty. We assume

without loss of generality that each action is atomic and we reason about the system

state in between actions. Appendix B provides a brief justification of the atomic

action assumption. A more complete treatment of this issue can be found in the

recent dissertation of McGuire [44].

We remark that the retry message is not an essential part of this join protocol.

With a slightly different assumption on the contact() function (i.e., it returns an

in process if there is one and returns the calling process otherwise), then a join
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Figure 4.5: Joining a unidirectional ring. A solid edge from u to v means u.r = v,
and a dashed edge from u to v means that a grant(v) message is in transmission to
u, eventually causing u to set u.r to v. The state jng is a shorthand for “joining”.

request is always granted. The retry message, however, is essential to the protocols

for bidirectional rings. In those protocols, an in process may become busy or lvg

(leaving), hence a join request may be declined. We keep the retry message here

in order to maintain a consistent assumption on the contact() function throughout

this dissertation.

4.2.2 Notations and Conventions

We now introduce some notations to be used in our correctness proofs.

m(msg , u, v): The number of messages of type msg in the channel from u to

v. We sometimes include the parameter of a message type. For example,

m(grant(x), u, v) denotes the number of grant messages with parameter x in

the channel from u to v).

m+(msg , u), m−(msg , u): The number of outgoing and incoming messages of type

msg of u, respectively. A message from u to itself is considered both an

52



process p

var s : {in, out , jng}; r : V ′; a : V ′

init s = out ∧ r = nil
begin

T1 s = out → a := contact();
if a = p → r, s := p, in
[] a 6= p → s := jng; send join() to a fi

T2 [] rcv join() from q →
if s = in → send grant(r) to q; r := q

[] s 6= in → send retry() to q fi

T3 [] rcv grant(a) from q → r, s := a, in
T4 [] rcv retry() from q → s := out

end

Figure 4.6: The join protocol for a unidirectional ring. The states in, out , and jng
stand for in, out of, and joining the network, respectively.

outgoing message from and an incoming message to u.

#msg : The total number of messages of type msg in all the channels.

↑, ↓, l: Shorthand for “before this action”, “after this action”, and “before and

after this action”, respectively.

In our reasoning, we often need to describe how a predicate is affected by

an action. We use the verb truthify to mean that a predicate is changed from false

to true by an action, falsify to mean that a predicate is changed from true to false,

preserve to mean that the truth value of a predicate is unchanged, and establish to

mean that a predicate is true after the action (the predicate can be either true or

false before the action). We sometimes also use preserve to mean that the value of

a variable or an expression is unchanged.

An action affects variables by assignments and it affects channel contents

by sending or receiving messages. For the sake of brevity, as a convention, if a

predicate, variable, or expression is unaffected by an action, then we omit stating

so. However, if it is affected (although not necessarily changed) by an action, then
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we state so. For example, the expression m+(join , p) + m−(grant , p) is unaffected

by an action if the action preserves both the first term and the second term, but

the same expression is considered to be affected and preserved by an action if the

action decrements the first term by 1 but increments the second term by 1.

4.2.3 Proof of Correctness

We now prove the correctness of the join protocol. We first consider safety prop-

erties. Proving safety properties often amounts to proving invariants. What is an

invariant of this protocol? It is tempting to think that this protocol maintains

ring(r) at all times. This, however, is not true. For example, consider the mo-

ment when v has set v.r to u but u has yet to receive the grant message. At this

moment, v.r = u but u.r = nil (i.e., the ring is broken). In fact, no protocol can

maintain ring(r) at all times, simply because the joining of a process requires the

modification of two variables (e.g., v.r and u.r) located at different processes. This

observation leads us to consider an extended ring topology, defined as follows. Let

u.r′, an imaginary variable, be

u.r′ =











x if m−(grant , u) = 1 ∧ m−(grant (x), u) = 1

u.r otherwise.

In fact, r′ is a function on V , but due to the strong connection between r and r ′,

we write r′ as a variable. In effect, a process with a non-nil r ′ value is either a

member or a non-member for which the join request has been acknowledged with a

grant message, although the grant message has yet to arrive. This definition of r ′

allows a single action to change the r ′ values of two different processes, solving the

aforementioned problem. We now claim that ring(r ′) holds at all times. To prove

this claim, we find it useful to introduce a function f : V → N, where N denotes

the nonnegative integers, defined as:

f(u) = m+(join , u) + m−(grant , u) + m−(retry , u).
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Let I = A ∧ B ∧ C ∧ ring(r′), where

A = 〈∀u :: (u.s = jng ≡ f(u) = 1) ∧ f(u) ≤ 1〉,

B = 〈∀u :: u.s = in ≡ u.r 6= nil〉,

C = (#grant(nil) = 0).

Theorem 4.2.1 invariant I.

Proof: It can be easily verified that I is true initially. It thus suffices to check

that every action preserves I. We first observe that C is preserved by every action,

simply because T2 is the only action that sends a grant message and B implies

that p.r 6= nil. We itemize below the reasons why each action preserves the other

conjuncts of I.

{I} T1 {I}: Suppose T1 takes the first branch (i.e., a = p). This action preserves

A ∧ B because it changes p.s from out to in and changes p.r from nil to p. This

action preserves ring(r′) because

contact() returns p

⇒ {def. of contact(); A; B; def. of r′}
↑ 〈∀u :: u.s = out ∧ u.r′ = nil〉 ∧ #grant = 0

⇒ {action}
↓ p.r′ = p ∧ 〈∀u : u 6= p : u.r′ = nil〉.

{I} T1 {I}: Suppose T1 takes the second branch (i.e., a 6= p). This action changes

p.s from out to jng and increases f(p) from 0 to 1.

{I} T2 {I}: Suppose T2 takes the first branch (i.e., s = in). This action preserves

A ∧B because it preserves f(q) and p.r 6= nil. Let w be the old p.r; B thus implies

w 6= nil. This action changes p.r′ from w to q and q.r′ from nil to w because
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↑ p.r = w ∧ p.s = in ∧ m(join , q, p) > 0

⇒ {A; B; def. of r′}
↑ p.r′ = w ∧ m−(grant , p) = 0 ∧ q.r′ = nil ∧ m−(grant , q) = 0

⇒ {action; p 6= q because p.r′ 6= q.r′; def. of r′}
↓ p.r′ = q ∧ q.r′ = w.

Lemma 4.1.2 thus implies that ring(r ′) is preserved by this action.

{I} T2 {I}: Suppose T2 takes the second branch (i.e., s 6= in). This action preserves

f(q).

{I} T3 {I}: This action changes p.s from jng to in, decreases f(p) from 1 to 0, and

truthifies p.r 6= nil. It preserves p.r ′ because l p.r′ = x.

{I} T4 {I}: This action changes p.s from jng to out and decreases f(p) from 1 to 0.

Therefore, I is an invariant.

Given the simplicity of this protocol, the reader may wonder if it is necessary

to use assertional reasoning; instead, an argument based on operational reasoning

might suffice. The effectiveness of operational reasoning, however, tends to diminish

as the number of messages and actions of the protocol increase. Since our ultimate

goal is to prove the correctness of the more involved protocols discussed later in this

dissertation, we use assertional reasoning from the beginning.

As discussed above, although ring(r ′) always holds, ring(r) may sometimes

be false. In fact, if processes keep joining the network, the protocol may never

be able to establish ring(r). However, by the definition of r ′, once all the grant

messages are delivered, then u.r′ = u.r for all u and consequently, ring(r) holds. A

similar property is shared by all the protocols presented in this dissertation.

In addition, the join protocol in Figure 4.6 is livelock-free, and it does not

cause starvation for an individual process. To see this, observe that a retry is sent
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by a jng node. Hence, although the join message of some node may be declined,

some other node succeeds in joining. Furthermore, the ring cannot keep growing

forever because there are only a finite number of processes. Hence, if a process keeps

trying to join, it eventually succeeds.

4.3 Joins for a Bidirectional Ring

If we consider both joins and leaves, then maintaining a unidirectional ring no longer

suffices, because in a unidirectional ring, when a process leaves, it is difficult and

inefficient (though possible) to inform the process whose neighbor is the leaving pro-

cess to update its neighbor variable. This task is much easier if we are maintaining

a bidirectional ring.

Designing a protocol that handles both joins and leaves for a bidirectional

ring is far from straightforward. To make the task easier, we approach the problem

by first designing a join protocol, and then designing a leave protocol, and then

combining them. Our guideline in the design of these two protocols is to make them

symmetric so that the combination of them would be straightforward.

4.3.1 The Protocol

We begin by considering joins for a bidirectional ring. We consider leaves in Sec-

tion 4.4. Handling joins for a bidirectional ring is, not surprisingly, more complicated

than handling joins for a unidirectional ring. Adding a new process to a bidirectional

ring involves the update of four variables located at three (two when the ring has

only one process) different processes: adding u between v and w requires the update

of v.r, u.r, w.l, and u.l, where r is the right neighbor and l is the left neighbor.

In contrast, it suffices to update two variables located at two processes if we are

maintaining a unidirectional ring.

The main idea of our join protocol is to view a bidirectional ring as two
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process p

var s : {in, out , jng , busy}; r, l : V ′; t, a : V ′

init s = out ∧ r = l = t = nil
begin

T1 s = out → a := contact();
if a = p → r, l, s := p, p, in
[] a 6= p → s := jng; send join() to a fi

T2 [] rcv join() from q →
if s = in → send grant(q) to r; r, s, t := q, busy , r

[] s 6= in → send retry() to q fi

T3 [] rcv grant(a) from q → send ack(l) to a; l := a

T4 [] rcv ack(a) from q → r, l, s := q, a, in; send done() to l

T5 [] rcv done() from q → s, t := in,nil
T6 [] rcv retry() from q → s := out

end

Figure 4.7: The join protocol for a bidirectional ring. The auxiliary variable t in the
protocol keeps the old value of r, and t is only for the purpose of correctness proofs.

unidirectional rings, the r ring and the l ring. When a process joins the bidirectional

ring, it first joins the r ring and then the l ring. Figure 4.7 describes the join protocol.

Figure 4.8 shows an execution of the protocol where a join request is granted. We

remark that in this join protocol, although a join request may be declined, it is

declined because another join is in progress. Hence, the system as a whole is not

blocked. Again, we assume that the contact() function returns a non-out process if

there is one, and it returns the calling process otherwise.

At first sight, our join protocol may appear straightforward: after all, it is

only a four-message protocol. We remark, however, that there are numerous ways

to design a join protocol. Also, our join protocol only assumes reliable, but not

ordered, delivery of messages, yet it has a busy state. We show in Section 4.3.3 a

join protocol that assumes reliable and ordered delivery of messages but does not

have a busy state.
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Figure 4.8: Joining a bidirectional ring.

4.3.2 Proof of Correctness

We prove properties similar to those in Section 4.2. Our technique again is to

first define r′ and l′ and then identify a global invariant. The intuition behind the

definitions of r′ and l′ is straightforward: the r′ and l′ values of the processes involved

are changed once a grant message is sent. For example, consider the moment when

v has just sent a grant(u) message to w. At this moment, although v.r = u, w.l = v,

u.r = nil, and u.l = nil, the definition of r ′ and l′ yields v.r′ = u, u.l′ = v, u.r′ = w,

and w.l′ = u. Define u.r′, u.l′ to be

u.r′ =























v if #grant(u) = 1 ∧ m−(grant(u), v) = 1

v if #grant(u) = 0 ∧ m−(ack , u) = 1 ∧ m(ack , v, u) = 1

u.r otherwise,
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u.l′ =



















































v if #grant(u) = 1 ∧ m+(grant(u), v) = 1

x if #grant(u) = 0 ∧ m−(ack , u) = 1 ∧ m−(ack(x), u) = 1

x if #grant(u) + m−(ack , u) = 0 ∧ m−(grant , u) = 1

∧ m−(grant(x), u) = 1

u.l otherwise,

and define f, g, h : V → N to be:

f(u) = m+(join , u) + #grant(u) + m−(ack , u) + m−(retry , u),

g(u) = m+(grant , u) + m−(done , u) + h(u),

h(u) =











m(ack , u.t, u.r) + m(ack , u.r, u.t) if u.t 6= nil ∧ u.r 6= nil

0 otherwise.

Again we find it useful to introduce some additional conjuncts. An invariant of this

protocol is shown in Figure 4.9. For the sake of brevity, we also write, for example,

A1 to stand for 〈∀u :: (u.s = jng ≡ f(u) = 1) ∧ f(u) ≤ 1〉; the same convention

applies to the other conjuncts in I. The reader may notice that the invariant in

Figure 4.9 contains some redundancy. For example, C1 can be derived from A1. We

include such redundancy in order to make the invariant of the join protocol and that

of the leave protocol symmetric. It follows from I that

E : 〈∀u :: m−(grant , u) ≤ 1〉,

because A1 implies that 〈∀u :: #grant(u) ≤ 1〉, and

m−(grant(x), u) > 0 ∧ m−(grant (y), u) > 0

⇒ {D; def. of r′}
x.r′ = u ∧ y.r′ = u

⇒ {R; Lemma 4.1.1}
x = y.
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I = A ∧ B ∧ C ∧ D ∧ R

A1 = (u.s = jng ≡ f(u) = 1) ∧ f(u) ≤ 1
A2 = (u.s = busy ≡ g(u) = 1) ∧ g(u) ≤ 1
B1 = (u.s = in|busy ≡ u.r 6= nil ∧ u.l 6= nil) ∧ (u.r 6= nil ≡ u.l 6= nil)
B2 = u.s = busy ≡ u.t 6= nil
C1 = m+(join , u) > 0 ⇒ u.s = jng
C2 = m(grant , u, v) > 0 ⇒ u.t = v ∧ v.l = u

C3 = m(ack(x), u, v) > 0 ⇒ x.t = u ∧ x.r = v

C4 = m−(done , u) > 0 ⇒ u.t 6= nil
D = #grant(nil) = 0
R = biring(r′, l′)

Figure 4.9: An invariant of the join protocol. For the sake of brevity, we have
omitted the ∀ quantification. All the predicates above are quantified by ∀ with
appropriate dummies. For example, A = 〈∀u :: A1 ∧ A2〉.

Theorem 4.3.1 invariant I.

Proof: It can be easily checked that I is true initially. It thus suffices to check that

I is preserved by each action. Conjunct D is trivially preserved because the only

action that sends a grant message is T2 and q 6= nil.

{I} T1 {I}: Suppose T1 takes the first branch (i.e., a = p). [A,B] This action

changes p.s from out to in and truthifies both p.r 6= nil and p.l 6= nil. [C1] This

action preserves p.s 6= jng . [C2,3] This action does not falsify the consequent because

↑ p.t = nil. [C4] Unaffected. [R] We observe that

contact() returns p

⇒ {def. of contact(); A1; D}
↑ 〈∀u :: u.s = out〉 ∧ #ack + #grant = 0

⇒ {def. of r′ and l′; B1}
↑ 〈∀u :: u.r′ = nil ∧ u.l′ = nil〉

⇒ {action}
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↓ p.r′ = p ∧ p.l′ = p ∧ 〈∀u : u 6= p : u.r′ = nil ∧ u.l′ = nil〉.

{I} T1 {I}: Suppose T1 takes the second branch (i.e., a 6= p). [A,B] This ac-

tion changes p.s from out to jng and increases f(p) from 0 to 1. [C1] This action

establishes both m+(join, p) > 0 and p.s = jng . [C2,3,4] Unaffected. [R] Unaffected.

{I} T2 {I}: Suppose T2 takes the first branch (i.e., s = in). Let w be the old p.r;

B1 thus implies that w 6= nil. Hence, the grant message is sent to a non-nil process.

Note that p 6= q because ↑ p.s = in ∧ q.s = jng . [A,B] This action changes p.s from

in to busy , p.r from w to q, and p.t from nil to w. It decreases m(join , q, p) by 1 and

increases m(grant(q), p, w) by 1. Hence, it preserves f(q) and increases g(p) from 0

to 1. [C1] This action removes a join message and preserves p.s 6= jng . [C2] This

action establishes both m(grant , p, w) > 0 and p.t = w. We observe that before this

action

p.s = in

⇒ {A1; B2 implies p.t = nil; C3}
m+(grant , p) + #grant(p) + m−(ack , p) + #ack(p) = 0

⇒ {def. of r′ and l′; R}
p.r′ = w ∧ w.l′ = p

⇒ {w.l′ takes “otherwise” in the def. of l′}
w.l = p ∧ #grant(w) + m−(ack , w) + m−(grant , w) = 0.

This action does not falsify the consequent because ↑ p.t = nil. [C3,4] This action

does not falsify either of the consequents because ↑ p.t = nil. [R] This action changes

p.r′ from w to q, q.r′ from nil to w, w.l′ from p to q, and q.l′ from nil to p, because

↑ m(join , q, p) > 0

⇒ {A1; B2; C2}
↑ q.r = nil ∧ q.l = nil ∧ #grant(q) + m−(ack , q) + m−(grant , q) = 0
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⇒ {reasoning in C2 above; def. of r′ and l′}
↑ p.r′ = w ∧ w.l′ = p ∧ q.r′ = nil ∧ q.l′ = nil

⇒ {action; reasoning in C2 above; w 6= q}
↓ p.r′ = q ∧ q.r′ = w ∧ w.l′ = q ∧ q.l′ = p.

Lemma 4.1.4 thus implies that R is preserved.

{I} T2 {I}: Suppose T2 takes the second branch (i.e., s 6= in). This action decre-

ments m(join, q, p) by 1 and increments m(retry , p, q) by 1, preserving f(q). It

trivially preserves I.

{I} T3 {I}: It follows from D that the ack message is sent to a non-nil process.

Furthermore, a 6= p because B1 and C2 imply that a.l = nil ∧ p.l 6= nil, and a 6= q

because A1 and B2 imply that q.s = busy ∧ a.s = jng. We then observe that before

this action

m(grant(a), q, p) > 0

⇒ {C2; def. of r′ and l′; R; q.s = busy}
q.t = p ∧ a.l′ = q ∧ q.r′ = a ∧ a.r′ = p ∧ #grant(q) + m−(q, ack ) = 0

⇒ {def. of r′; q.r′ takes “otherwise”}
q.t = p ∧ q.r = a.

[A,B] This action preserves p.l 6= nil. It decreases m(grant(a), q, p) by 1 and in-

creases m(ack , p, a) by 1, preserving f(a) and g(q). Note that since q.t 6= q.r,

sending the ack message only increases h(q) by 1. This action also preserves g(u)

for every u 6= q, because before this action

(u.r = a ∧ u.t = p) ∨ (u.r = p ∧ u.t = a)

⇒ {A1; B2; def. of r′}
u.s = busy ∧ (u.r′ = a ∨ u.r′ = p)
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⇒ {q.r′ = a ∧ a.r′ = p; R; Lemma 4.1.1}
u = q ∨ u = a

⇒ {u 6= q; a.r = nil; u.r 6= nil}
false.

[C1,4] Unaffected. [C2] This action may falsify the consequent only if v = p. But

E implies that ↓ m−(grant , p) = 0. [C3] This action establishes m(ack(q), p, a) > 0

and we have shown that l q.t = p∧ q.r = a. [R] This action preserves a.r ′, a.l′, and

p.l′ because

↑ a.r′ = p ∧ a.l′ = q ∧ #grant(a) > 0

⇒ {A1; R; C3}
↑ p.l′ = a ∧ m+(grant , a) + #ack(a) = 0

⇒ {p.l′ takes third branch in the def. of l′; action}
↓ a.r′ = p ∧ a.l′ = q ∧ p.l′ = a.

{I} T4 {I}: It follows from C3 that the done message is sent to a non-nil process.

We then observe that

m(ack(a), q, p) > 0

⇒ {C3; A1; def. of r′ and l′; R}
a.t = q ∧ p.l′ = a ∧ a.r′ = p ∧ p.r′ = q

⇒ {a.s = busy ; def. of r′}
a.t = q ∧ a.r = p.

Furthermore, a 6= p because a.s = busy ∧ p.s = jng , and p 6= q because a.r =

p ∧ a.t = q ∧ g(a) ≤ 1. [A,B] This action changes p.s from jng to in and truthifies

both p.r 6= nil and p.l 6= nil. This action decrements m(ack , q, p) by 1 and increments

m(done , p, a) by 1; it thus decreases f(p) from 1 to 0 and preserves g(a). Note that
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since p 6= q, removing an ack message only decreases h(a) by 1. This action also

preserves g(u) for every u 6= a, because before this action

(u.r = p ∧ u.t = q) ∨ (u.r = q ∧ u.t = p)

⇒ {A1; B2; def. of r′}
u.s = busy ∧ (u.r′ = p ∨ u.r′ = q)

⇒ {a.r′ = p ∧ p.r′ = q; R; Lemma 4.1.1}
u = a ∨ u = p

⇒ {u 6= a; p.r = nil; u.r 6= nil}
false.

[C1] This action falsifies p.s = jng . But A1 and ↑ m−(ack , p) > 0 imply that

l m+(join , p) = 0. [C2] This action does not falsify the consequent because ↑ p.l =

nil ∧ p.t = nil. [C3] This action removes an ack message and does not falsify the

consequent because ↑ p.r = nil. [C4] This action establishes m−(done , a) > 0.

It follows from C3 that a.t 6= nil. [R] This action preserves p.r ′ and p.l′ because

l p.r′ = q ∧ p.l′ = a. Note that C2 and ↑ p.l = nil imply that l m−(grant , p) = 0.

{I} T5 {I}: [A,B] This action changes p.s from busy to in, falsifies p.t 6= nil, and

decreases g(p) from 1 to 0. [C1] This action preserves p.s 6= jng . [C2] This action

may falsify the consequent only if u = p. But A2 and ↑ m−(done , p) > 0 imply

that l m+(grant , p) = 0. [C3] This action may falsify the consequent only if x = p.

But A2 and ↑ m−(done , p) > 0 imply that ↑ m(ack , p.t, p.r) = 0. [C4] This action

removes a done message. It may falsify the consequent only if u = p. But A2 implies

that ↓ m−(done , p) = 0. [R] Unaffected.

{I} T6 {I}: This action decrements m(retry , q, p) by 1, decreasing f(p) from 1 to

0, and changes p.s from jng to out . It trivially preserves I except C1. This action

preserves C1 because although it falsifies p.s = jng , A1 and ↑ m−(retry , p) > 0 imply

that l m+(join, p) = 0.
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Therefore, I is an invariant.

4.3.3 A Join Protocol Based on FIFO Channels

The join protocol presented in Figure 4.7, henceforth referred to as the non-FIFO

join protocol, only assumes reliable, but not ordered, delivery of messages, but

it includes a busy state. We present in this section a join protocol, henceforth

referred to as the FIFO join protocol, that does not have the busy state, but requires

reliable and ordered message delivery. Figure 4.10 describes the FIFO join protocol.

Figure 4.11 shows an execution of this protocol. Define u.r ′ and u.l′ to be:

u.r′ =























v if #grant(u) = 1 ∧ m−(grant(u), v) = 1

v if #grant(u) = 0 ∧ m−(ack(1), u) = 1 ∧ m(ack(1), v, u) = 1

u.r otherwise,

u.l′ =























x if m−(grant , u) = 1 ∧ m−(grant(x), u) = 1

v if m−(grant , u) = 0 ∧ m−(ack(0), u) = 1 ∧ m(ack(0), v, u) = 1

u.l otherwise.

Define f0, f1 : V → N to be:

f0(u) = m+(join, u) + m−(ack(0), u) + m−(retry , u),

f1(u) = m+(join, u) + #grant(u) + m−(ack(1), u) + m−(retry , u).

Figure 4.12 shows an invariant of the FIFO join protocol. In the invariant, d ranges

from 0 to 1.

We assume that the contact() function returns u if there exists a u such that

u.s[0] 6= out ∨ u.s[1] 6= out , and it returns the calling process otherwise. Again,

we remark that with a slightly different assumption on the contact() function (i.e.,

that the contact() function returns a process with s[1] = in if there is one, and

returns the calling process otherwise), every join request is granted and hence the
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process p

var s[0..1] : {in, out , jng}; n[0..1] : V ′; a : V ′

init s[0..1] = out ∧ n[0..1] = nil
begin

T1 s[0..1] = out → a := contact();
if a = p → n[0..1], s[0..1] := p, in
[] a 6= p → s[0..1] := jng ; send join() to a fi

T2 [] rcv join() from q →
if s[1] = in → send grant(q) to r; send ack(0) to q; r := q

[] s[1] 6= in → send retry() to q fi

T3 [] rcv grant(a) from q → send ack(1) to a; l := a

T4 [] rcv ack(d) from q → n[d], s[d] := q, in
T5 [] rcv retry() from q → s[0..1] := out

end

Figure 4.10: The FIFO join protocol. In this protocol, every process has two neigh-
bor variables r and l, also denoted by n[1] and n[0], respectively. We use two symbols
to denote the same variable in order to improve the symmetry between the joining
of the r ring and that of the l ring, and to shorten the invariant. Each process
has two state variables, s[1] and s[0], which represent the state of the process with
respect to the r ring and the l ring, respectively. We have used some shorthands in
the presentation of the protocol. For example, n[0..1] := p means n[0], n[1] := p, p

and s[0..1] = out means s[0] = out ∧ s[1] = out .

retry message is not needed. It follows from I that

F : 〈∀u :: m−(grant , u) ≤ 1〉

because A implies that 〈∀u :: #grant(u) ≤ 1〉 and

m−(grant(x), u) > 0 ∧ m−(grant (y), u) > 0

⇒ {E; def. of r′}
x.r′ = u ∧ y.r′ = u

⇒ {R; Lemma 4.1.1}
x = y.

Theorem 4.3.2 invariant I.
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Figure 4.11: Joining a bidirectional ring on FIFO channels.

Proof: It can be easily checked that I is true initially. It thus suffices to check that

I is preserved by each action. Conjunct E is trivially preserved because the only

action that sends a grant message is T2 and q 6= nil.

{I} T1 {I}: Suppose T1 takes the first branch (i.e., a = p). [A,B] This action

changes p.s[0..1] from out to in and truthifies p.n[0..1] 6= nil. [C1] This action

preserves p.s[0..1] 6= jng . [C2,3,4] This action does not falsify any of the consequents

because ↑ p.n[0..1] = nil. [D] Unaffected. [R] We observe that

contact() returns p

⇒ {def. of contact()}
↑ 〈∀u :: u.s[0..1] = out〉

⇒ {A; E; def. of r′ and l′}
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I = A ∧ B ∧ C ∧ D ∧ E ∧ R

A = (u.s[d] = jng ≡ fd(u) = 1) ∧ fd(u) ≤ 1
B = u.s[d] = in ≡ u.n[d] 6= nil

C1 = m+(join, u) > 0 ⇒ u.s[0..1] = jng
C2 = m(grant , u, v) > 0 ∧ m(ack(0), u, v) = 0 ⇒ v.l = u

C3 = m+(grant , u) > 0 ⇒ u.r 6= nil
C4 = m+(ack(d), u) > 0 ⇒ u.n[1 − d] 6= nil
D = No ack(0) follows grant
E = #grant(nil) = 0
R = biring(r′, l′)

Figure 4.12: An invariant of the FIFO join protocol. For the sake of brevity, we
have omitted the ∀ quantification. All the predicates above are quantified by ∀ with
appropriate dummies. For example, C = 〈∀u, v, d :: C1 ∧ C2 ∧ C3 ∧ C4〉.

↑ #grant = 0 ∧ #ack = 0 ∧ 〈∀u :: u.r′ = nil ∧ u.l′ = nil〉
⇒ {action}

↓ p.r′ = p ∧ p.l′ = p ∧ 〈∀u : u 6= p : u.r′ = nil ∧ u.l′ = nil〉.

{I} T1 {I}: Suppose T1 takes the second branch (i.e., a 6= p). The grant thus

is sent to a non-nil process. [A,B] This action changes u.s[0..1] from out to jng

and increases both f0(u) and f1(u) from 0 to 1. [C1] This action truthifies both

u.s[0..1] = jng and m+(join , u) > 0. [C2,3,4] Unaffected. [D] Unaffected. [R]

Unaffected.

{I} T2 {I}: Suppose T2 takes the first branch (i.e., s[1] = in). Let w be the old

p.r; B implies that w 6= nil. [A,B] This action decrements m+(join , q) by 1 and

increments both m+(ack(0), q) and #grant(q) by 1, preserving f0(q) and f1(q). [C1]

This action removes a join message. [C2] This action may truthify the antecedent

only if ↑ m(ack(0), p, w) = 0. If that is the case, then we observe that before this

action

p.s = in
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⇒ {A}
#grant(p) = 0 ∧ m−(ack(1), p) = 0

⇒ {def. of r′; R}
p.r′ = w ∧ w.l′ = p

⇒ {w.l′ takes “otherwise”; m(ack(0), p, w) = 0}
w.l = p.

[C3] This action establishes m+(grant , p) > 0, and B implies that this action pre-

serves p.r 6= nil. [C4] This action establishes m+(ack (0), p) > 0, and B implies that

this action preserves p.n[1] 6= nil. [D] It suffices to show that ↑ m−(grant , q) = 0.

Suppose ↑ m(grant(x), u, q) > 0, then

↑ m(grant(x), u, q) > 0 ∧ m+(join, q) > 0

⇒ {def. of l′; A; B}
↑ q.l′ = x ∧ x.r′ = q ∧ q.r = nil ∧ #grant(q) + m−(ack(1), q) = 0

⇒ {R}
false.

[R] This action changes p.r′ from w to q, q.r′ from nil to w, q.l′ from nil to p, and

w.l′ from p to q, because

↑ p.s[1] = in ∧ m(join, q, p) > 0

⇒ {A; B; m−(grant , q) = 0 by D above}
↑ #grant(p) + m−(ack (1), p) = 0 ∧

#grant(q) + m−(ack (1), q) + m−(ack (0), q) = 0 ∧
m−(grant , q) = 0

⇒ {def. of r′ and l′; R}
↑ p.r′ = w ∧ w.l′ = p ∧ q.r′ = nil ∧ q.l′ = nil

⇒ {action}
↓ p.r′ = q ∧ w.l′ = q ∧ q.r′ = w ∧ q.l′ = p.
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Lemma 4.1.4 thus implies that R is preserved.

{I} T2 {I}: Suppose T2 takes the second branch (i.e., p.s[1] 6= in). This action

decrements m+(join, q) by 1 and increments m−(retry , q) by 1, preserving f0(q)

and f1(q). Thus, it trivially preserves I.

{I} T3 {I}: [A,B] This action preserves f1(q) because it decrements #grant(q) by 1

and increments m−(ack(1), q) by 1. And C2 and D imply that this action preserves

p.l 6= nil. [C1] Unaffected. [C2] This action may falsify the consequent only if v = p,

but F implies that ↓ m−(grant , p) = 0. [C3] This action removes a grant message.

[C4] This action establishes m+(ack(1), p) > 0, and it preserves p.l 6= nil. [D] This

action removes a grant message. [R] This action preserves p.l ′ and a.l′, because

l p.l′ = a ∧ a.r′ = p. Note that ↑ m−(ack(0), p) = 0 because ↑ p.l 6= nil.

{I} T4 {I}: [A,B] This action changes p.s[d] from jng to in and decreases fd(p)

from 1 to 0. [C1] This action falsifies p.s[d] = jng . But it follows from A and

↑ m−(ack(d), p) > 0 that l m+(join , p) = 0. [C2] This action may truthify the

antecedent if d = 0 and before this action, the second message in the channel from

q to p is a grant message, and it establishes p.l = q. This action does not falsify

the consequent because ↑ p.n[d] = nil. [C3] This action truthifies p.n[d] 6= nil.

[C4] This action does not falsify the consequent because ↑ p.n[d] = nil. [D] This

action removes an ack message. [R] If d = 1, then this action preserves p.r ′ because

l p.r′ = q. If d = 0, then this action preserves p.l′ because if ↑ m−(grant , p) > 0,

then removing an ack(0) message does not change p.l ′, if ↑ m−(grant , p) = 0, then

l p.r′ = q.

{I} T5 {I}: This action changes p.s[0..1] from jng to out . It removes a retry message,

decreasing f0(p) and f1(p) from 1 to 0. Therefore, it trivially preserves I.

Therefore, I is an invariant.
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4.4 Leaves for a Bidirectional Ring

We now consider handling leaves for a bidirectional ring. Our guideline is to design

a leave protocol that is symmetric to the join protocol.

4.4.1 The Protocol

We now consider leaves. The main idea of the leave protocol is similar to that of the

join protocol, that is, a process first leaves the r ring and then the l ring. Figure 4.13

describes the leave protocol. Figure 4.14 shows an execution of the protocol where

a leave request is granted. The reader may notice that there is some redundancy

in the protocol. For example, the ack message need not have a parameter. The

motivation for incorporating such redundancy is to improve the symmetry between

the join protocol and the leave protocol. Another redundancy, which is much less

obvious, is that the conjunct r = q in T2 is in fact unnecessary if we only consider

leaves, but is necessary if we consider both joins and leaves. This demonstrates

that handling joins and leaves together is a subtler problem than handling them

separately.

4.4.2 Proof of Correctness

The technique for proving the correctness of the leave protocol is similar to that for

the join protocol. Define u.r′ and u.l′ to be:

u.r′ =











nil if #grant(u) + m−(ack , u) = 1

u.r otherwise,

u.l′ =



































nil if #grant(u) + m−(ack , u) = 1

v if #grant(u) + m−(ack , u) = 0

∧ m−(grant , u) = 1 ∧ m(grant , v, u) = 1

u.l otherwise,
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process p

var s : {in, out , lvg , busy}; r, l : V ′; t, a : V ′

init s = out ∧ r = l = t = nil
begin

T1 s = in →
if l = p → r, l, s := nil,nil, out
[] l 6= p → s := lvg ; send leave(r) to l fi

T2 [] rcv leave(a) from q →
if s = in ∧ r = q → send grant(q) to a; r, s, t := a, busy , r

[] s 6= in ∨ r 6= q → send retry() to q fi

T3 [] rcv grant(a) from q → send ack(nil) to a; l := q

T4 [] rcv ack(a) from q → send done() to l; r, l, s := nil,nil, out
T5 [] rcv done() from q → s, t := in,nil
T6 [] rcv retry() from q → s := in

end

Figure 4.13: The leave protocol for a bidirectional ring. The state lvg stands for
“leaving”.

and define f to be:

f(u) = m+(leave, u) + #grant(u) + m−(ack , u) + m−(retry , u).

The definitions of g and h are the same as before. It follows from I that

E : 〈∀u :: m−(grant , u) ≤ 1〉

because A2 implies that 〈∀u :: m+(grant , u) ≤ 1〉 and

m(grant(x), v, u) > 0 ∧ m(grant(y), w, u) > 0

⇒ {C2; A2}
v.r = u ∧ w.r = u ∧ v.s = busy ∧ w.s = busy

⇒ {A1; def. of r′}
v.r′ = u ∧ w.r′ = u

⇒ {R; Lemma 4.1.1}
v = w.
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Figure 4.14: Leaving a bidirectional ring.

Theorem 4.4.1 invariant I.

Proof: It can be easily checked that I is true initially. Hence, it suffices to check

that each conjunct of I is preserved by each action. Conjunct D is trivially preserved

because the only action that sends a grant message is T2 and q 6= nil.

{I} T1 {I}: Suppose T1 takes the first branch (i.e., l = p). Let w be the old p.r; B1

implies that w 6= nil. We first observe that w = p, because before this action,

p.s = in ∧ p.l = p

⇒ {A; C2}
#grant(p) + m−(ack , p) + m−(grant , p) = 0

⇒ {def. of r′ and l′; R}
p.l′ = p ∧ p.r′ = p ∧ p.r = p.

[A,B] This action changes p.s from in to out and changes p.r and p.l from p to nil.
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I = A ∧ B ∧ C ∧ D ∧ R

A1 = (u.s = lvg ≡ f(u) = 1) ∧ f(u) ≤ 1
A2 = (u.s = busy ≡ g(u) = 1) ∧ g(u) ≤ 1
B1 = (u.s = in|busy |lvg ≡ u.r 6= nil ∧ u.l 6= nil) ∧ (u.r 6= nil ≡ u.l 6= nil)
B2 = u.s = busy ≡ u.t 6= nil
C1 = m+(leave(x), u) > 0 ⇒ u.s = lvg ∧ u.r = x

C2 = m(grant(x), u, v) > 0 ⇒ u.t = x ∧ u.r = v ∧ v.l = x ∧ x.l = u

C3 = m(ack(x), u, v) > 0 ⇒ x = nil ∧ v.l.t = v ∧ v.l.r = u

C4 = m−(done , u) > 0 ⇒ u.t 6= nil
D = #grant(nil) = 0
R = biring(r′, l′)

Figure 4.15: An invariant of the leave protocol. For the sake of brevity, we have
omitted the ∀ quantification. All the predicates above are quantified by ∀ with
appropriate dummies. For example, A = 〈∀u :: A1 ∧ A2〉.

[C1] This action may falsify the consequent only if u = p. But A1 and ↑ p.s = in

imply that l m+(leave, p) = 0. [C2] This action may falsify the consequent only if

x = p, u = p, or v = p. In any case, we have u = p because ↑ p.r = p ∧ p.l = p. But

A2 and ↑ p.s = in imply that l m+(grant , p) = 0. [C3] This action may falsify the

consequent only if v = p or v.l = p. In either case, we have v.l = p because ↑ p.l = p.

But ↑ p.t = nil. [C4] Unaffected. [R] We have shown that ↑ p.r ′ = p ∧ p.l′ = p.

Hence,

↑ p.r′ = p ∧ p.l′ = p

⇒ {R}
↑ p.r′ = p ∧ p.l′ = p ∧ 〈∀u : u 6= p : u.r′ = nil ∧ u.l′ = nil〉

⇒ {action}
↓ 〈∀u :: u.r′ = nil ∧ u.l′ = nil〉.

{I} T1 {I}: Suppose T1 takes the second branch (i.e., l 6= p). [A,B] This action

changes p.s from in to lvg and increases f(p) from 0 to 1. [C1] This action establishes

both m+(leave(p.r), p) > 0 and p.s = lvg . [C2,3,4] Unaffected. [R] Unaffected.
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{I} T2 {I}: Suppose T2 takes the first branch (i.e., s = in ∧ r = q). It follows

from B1 and C1 that the grant message is sent to a non-nil process. [A,B] This

action changes p.s from in to busy , changes p.r from q to a, and changes p.t from

nil to q. It decreases m(leave, q, p) by 1 and increases m(grant(q), p, a) by 1. Hence,

it preserves f(q) and increases g(p) from 0 to 1. [C1] This action removes a leave

message and does not falsify the consequent because ↑ p.s = in. [C2] This action

establishes both m(grant(q), p, a) > 0 and p.r = a∧ p.t = q. We observe that before

this action

p.s = in ∧ m(leave(a), q, p) > 0

⇒ {A1}
#grant(p) + m−(ack , p) + m+(grant , p) +

#grant(q) + m−(ack , q) + m+(grant , q) = 0

⇒ {def. of r′; R}
p.r′ = q ∧ q.r′ = a ∧ q.l′ = p ∧ a.l′ = q

⇒ {q.l′ and a.l′ take “otherwise”}
q.l = p ∧ a.l = q.

This action does not falsify the consequent because ↑ p.t = nil. [C3,4] This action

does not falsify either of the consequents because ↑ p.t = nil. [R] This action changes

p.r′ from q to a, q.r′ from a to nil, q.l′ from p to nil, and a.l′ from q to p, because

the reasoning in C2 above implies that

↑ p.r′ = q ∧ q.r′ = a ∧ q.l′ = p ∧ a.l′ = q

⇒ {action}
↓ p.r′ = a ∧ q.r′ = nil ∧ q.l′ = nil ∧ a.l′ = p.

Lemma 4.1.5 thus implies that R is preserved.

{I} T2 {I}: Suppose T2 takes the second branch (i.e., s 6= in ∨ r 6= q). This action
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decrements m(leave , q, p) by 1 and increments m(retry , p, q) by 1, preserving f(q).

It trivially preserves I.

{I} T3 {I}: It follows from D that the ack message is sent to a non-nil process,

and it follows from C2 that ↑ q.r = p ∧ q.t = a. Furthermore, a 6= q because

↑ q.s = busy ∧ a.s = lvg , and a 6= p because ↑ p.l = a ∧ a.l = q. [A,B] This action

preserves p.l 6= nil. It decreases m(grant (a), q, p) by 1 and increases m(ack , p, a) by

1, preserving f(a) and g(q) because l q.r = p ∧ q.t = a. Note that since p 6= a,

sending the ack message only increases h(q) by 1. This action also preserves g(u)

for every u 6= q, because

(u.r = a ∧ u.t = p) ∨ (u.r = p ∧ u.t = a)

⇒ {A1; B1; def. of r′; a 6= nil}
u.s = busy ∧ (u.r′ = a ∨ u.r′ = p)

⇒ {q.r′ = p; a.r′ = nil; R; Lemma 4.1.1; u 6= q}
false.

[C1] Unaffected. [C2] This action removes a grant message. It may falsify the

consequent only if x = p or v = p. If x = p, then u = a. But B2 and ↑ a.s = lvg

imply that ↑ a.t = nil. If v = p, then x = a and u = q. But A2 implies that

↓ m(grant , q, p) = 0. [C3] This action establishes m(ack(nil), p, a) > 0. Since

↑ a.l = q ∧ q.t = a ∧ q.r = p and a 6= p, we have ↓ a.l.t = a ∧ a.l.r = p. This action

may falsify the consequent only if v = p. But A2 and ↑ p.l = a∧a.s = lvg imply that

↑ p.l.t = nil. [C4] Unaffected. [R] This action preserves p.l′, a.r′, and a.l′ because

↑ m(grant(a), q, p) > 0

⇒ {A2; C2}
↑ #grant(q) + m−(ack , q) = 0

⇒ {def. of r′ and l′; R}
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↑ q.r′ = p ∧ p.l′ = q ∧ a.r′ = nil ∧ a.l′ = nil

⇒ {p.l′ takes second branch; E; action}
↓ a.r′ = nil ∧ a.l′ = nil ∧ p.l′ = q.

{I} T4 {I}: It follows from B1 that the done message is sent to a non-nil process.

Let w be the old p.l. It follows from C3 that w.t = p∧w.r = q. Hence, w 6= p because

↑ w.s = busy ∧ p.s = lvg , and p 6= q because ↑ w.t = p ∧ w.r = q ∧ g(w) ≤ 1. [A,B]

This action changes p.s from lvg to out and falsifies both p.r 6= nil and p.l 6= nil.

This action decrements m(ack , q, p) by 1 and increments m(done , p, w) by 1. Hence,

it decreases f(p) from 1 to 0, and preserves g(w). Note that since p 6= q, removing

an ack message only decreases h(w) by 1. This action also preserves g(u) for every

u 6= w, because before this action

(u.r = p ∧ u.t = q) ∨ (u.r = q ∧ u.t = p)

⇒ {A1; B2; def. of r′}
u.s = busy ∧ (u.r′ = p ∨ u.r′ = q)

⇒ {w.r′ = q; p.r′ = nil; R; Lemma 4.1.1; u 6= w}
false.

[C1] This action may falsify the consequent only if u = p. But A1 and ↑ m−(ack , p) >

0 imply that l m+(leave , p) = 0. [C2] This action may falsify the consequent only

if x = p, u = p, or v = p. If x = p, then u = w. But A2 and ↑ m(ack , w.r, w.t) > 0

imply that l m+(grant , w) = 0. If u = p, but B2 and ↑ p.s = lvg imply that ↑ p.t =

nil. If v = p, then x = w. But A2 and ↑ w.s = busy imply that l #grant(w) = 0.

[C3] This action removes an ack message and may falsify the consequent only if v = p

or v.l = p. If v = p, then A1 implies that ↓ m−(ack , p) = 0. If v.l = p, then B2 and

↑ p.s = lvg imply that l p.t = nil. [C4] This action establishes m(done , p, w) > 0,

and C3 implies that l w.t 6= nil. [R] This action preserves p.r ′ and p.l′ because

l p.r′ = nil ∧ p.l′ = nil. Note that l m−(grant , p) = 0 because
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m(ack , q, p) > 0 ∧ m−(grant(x), p) > 0

⇒ {C2,3; B2; A1}
p.l.t = p ∧ p.l.s = busy ∧ p.l = x ∧ x.s = lvg

⇒ {a process can be in only one state}
false.

{I} T5 {I}: [A,B] This action changes p.s from busy to in, truthifies p.t = nil,

and decreases g(p) from 1 to 0. [C1] This action preserves p.s 6= lvg . [C2] This

action may falsify the consequent only if u = p. But A2 and ↑ m−(done , p) > 0

imply that l m+(grant , p) = 0. [C3] This action may falsify the consequent only if

v.l = p; hence u = p.r and v = p.t. But A1 and ↑ m−(done , p) > 0 implies that

↑ m(ack , p.r, p.t) = 0. [C4] This action removes a done message and may falsify the

consequent only if u = p. But A2 implies that ↓ m−(done , p) = 0. [R] Unaffected.

{I} T6 {I}: This action decrements m(retry , q, p) by 1, decreasing f(p) from 1 to 0,

and changes p.s from lvg to in. It trivially preserves I except C1. It preserves C1

because A1 and ↑ m−(retry , p) > 0 imply that l m+(leave , p) = 0.

Therefore, I is an invariant.

A desirable property for a topology maintenance protocol is that an out

process does not have any incoming messages, because a process that has left the

network is not obligated to respond to the messages associated with the maintenance

of the ring. This property, however, is not provided by our protocol if we only assume

reliable, but not ordered, delivery of messages. To see this, consider the scenario

where two adjacent processes send out their leave requests simultaneously. Assume

that the leave request of the left process is granted and the leave request of the right

process reaches the left process after the ack message does. However, if we assume

ordered delivery as well, then our protocol guarantees that an out process has no

incoming message.
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Theorem 4.4.2 If message delivery is reliable and ordered, then an out process has

no incoming message.

Proof: It follows from I that it suffices to show that P = 〈∀u : u.s = out :

m−(leave , u) = 0〉 holds at all times. Clearly, P is true initially. Hence, it suffices to

show that if an action truthifies u.s = out , then it also establishes m−(leave, u) = 0,

and if an action falsifies m−(leave, u) = 0, then it also establishes u.s 6= out .

The only action that truthifies u.s = out is T4, where process p receives an

ack message and changes its state from lvg to out . We show that when p receives

an ack message from q, then there is no leave message in any incoming channel of

p. We first observe that as long as m(ack , q, p) > 0, then no in process will send a

leave message to p, because if v sends a leave message to p, then

m(ack , q, p) > 0 ∧ v.l = p ∧ v.s = in

⇒ {def. of l′; I}
#grant(p) + m−(ack , p) + m+(grant , p) = 0 ∧ #grant(v) + m−(ack , v) = 0

⇒ {def. of l′}
p.l′ = nil ∧ v.l′ = p

⇒ {R}
false.

Hence, it remains to show that if the first message in the channel from q to p is

an ack message, then there is no leave message in any other incoming channel of

p. Suppose this is not true. Assume that m(leave, w, p) > 0. Note that w 6= q

because q does not send a leave message to p as long as m(ack , q, p) > 0. By the

argument above, w sends the leave message to p before q sends the ack message

to p. Consider the moment t1 right before w sends the leave message to p. We

observe that at t1, w has no incoming grant message, because I implies that if w

has an incoming grant message, then the message is a grant(p) message, but q has
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an incoming grant(p) message later. Hence, two actions send grant(p) messages,

truthifying p.l′ = nil twice. But p.l′ = nil is stable. Hence, at t1, w has no incoming

grant message, which implies w.l′ = p at t1. Consider the moment t2 right before q

sends p the ack message. At t2, I implies that p.l′ = nil. Hence, w.l′ 6= p. Hence,

between t1 and t2, an action falsifies w.l′ = p. Since m+(leave , w) > 0 between t1

and t2, an action that changes w.l′ involves w receiving a grant(p) message. But we

have argued above that this is not possible.

The only action that falsifies m−(leave, u) = 0 is the sending of a leave

message, say, from w to p. If grant(p) = 0 at that moment, then w.l ′ = p. Hence

p.l′ 6= nil ∧ p.s 6= out . If grant(p) > 0 at that moment, then p.s 6= out .

Therefore, P holds at all times.

Our leave protocol, however, does not provide the progress property that if

a process intends to leave, then eventually it is able to do so. To see this, con-

sider a scenario where all processes decide to leave simultaneously, and their leave

requests are all declined because the left neighbor of every process is also leaving.

This scenario can repeat forever. Hence, the system may get into a livelock. Lynch

et al. [39] have noted the likely difficulty of providing this progress property. Basi-

cally, they pointed out the similarity between this problem and the classical dining

philosopher’s problem, where it is well-known that there is no symmetric determin-

istic protocol that avoids starvation [29]. The leave protocol by Aspnes and Shah [5]

attempts to provide this property but does not seem to succeed. See a detailed

discussion in Chapter 2. In practice, a system can use other techniques to avoid

this scenario. For example, as in the Ethernet protocol, a process may delay a

random amount of time before sending out another leave request, or one can use a

randomized protocol similar to the one in [29].
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4.5 Joins and Leaves for a Bidirectional Ring

As we indicated before, our approach to obtain a protocol that handles both joins

and leaves is to combine the join protocol and the leave protocol.

4.5.1 The Protocol

Exploiting the strong symmetry between the join protocol and the leave protocol, the

combined protocol, described in Figure 4.16, is a simple merge of the two protocols.

The only subtlety is that, upon receiving a grant message, a process has to tell

whether the message is granting a join or a leave request, and the way to do so

is to check whether l = q. As we show in the proof, l = q iff a join is granted.

The definitions of r′ and l′, as well as the invariant I, are simple merges of their

respective definitions in the previous two protocols.

4.5.2 Proof of Correctness

Figure 4.17 shows the definitions of u.r ′ and u.l′. Define f to be:

f(u) = m+(join, u) + m+(leave , u) + #grant(u) + m−(ack , u) + nm−(retry , u).

The definitions of g(u) and h(u) are the same as before. It follows from I that

E : 〈∀u :: m−(grant , u) ≤ 1〉.

To see this, suppose u has two incoming grant messages. It follows from D that

their parameters are non-nil. If the parameters in the two grant messages are in the

same state (i.e., both jng or both lvg), then the reasoning in join and leave can be

reused. If they are in different states, then

m(grant(x), v, u) > 0 ∧ x.s = jng ∧ m(grant(y), w, u) > 0 ∧ y.s = lvg

⇒ {def. of r′; A2}
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process p

var s : {in , out , jng , lvg , busy}; r, l : V ′; t, a : V ′

init s = out ∧ r = l = t = nil
begin

T
j
1 s = out → a := contact();

if a = p → r, l, s := p, p, in
[] a 6= p → s := jng ; send join() to a fi

T l
1 [] s = in →

if l = p → r, l, s := nil,nil, out
[] l 6= p → s := lvg ; send leave(r) to l fi

T
j
2 [] rcv join() from q →

if s = in → send grant(q) to r; r, s, t := q, busy , r

[] s 6= in → send retry() to q fi

T l
2 [] rcv leave(a) from q →

if s = in ∧ r = q → send grant(q) to a; r, s, t := a, busy , r

[] s 6= in ∨ r 6= q → send retry() to q fi

T3 [] rcv grant(a) from q →
if l = q → send ack(l) to a; l := a

[] l 6= q → send ack(nil) to a; l := q fi

T4 [] rcv ack(a) from q →
if s = jng → r, l, s := q, a, in ; send done() to l

[] s = lvg → send done() to l; r, l, s := nil,nil, out fi

T5 [] rcv done() from q → s, t := in,nil
T6 [] rcv retry() from q →

if s = jng → s := out
[] s = lvg → s := in fi

end

Figure 4.16: The combined protocol for a bidirectional ring.
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u.r′ =



















v if u.s = jng ∧ #grant(u) = 1 ∧ m−(grant(u), v) = 1
v if u.s = jng ∧ #grant(u) = 0 ∧ m−(ack , u) = 1 ∧ m(ack , v, u) = 1
nil if u.s = lvg ∧ #grant(u) + m−(ack , u) = 1
u.r otherwise

u.l′ =























































v if u.s = jng ∧ #grant(u) = 1 ∧ m+(grant(u), v) = 1
x if u.s = jng ∧ #grant(u) = 0 ∧ m−(ack , u) = 1 ∧ m−(ack(x), u) = 1
nil if u.s = lvg ∧ #grant(u) + m−(ack , u) = 1
x if #grant(u) + m−(ack , u) = 0 ∧ m−(grant , u) = 1 ∧

m−(grant(x), u) = 1 ∧ x.s = jng
v if #grant(u) + m−(ack , u) = 0 ∧ m−(grant , u) = 1 ∧

m(grant(x), v, u) = 1 ∧ x.s = lvg
u.l otherwise

Figure 4.17: Definitions of r′ and l′ for the combined protocol.

x.r′ = u ∧ w.r′ = u

⇒ {R; Lemma 4.1.1; w.s = busy}
false.

Theorem 4.5.1 invariant I.

Proof: It can be easily checked that I is true initially. Hence, it suffices to check

that each conjunct of I is preserved by each action. Most of the reasoning below

reuses the proofs for the join protocol and the leave protocol. In what follows,

we use the phrase “similar to join” (resp., “similar to leave”) to indicate that the

reasoning is essentially the same as the reasoning in the join protocol (resp., the leave

protocol). Conjunct D is trivially preserved, for reasons similar to those mentioned

in join and leave.

{I} T
j
1 {I}: Suppose T

j
1 takes the first branch (i.e., a = p). [A,B] Similar to

join. [C1] For C
j
1 , similar to join. For C l

1, this action preserves p.s 6= lvg . [C2]

For C
j
2 , similar to join. For C l

2, this action preserves p.s 6= lvg and does not falsify
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I = A ∧ B ∧ C ∧ D ∧ R

A1 = (u.s = jng |lvg ≡ f(u) = 1) ∧ f(u) ≤ 1
A2 = (u.s = busy ≡ g(u) = 1) ∧ g(u) ≤ 1
B1 = (u.s = in|busy |lvg ≡ u.r 6= nil ∧ u.l 6= nil) ∧ (u.r 6= nil ≡ u.l 6= nil)
B2 = u.s = busy ≡ u.t 6= nil

C
j
1 = m(join, u, v) > 0 ⇒ u.s = jng

C l
1 = m+(leave(x), u) > 0 ⇒ u.s = lvg ∧ u.r = x

C
j
2 = m(grant(x), u, v) > 0 ∧ x.s = jng ⇒ u.t = v ∧ v.l = u

C l
2 = m(grant(x), u, v) > 0 ∧ x.s = lvg ⇒ u.t = x ∧ u.r = v ∧ v.l = x ∧ x.l = u

C
j
3 = m(ack(x), u, v) > 0 ∧ v.s = jng ⇒ x.t = u ∧ x.r = v

C l
3 = m(ack(x), u, v) > 0 ∧ v.s = lvg ⇒ x = nil ∧ v.l.t = v ∧ v.l.r = u

C4 = m−(done , u) > 0 ⇒ u.t 6= nil
D = #grant(nil) = 0
R = biring(r′, l′)

Figure 4.18: An invariant of the combined protocol for a single ring. For the sake of
brevity, we have omitted the ∀ quantification. All the predicates above are quantified
by ∀ with appropriate dummies. For example, A = 〈∀u :: A1 ∧ A2〉.

the consequent because ↑ p.r = nil ∧ p.l = nil. [C3] For C
j
3 , similar to join. For

C l
3, this action preserves p.s 6= lvg and it does not falsify the consequent because

↑ p.r = nil ∧ p.l = nil. [C4] Similar to join. [R] Similar to join.

{I} T
j
1 {I}: Suppose T

j
1 takes the second branch (i.e., a 6= p). [C j

2,3] This ac-

tion truthifies p.s = jng , but A2 and ↑ p.s = in imply that l #grant(p) =

0 ∧ m−(ack , p) = 0. [C l
1,2,3] This action preserves p.s 6= lvg. The rest of the

reasoning is similar to join.

{I} T l
1 {I}: Suppose T l

1 takes the first branch (i.e., l = p). Let w be the old p.r.

Similar to leave, we have w = p. [A,B] Similar to leave. [C1] For C l
1, similar to

leave. For C
j
1 , this action preserves p.s 6= jng . [C2] For C l

2, similar to leave. For

C
j
2 , this action preserves p.s 6= jng and it may falsify the consequent only if v = p.

Thus, u = p because ↑ p.r = p. But B2 and ↑ p.s = in imply that ↑ p.t = nil. [C3]

For C l
3, similar to leave. For C

j
3 , this action preserves p.s 6= jng and it does not
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falsify the consequent because ↑ p.t = nil. [C4] Similar to leave. [R] Similar to leave.

{I} T l
1 {I}: Suppose T l

1 takes the second branch (i.e., l 6= p). [A,B,C l
1, C4, R]

Similar to leave. [Cj
1,2,3] This action preserves p.s 6= jng . [C l

2,3] This action truthifies

p.s = lvg , but A1 and ↑ p.s = in imply that l #grant(p) = 0 ∧ m−(ack , p) = 0.

{I} T
j
2 {I}: Suppose T

j
2 takes the first branch (i.e., s = in). [A ∧ B] Similar to

join. [C1] For C
j
1 , similar to join. For C l

1, this action preserves p.s 6= lvg . [C2] For

C
j
2 , similar to join. For C l

2, this action does not truthify the antecedent because

l q.s 6= lvg, and it does not falsify the consequent because ↑ p.t = nil. [C3] For C
j
3 ,

similar to join. For C l
3, this action preserves p.s 6= lvg , and it does not falsify the

consequent because ↑ p.t = nil. [C4] Similar to join. [R] Similar to join.

{I} T
j
2 {I}: Suppose T

j
2 takes the second branch (i.e., s 6= in). Similar to join.

{I} T l
2 {I}: Suppose T l

2 takes the first branch (i.e., s = in ∧ r = q). [A,B] Similar

to leave. [C1] For C l
1, similar to leave. For C

j
1 , this action preserves p.s 6= jng .

[C2] For C l
2, similar to leave. In the reasoning for leaves, in order to conclude that

a.l′ takes “otherwise” in the definition of l′, we observe that p.l′ does not take the

second branch, because otherwise C
j
3 implies that q.t 6= nil, contradicting q.s = lvg .

For C
j
2 , this action does not truthify the antecedent because it preserves q.s 6= jng ,

and it does not falsify the consequent because ↑ p.t = nil. [C3] For C l
3, similar to

leave. For C
j
3 , this action preserves p.s 6= jng ; it does not falsify the consequent

because ↑ p.t = nil. [C4] Similar to leave. [R] Similar to leave.

{I} T l
2 {I}: Suppose T l

2 takes the second branch (i.e., s 6= in ∨ r 6= q). Similar to

leave.

{I} T3 {I}: It follows from D and A1 that a.s = jng |lvg . If a.s = jng , then C
j
2

implies that p.l = q. If a.s = lvg , then C l
2 implies that p.l 6= q because p.l = a∧q.s =

busy ∧ a.s = lvg . Thus, if T3 takes the first branch (i.e., l = q), then a.s = jng .
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If it takes the second branch, then a.s = lvg . Suppose T3 takes the first branch.

Since ↑ a.s = jng , we have ↑ a.r′ = p ∧ p.l′ = a. [A,B] Similar to join. [C1] For

C
j
1 , similar to join. For C l

1, unaffected. [C2] For C
j
2 , similar to join. For C l

2, this

action may falsify the consequent only if x = p or v = p. If x = p, then we observe

that l #grant(p) = 0, because ↑ p.l 6= nil ∧ p.l′ 6= nil. If v = p, then E implies

that ↓ m−(grant , p) = 0. [C3] For C
j
3 , similar to join. For C l

3, this action preserves

a.s 6= lvg and it may falsify the consequent only if v = p, but ↑ p.l ′ 6= nil implies

that l m−(ack , p) = 0 ∨ p.s 6= lvg . [C4] Similar to join. [R] Similar to join.

{I} T3 {I}: Suppose T3 takes the second branch (i.e., l 6= q). We have a.s = lvg .

[A,B] Similar to leave. [C1] For C l
1, similar to leave. For C

j
1 , unaffected. [C2] For

C l
2, similar to leave. For C

j
2 , this action may falsify the consequent only if v = p.

But E implies that ↓ m−(grant , p) = 0. [C3] For C l
3, similar to leave. For C

j
3 , this

action preserves a.s 6= jng . [C4] Similar to leave. [R] Similar to leave.

{I} T4 {I}: It follows from A1 that p.s = jng|lvg . Suppose p.s = jng . [A,B]

Similar to join. [C1] For C
j
1 , similar to join. For C l

1, this action does not falsify the

consequent because ↑ p.s 6= lvg . [C2] For C
j
2 , similar to join; note that this action

falsifies p.s = jng . For C l
2, this action preserves p.s 6= lvg and does not falsify the

consequent because ↑ p.r = nil∧p.l = nil. [C3] For C
j
3 , similar to join; note that this

action falsifies p.s = jng . For C l
3, this action preserves p.s 6= lvg and does not falsify

the consequent because ↑ p.r = nil ∧ p.l = nil. [C4] Similar to join. [R] Similar to

join.

{I} T4 {I}: Suppose p.s = lvg . Let w be the old p.l. [A,B] Similar to leave.

[C1] For C l
1, similar to leave. For C

j
1 , this action preserves p.s 6= jng. [C2] For C l

2,

similar to leave; note that this action falsifies p.s = lvg . For C
j
2 , this action preserves

p.s 6= jng and it may falsify the consequent only if v = p, but l m−(grant , p) = 0 (see

R below). [C3] For C l
3, similar to leave; note that this action falsifies p.s = lvg . For
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C
j
3 , this action preserves p.s 6= jng and it does not falsify the consequent because

↑ p.t = nil. [C4] Similar to leave. [R] Similar to leave; in addition, we observe

↑ m−(grant(x), p) = 0 for any x.s = jng , because otherwise x.r ′ = p ∧ p.l′ = x. But

p.l′ = nil.

{I} T5 {I}: Similar to join and leave.

{I} T6 {I}: Similar to join and leave.

Therefore, I is an invariant.

4.6 An Extended Protocol

We have mentioned in Section 4.4 that it is desirable for an out process not to have

any incoming messages. However, even with the assumption of reliable and ordered

delivery of messages, our combined protocol does not provide this property. We

show in this section a counterexample. We further show that the combined protocol

can be made to provide this property with some simple extensions.

Figure 4.19 shows that, even if we assume reliable and ordered delivery of

messages, it is possible for an out process to have an incoming message in the

combined protocol. In the figure, u receives the leave message from w when u.s =

out . To provide the property that an out process does not have any incoming

message, we extend our combined protocol as follows:

• Every process has an additional integer variable, `, initialized to 0.

• When a process grants a join or a leave request, it sets ` to 2.

• When a process receives a grant(a) message from q, in addition to sending the

ack message to a, it sends a done message to q.
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u

join
v

leave

leave

w

u.s=out

Figure 4.19: An out process may have an incoming message.

• A process decrements ` by 1 for every done message it receives, and it changes

its state (from busy) to in when ` = 0.

We further assume that an out process does not have any incoming join

message. Without this assumption, a join request may be directed to an in process

by the contact () function, and when the join message is delivered, the in process

has left the ring.

Theorem 4.6.1 If message delivery is reliable and ordered, then an out process

does not have any incoming message in the extended combined protocol.

Proof: As in the proof of Theorem 4.4.2, it suffices to show that P = 〈∀u : u.s =

out : m−(leave , u) = 0〉. Two actions may truthify u.s = out : T4 when p.s = lvg ,

and T6 when p.s = jng . One action may falsify m−(leave , u) = 0: T l
1 when p.l 6= p.

We analyze these actions one by one.
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Consider T4 when p.s = lvg . As in the proof of Theorem 4.4.2, it suffices

to show that when q sends an ack message to p, p has no incoming leave message.

Suppose this is not true and suppose that w (note that w 6= q) sends p a leave

message right after time t1 and this leave message remains undelivered until q sends

p an ack message right after time t2. Suppose m−(grant , w) = 0 at t1. Then w.l′ = p

at t1. But I and p.l′ = nil at t2 imply that w.l′ 6= p at t2. Hence, between t1 and

t2, an action falsifies w.l′ = p and this action can only be T2, where a grant(x)

message is sent to w. Suppose this happens right after time t3. If x.s = jng , then

I implies that this grant message is from p. Hence, p.s = busy at t3. For p.s to

change from busy (at t3) to lvg (at t2), p has to receive the done message from w

by time t2. Since message delivery is ordered, p receives the leave message from w

before it receives the done message from w. A contradiction to the assumption that

m(leave , w, p) > 0 at t2. If x.s = lvg , then I implies that x = p and I implies that,

by the time t2, p has received the ack message from w so that p can have another ack

message from q. Hence, by the order of delivery, p receives the leave message from

w by t2, a contradiction to the assumption that m(leave, w, p) > 0 at t2. Suppose

m(grant(x), u, w) > 0 at t1, for some x and u. Using a similar argument, we reach

a similar contradiction.

Consider T6 and p.s = jng . Let m(retry , q, p) > 0. Suppose m(leave , w, p) >

0 at this time. However, when w sends the leave message to p, w.l = p and I implies

that m−(grant , w) = 0. Hence, w.l′ = p. But p.l′ = nil, violating R.

Consider T l
1. Suppose q sends a leave message to p. At this time, q.s =

in ∧ q.l = p. If m−(grant , q) = 0, then q.l′ = p and I implies that p.l′ 6= nil and

hence p.s 6= out . If m(grant(x), u, q) > 0, then x = p or u = p. In either case, we

have p.s 6= out .

Hence, P holds at all times.

90



4.7 Maintenance of the Chord Ring

We show in this section how to extend the protocol in Section 4.5 to provide an

active and concurrent maintenance protocol for the Chord ring [57].

The protocol in Section 4.5 maintains a bidirectional ring where a new node

can be inserted between two arbitrary nodes in the ring. The Chord ring, however,

has stronger requirements on the arrangements of the nodes in the ring. In Chord,

every node has a random binary string as its ID. The IDs are of the same length

and are sufficiently long (say, 128 bits) so that all IDs may be assumed to be unique.

Chord arranges nodes in an ID ring with wrap-around. The two basic neighbors

that a node has are its predecessor and successor. In addition, a node has fingers,

i.e., neighbor variables that allow a node reach another node in the ring. It is worth

noting that for Chord to work correctly, it suffices to maintain the predecessors and

successors. The fingers improve performance, but do not affect correctness. In what

follows, we only discuss how to maintain the predecessors and successors for Chord.

The key difference between maintaining the Chord ring and an arbitrary

ring is that when a new node joins the Chord ring, it should be placed between

two nodes with proper IDs in the ring. While the protocol in Section 4.5 places a

new node between two arbitrary nodes, the additional idea needed to maintain the

Chord ring is quite straightforward. We simply include the ID of the joining node

in the join message and forward the join message using the finger pointers until the

node immediately preceding the joining node in the Chord ring is reached.

The protocol that maintains the Chord ring is shown in Figure 4.20. In the

protocol, ε denotes the empty string. Compared to the protocol in Section 4.5, one

noticeable yet nonessential change is the addition of IDs in the message parameters.

An alternative presentation of the protocol can remove the need to explicitly mention

IDs, but assumes that the reference to a node, say p, includes the ID of p. We opt for

explicitly mentioning IDs. Compared to the protocol in Section 4.5, several actions
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are substantially modified.

T
j
1 The function p.genid() generates an ID for p. We prefix genid() by “p.” to

indicate that, in contrast to the contact() function, which is a global function,

genid() is locally implementable. We assume that every call to genid() gives

a unique ID. This assumption can be provided with high probability, if not

absolute guarantee, using some secure hash function like SHA-1. The contact()

function returns a pair, a non-out node and its ID, if there is such a node;

it returns the calling node and its ID otherwise. A join message takes three

parameters, the joining node, the ID of the joining node, and the ID of the

receiver of the join message. The reason for including the ID of the receiver

is as follows. Since we only assume reliable delivery of messages, when a

join message is in transmission, the receiver may leave the ring, and then

rejoins with a different ID. Hence, by including the ID of the receiver in the

join message, the receiver can compare its current ID with the ID in the

join message and accept the message only if they are the same. This checking

prevents the situation where a join message may be forwarded forever without

being able to reach the node with the appropriate ID. An alternative method

to avoid the infinite forwarding of a join message is to include a time-to-live

(TTL) field in the join message, and discard the message once the field is

decremented to 0.

T
j
2 The function p.bestfinger (aid) finds the best finger of p in order to reach aid .

We omit how fingers are maintained as they do not affect correctness. Note

that the p.r is one of the fingers of p. If the best finger is p itself, then the

new node should be inserted between p and p.r. In our presentation, the right

neighbor is successor and the left neighbor is predecessor.

T4 If a leaving node has been acknowledged, then it changes its ID to the empty
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string ε, so that in action T
j
2 , an out node with an ID of ε always rejects a join

request.

The correctness proofs for the protocol in Figure 4.20 are largely similar to

those shown in Section 4.5 and hence are omitted. We remark that this protocol

can be trivially modified to maintain a ring where the nodes are organized based

on some other criteria (i.e., those that are not based on node IDs), by changing the

implementation of the bestfinger() function. It would be interesting to extend the

protocol to maintain fingers as well.
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process p

var s : {in , out , jng , lvg , busy}; r, l, t, a : V ′; id , rid , lid : identifier
init s = out ∧ r = l = t = nil ∧ id = rid = lid = ε

begin

T
j
1 s = out → id := p.genid(); 〈a, aid 〉 := contact();

if a = p → r, rid , l, lid , s := p, id , p, id , in
[] a 6= p → s := jng ; send join(p, id , aid ) to a fi

T l
1 [] s = in →

if l = p → r, rid , l, lid , s, id := nil, ε,nil, ε, out , ε
[] l 6= p → s := lvg ; send leave(r, rid ) to l fi

T
j
2 [] rcv join(a, aid , pid ) from q →

if id 6= pid → send retry() to a

[] id = pid → 〈b, bid 〉 := p.bestfinger (aid);
if b = p ∧ s = in → send grant(a, aid ) to r;

r, rid , s, t := a, aid , busy , r

[] b = p ∧ s 6= in → send retry() to a

[] b 6= p → send join(a, aid , bid) to b fi fi

T l
2 [] rcv leave(a, aid ) from q →

if s = in ∧ r = q → send grant(r, id ) to a;
r, rid , s, t := a, aid , busy , r

[] s 6= in ∨ r 6= q → send retry() to q fi

T3 [] rcv grant(a, bid) from q →
if l = q → send ack(l, lid , id ) to a; l, lid := a, bid
[] l 6= q → send ack(nil, ε, ε) to a;

l, lid := q, bid fi

T4 [] rcv ack(a, aid , qid) from q →
if s = jng → r, rid , l, lid , s := q, qid , a, aid , in; send done() to l

[] s = lvg → send done() to l;
r, rid , l, lid , s, id := nil, ε,nil, ε, out , ε fi

T5 [] rcv done() from q → s, t := in,nil
T6 [] rcv retry() from q →

if s = jng → s, id := out , ε
[] s = lvg → s := in fi

end

Figure 4.20: The protocol that maintains the Chord ring.
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Chapter 5

Maintenance of Ranch

In this chapter, we present a topology maintenance protocol for Ranch. The protocol

uses those presented in Chapter 4 as a building block. The protocol handles both

joins and leaves concurrently and actively. The protocols presented in this chapter

are simple. For example, the join protocol for Ranch, discussed in Section 5.2, is

much simpler than the join protocols for other topologies (e.g., [5, 22, 37]). Since

we are unaware of other protocols that handle both joins and leaves actively, a

comparison in that regard cannot be made. We again use an assertional method to

prove the correctness of the protocols.

The rest of this chapter is organized as follows. Section 5.1 provides some

preliminaries. Section 5.2 discusses how to handle joins for unidirectional Ranch.

Section 5.3 discusses how to maintain bidirectional Ranch under both joins and

leaves.

5.1 Preliminaries

We extend the definition of the ring function introduced in Chapter 4 as follows. A

set of processes S form a (unidirectional) ring via their x neighbors if for all u, v ∈ S
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(which may be equal to each other), there is an x-path of positive length from u to

v and u.x ∈ S. Formally,

ring(S, x) = 〈∀u, v : u, v ∈ S : u.x ∈ S ∧ path+(u, v, x)〉,

where path+(u, v, x) is similarly defined as in Section 4.1. We use biring(S, x, y) to

mean that a set of processes S form a bidirectional ring via their x and y neighbors,

formally,

biring(S, x, y) = ring(S, x) ∧ ring(S, y) ∧ 〈∀u : u ∈ S : u.x.y = u ∧ u.y.x = u〉.

A set of nodes S form a unidirectional Ranch via their arrays of x neighbors if

ranch(S, x) = 〈∀α :: ring(Sα, x[|α|])〉

holds, and S form a bidirectional Ranch via their arrays of x and y neighbors if

biranch(S, x, y) = 〈∀α :: biring(Sα, x[|α|], y[|α|])〉

holds, where Sα is the set of nodes in S prefixed by α.

The key to maintaining Ranch, therefore, is the joining or leaving of a single

ring: a node generates the next bit of its ID and joins an additional ring; it removes

the last bit of its ID and leaves the ring with the longest bit string, among all the

rings in which the node participates.

5.2 Joins for Unidirectional Ranch

A process joins Ranch ring by ring: it first calls the contact() function to join the

0-ring. After it has joined the α-ring, for some α, if it intends to join one more ring,

it generates the next bit d of its identifier and joins the αd-ring. But how does the

process find an existing process in the αd-ring? Note that we can no longer use the

contact() function for this purpose.
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5.2.1 A Basic Protocol

The idea to overcome this difficulty is as follows. Suppose that process u intends to

join the α0-ring, where |α0| = i. Process u sends a join(u, i, 0) message to u.r[i−1].

This join message is forwarded around the α-ring. Upon receiving the join message,

a process p makes one of the following decisions:

• If a = p (i.e., the join message originates from p and comes back), then the

α0-ring is empty and p creates the α0-ring by setting p.r[i] = p.

• If p is in the α-ring but is not in the α0-ring, then p forwards the join message

to p.r[i − 1].

• If p is not in the α-ring, or p itself is also trying to join the α0-ring, then p

sends a retry message to a.

• If p is in the α0-ring, then p sends a grant message to a, informing a that p is

its r[i] neighbor.

Figure 5.1 shows the join protocol for unidirectional Ranch. Here, we assume

that the contact() function returns a process u where u.s[0] 6= out if there is such a

process, and returns the calling process otherwise.

5.2.2 Proof of Correctness

We next identify an invariant of this protocol. We first introduce a few notations.

Recall that path+(u, v, x) denotes 〈∃i : i > 0 : u.xi = v〉. Let dist(u, v, x) denote the

smallest such i. Note that by definition, dist(u, v, x) > 0 and dist(u, v, x) is unde-

fined if such an i does not exist. In what follows, we use, for example, #join(u, ∗, ∗)
to denote the number of join messages in all the channels with u as the first param-

eter and arbitrary second and third parameters (i.e., “∗” means “don’t care”). We

use, for example, u.r[i..j] 6= nil as a shorthand for 〈∀k : i ≤ k ≤ j : u.r[k] 6= nil〉,
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process p

var id : dynamic bit string; s : dynamic array of {out , in, jng};
r : dynamic array of V ′; a : V ′; i : integer; d : 0..1

init id = ε ∧ s[0] = out
begin

T1 s[k] = out ∨ s[k] = in →
if s[k] = out → a, d := contact (), any
[] s[k] = in → a, d := r[k], random; id := p.grow (id , d) fi;
if a = p → r[k], s[k] := p, in
[] a 6= p → s[k] := jng ; send join(p, k, d) to a fi

T2 [] rcv join(a, i, d) from q →
if a = p → r[k], s[k] := p, in
[] a 6= p ∧ i > 0 ∧ s[i′] = in ∧ (k < i ∨ id [i′] 6= d) →

send join(a, i, d) to r[i′]
[] a 6= p ∧ ((i = 0 ∧ s[i] 6= in) ∨ (i > 0 ∧ (s[i′] 6= in

∨ (k ≥ i ∧ id [i′] = d ∧ s[i] 6= in)))) → send retry() to a

[] a 6= p ∧ (i = 0 ∨ (s[i′] = in ∧ k ≥ i ∧ id [i′] = d)) ∧ s[i] = in →
send grant(r[i]) to a; r[i] := a fi

T3 [] rcv grant(a) from q → r[k], s[k] := a, in
T4 [] rcv retry() from q → s[k] := out ;

if k > 0 → id := p.shrink(id)
[] k = 0 → skip fi

end

Figure 5.1: The basic join protocol for unidirectional Ranch. The contact () func-
tion returns a process a such that a.s[0] 6= out , and it returns the calling process
otherwise. A call to grow (id , d) appends bit d to id ; a call to shrink (id) removes
the last bit from id . We prefix the calls to grow and shrink by “p.” to indicate that,
in contrast to contact(), which is a global function, they are locally implementable.
We use k and i′ as shorthands for |id | and i − 1, respectively. The arrays s and r

have range [0..k]. When s and r grow, their new elements are initialized to out and
nil, respectively.
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I = A ∧ B ∧ C ∧ D ∧ R

A = (u.s[u.k] = jng ≡ f(u) = 1) ∧ f(u) ≤ 1

B1 = u.s[j] = in ≡ u.r[j] 6= nil

B2 = u.s[0..u.k) = in ∧ (u.k = 0 ∨ u.s[u.k] = in|jng)

C1 = (#grant(nil) = 0)

C2 = #join(u, j, e) > 0 ⇒ j = u.k ∧ (j = 0 ∨ e = u.id [j ′])

C3 = m−(join(u, j, ∗), v) > 0 ⇒ u ◦ v ≥ j ∧ ((j = 0 ∧ u 6= v) ∨ v.r ′[j′] 6= nil)

D1 = u 6∈ ∆(v) ∨ v 6∈ ∆(u)

D2 = v ∈ ∆(u) ∧ v.r′[u.k] 6= nil ⇒ 〈∃w : w ∈ Vu.id ∧ w 6∈ ∆(u) : w.r[u.k] 6= nil〉
R = ranch(U, r′)

Figure 5.2: An invariant of the join protocol for unidirectional Ranch. We use j ′ as a
shorthand for j−1. For the sake of brevity, we have omitted the ∀ quantification. All
the predicates above are quantified by ∀ with appropriate dummies. For example,
B = 〈∀u :: B1 ∧ B2〉.

and u.s[i..j) = in as a shorthand for 〈∀k : i ≤ k < j : u.s[k] = in〉. We introduce

the following definitions:

u.r′[i] =











x if i = u.k ∧ m−(grant , u) = 1 ∧ m−(grant(x), u) = 1

u.r[i] otherwise,

∆(u) =



















































Vu.id ∩ {w : 0 < dist(u,w, r′[u.k′]) < dist(u, v, r′[u.k′])}
if u.k > 0 ∧ #join(u, ∗, ∗) = 1 ∧ m−(join(u, ∗, ∗), v) = 1

∧ path+(u, v, r′[u.k′])

∅
otherwise,

f(u) = #join(u, ∗, ∗) + m−(grant , u) + m−(retry , u),

Uα = {u : u.r′[|α|] 6= nil}.

An invariant of this protocol is shown in Figure 5.2.
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Theorem 5.2.1 invariant I.

Proof: Since I clearly holds initially, it suffices to show that every action preserves

every conjunct of I. We observe that C1 is trivially preserved because the only

action that sends a grant message is the last branch of T2, and the guard and B1

imply that r[i] 6= nil.

{I} T1 {I}: Suppose that s[k] = out and a = p. By B2, we have k = 0. [A] This

action preserves p.s[0] 6= jng . [B] This action establishes u.s[0] = in ∧ u.r[0] 6= nil.

[C2,3] Unaffected. [D1] This action preserves ∆(p) = ∅. [D2] The definition of the

contact() function and the definition of ∆ imply that ↑ 〈∀u :: ∆(u) = ∅〉. Hence,

this action does not truthify the antecedent. Since this action adds p to U and

establishes r[0] 6= nil, it does not falsify the consequent. [R] We observe that

↑ contact() returns p

⇒ {def. of contact(); B2}
↑ 〈∀u :: u.k = 0 ∧ u.s[0] = out〉

⇒ {action}
↓ p.r[0] = p ∧ p.s[0] = in ∧ 〈∀u : u 6= p : u.k = 0 ∧ u.s[0] = out〉

⇒ {def. of ranch , r′}
↓ ranch(U, r′).

{I} T1 {I}: Suppose that s[k] = out and a 6= p. [A] This action establishes p.s[0] =

jng and f(p) = 1. [B] This action preserves p.s[0] 6= in. [C2,3] This action establishes

#join(p, 0, ∗) = 1 and m−(join(p, 0, ∗), a) > 0; the consequents clearly also hold.

[D,R] Unaffected.

{I} T1 {I}: Suppose that s[k] = in and then a = p. Let β denote the old p.id .

[A] Unaffected. [B] This action establishes p.s[|βd|] = in and p.r[|βd|] = p. [C2]

It follows from A that l #join(p, ∗, ∗) = 0. [C3] This action does not falsify the
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consequent because it grows p.id and establishes p.r ′[|βd|] 6= nil. [D1] This action

may add p to ∆(u) for some u, but it preserves D1 because ∆(p) remains ∅. [D2]

Since this action preserves ∆(p) = ∅, it may truthify the antecedent only if v = p

and for some u 6= p such that ↑ u ∈ Vβd ∧u.k = |βd|. But this is impossible because

↑ p.s[|β|] = in ∧ p.r[|β|] = p ∧ p ∈ Vβ, and R implies that ↑ u 6∈ Vβ ∨ u.r′[|β|] = nil.

This action does not falsify the consequent because it increases Vβd and establishes

p.r[|βd|] 6= nil. [R] We observe that

↑ p.r[|β|] = p ∧ p.s[|β|] = in

⇒ {A; def. of r′}
↑ p.r′[|β|] = p

⇒ {R; B; def. of r′}
↑ Uβ = {p} ∧ Uβd = ∅

⇒ {action}
↓ Uβd = {p} ∧ p.r′[|βd|] = p

⇒ {R}
↓ ring(Uβd, r

′[|βd|]).

{I} T1 {I}: Suppose that s[k] = in and a 6= p. [A] This action establishes p.s[p.k] =

jng , increases f(p) from 0 to 1, and increments p.k by 1. [B] This action establishes

p.s[p.k] = jng and increments p.k by 1. Note that the new element p.r[p.k] is

initialized to nil. [C2] This action establishes #join(p, p.k, p.id [p.k]) > 0. [C3] It

follows from B that a 6= nil (i.e., the join message is sent to a non-nil process). Let

` be the old p.k. This action establishes m−(join(p, ` + 1, d), a) > 0. We observe

that

↑ p.r[`] = a ∧ p.s[`] = in

⇒ {def. of r′}
↑ p.r′[`] = a
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⇒ {R; action; guard of the second if statement}
l a.r′[`] 6= nil ∧ p ◦ a ≥ ` ∧ a 6= p.

This action does not falsify the consequent because it grows p.id . [D1] This action

preserves ∆(p) = ∅. Thus, even if this action falsifies p 6∈ ∆(v) for some v, it

preserves v 6∈ ∆(p). [D2] Let β be the old p.id . This action does not truthify the

antecedent because ↓ p.r′[|βd|] = nil. This action does not falsify the consequent

because it enlarges Vβd. [R] Unaffected.

{I} T2 {I}: Suppose T2 takes the first branch (i.e., self). [A] This action changes

p.s[p.k] from jng to in and decreases f(p) from 1 to 0. [B] This action establishes

both p.s[p.k] = in and p.r[p.k] 6= nil. [C2] This action removes a join message

and preserves p.id . [C3] This action removes a join message. It does not falsify

the consequent because it establishes p.r ′[p.k] 6= nil. [D1] This action establishes

∆(p) = ∅. [D2] It follows from C2 and C3 that j = p.k > 0. Let p.id = βd. We

observe that before this action

#join(p, ∗, ∗) = 1 ∧ m−(join(p, ∗, ∗), p) = 1

⇒ {B; def. of r′; R}
path+(p, p, r′[|β|])

⇒ {def. of ∆; B; def. of r′}
∆(p) = Vp.id \ {p}

⇒ {D1}
〈∀u : u ∈ Vp.id : p 6∈ ∆(u)〉.

Therefore, this action does not truthify the antecedent. This action does not falsify

the consequent either because it establishes both ∆(p) = ∅ and p.r[p.k] 6= nil. [R]

By the derivation for D2 above, we have
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↑ ∆(p) = Vp.id \ {p}
⇒ {D2; A; def. of r′}

↑ 〈∀u : u ∈ Vp.id : u.r′[p.k] = nil〉
⇒ {action}

↓ ring(Up.id , r′[p.k]).

{I} T2 {I}: Suppose T2 takes the second branch (i.e., forward). [A,B,C2] Un-

affected. [C3] Let w be p.r[i′]. Then C3, B, and the definition of r′ imply that

p.k ≥ i′ ∧ w 6= nil (i.e., the join message is forwarded to a non-nil process).

This action establishes m−(join(a, i, ∗), w) > 0. It follows from C3 and R that

w.r′[i′] 6= nil∧a ◦ p ≥ i∧ p ◦w ≥ i. This action does not falsify the consequent. [D1]

This action preserves ∆(a), due to the guard of this branch and the definition of ∆.

[D2] This action preserves ∆(a). [R] Unaffected.

{I} T2 {I}: Suppose T2 takes the third branch (i.e., retry). [A] This action decre-

ments #join(a, ∗, ∗) by 1 and increments m−(retry , a) by 1, preserving f(a). [B]

Unaffected. [C2,3] This action removes a join message. [D] This action establishes

∆(a) = ∅. [R] Unaffected.

{I} T2 {I}: Suppose this action takes the fourth branch (i.e., grant). [A] This

action decrements #join(a) by 1 and increments m−(grant , a) by 1, preserving f(a).

[B] This action preserves p.r[i] 6= nil, due to the guard of this branch and C2,

which implies that a 6= nil. [C2,3] This action removes a join message, truthifies

a.r′[i] 6= nil, and preserves p.r′[i] 6= nil. [D1] This action establishes ∆(a) = ∅. [D2]

This action establishes both ∆(a) = ∅ and a.r ′[a.k] 6= nil. Hence, it may truthify

the antecedent only if v = a and u.k = a.k, for some u 6= a. If p 6∈ ∆(u), then p

is the w that satisfies the consequent. If p ∈ ∆(u), then there exists some w 6= p

that satisfies the consequent because p ∈ ∆(u) ∧ p.r ′[u.k] 6= nil. This action does

not falsify the consequent because it establishes ∆(a) = ∅ and preserves p.r[i] 6= nil.
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[R] This action changes a.r′[a.k] from nil to the old p.r′[a.k] and changes p.r′[a.k]

to a. Hence, it preserves ring(Ua.id , r[|a.id |]).

{I} T3 {I}: [A] This action falsifies p.s[p.k] = jng and decreases f(p) from 1 to 0

by decrementing m−(grant , p) by 1. [B] This action establishes both p.s[p.k] = in

and p.r[p.k] 6= nil. [C2,3, D1] Unaffected because by the definition of r ′, this action

preserves p.r′[p.k], which is non-nil. [D2] This action establishes p.r[p.k] 6= nil and

preserves p.r′[p.k] 6= nil. Hence it does not truthify the antecedent or falsify the

consequent. [R] This action preserves p.r ′[p.k].

{I} T4 {I}: [A] This action falsifies p.s[p.k] = jng and decreases f(p) from 1 to

0 by decrementing m−(retry , p) by 1. [B] This action shrinks p.id by one bit. It

follows from B and the action that ↓ p.r[0..p.k] 6= nil. [C2] This action shrinks p.id ,

but ↑ m−(retry , p) > 0 and A imply that l #join(p, ∗, ∗) = 0. [C3] This action

does not falsify the consequent because ↑ p.r ′[p.k] = nil. It shrinks p.id but A and

↑ m−(retry , p) imply that l #join(p, ∗, ∗) = 0. [D1,2, R] Unaffected.

Therefore, I is an invariant.

The protocol in Figure 5.1 satisfies two progress properties. Firstly, once all

the grant messages are delivered, by the definition of r ′, we have 〈∀u :: u.r = u.r′〉
and hence ranch(S, r), where S = {u : u.s[0] = in}. Secondly, a join message will

eventually be granted, be declined, or go back to its originator. To see this, we only

need to reason that if a join message is not granted or declined during its traversal

on the, say, α-ring, then it will eventually come back to its originator. This is

true because while the expansion of the α-ring may prevent the join message from

coming back to its originator, the α-ring has to stop expanding eventually because

there are only a finite number of nodes.
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5.2.3 Avoiding Livelocks

The join protocol in Figure 5.1, though correctly maintains the Ranch topology,

may get into the following livelock situation. Suppose that processes u and v are

in the α-ring and they both intend to join the α0-ring, which is empty. The join

message from u and that from v may reach each other at the same time and they

are both rejected. Then u and v may try to join the α0-ring again. This situation

can repeat forever. Hence a livelock. On the other hand, we cannot forward both

of the join messages because that may cause the creation of two α0-rings.

The aforementioned livelock problem partly results from the symmetry of u

and v: they have the same identifier. To overcome this problem, we use an idea

similar to leader election on a ring. We assume a total order on the processes.

There are many ways to achieve such a total order. For example, the processes

can generate a sufficiently large random number, or they can generate in advance

a sufficiently long identifier so that all identifiers are unique. We do not concern

ourselves with the method of achieving such a total order in this dissertation.

With the total order in place, upon receiving a join(a, i, d) message on the

α-ring, if process u is also trying to join the αd-ring, then it compares itself with a

based on the total order. If u < a, then u forwards the join message and sets u.c,

a local variable, to a (i.e., u records that a process with higher order is also trying

to join the αd-ring). If u > a, then u sends a retry message to a. If the join(a, i, d)

message comes back to processes a, then a first compares a.c with a. If a.c > a,

then a withdraws the current attempt to join. If a.c ≤ a, then a forms a singleton

ring.

Figure 5.3 shows a join protocol, which we refer to as the fancy join protocol,

that realizes this idea. This protocol also correctly maintains the Ranch topology;

we omit its correctness proofs because they are similar to those presented in Sec-

tion 5.2.1. We remark that this leader election algorithm is not a serious performance
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process p

var id : dynamic bit string; s : dynamic array of {out , in, jng};
r : dynamic array of V ′; a, c : V ′; i : integer; d : 0..1

init id = ε ∧ s[0] = out
begin

T1 s[k] = out ∨ s[k] = in →
if s[k] = out → a, d := contact (), any
[] s[k] = in → a, d := r[k], random; id := p.grow (id , d) fi;
if a = p → r[k], s[k] := p, in
[] a 6= p → s[k], c := jng , p; send join(p, k, d) to a fi

T2 [] rcv join(a, i, d) from q →
if a = p ∧ c = p → r[k], s[k], c := p, in,nil
[] a = p ∧ c 6= p → s[k], c := out ,nil; id := p.shrink(id)
[] a 6= p ∧ i > 0 ∧ s[i′] = in ∧ (k < i ∨ id [i′] 6= d

∨ (id [i′] = d ∧ s[i] 6= in)) → send join(a, i, d) to r[i′];
if k ≥ i ∧ id [i′] = d → c := max(c, a)
[] k < i ∨ id [i′] 6= d → skip fi

[] a 6= p ∧ ((i = 0 ∧ s[i] 6= in) ∨ (i > 0 ∧ s[i′] 6= in)) →
send retry() to a

[] a 6= p ∧ (i = 0 ∨ (s[i′] = in ∧ k ≥ i ∧ id [i′] = d)) ∧ s[i] = in →
send grant(r[i]) to a; r[i] := a fi

T3 [] rcv grant(a) from q → r[k], s[k], c := a, in,nil
T4 [] rcv retry() from q → s[k], c := out ,nil;

if k > 0 → id := p.shrink(id)
[] k = 0 → skip fi

end

Figure 5.3: The fancy join protocol for unidirectional Ranch. The notational con-
ventions are similar to those used in Figure 5.1.

drawback: the algorithm is invoked only when multiple nodes are competing to join

an empty ring, which does not happen often, because in practice, to achieve good

performance (i.e., logarithmic network diameter), a process joins as many rings as

possible until the smallest ring to which it belongs consists of only a (small) constant

number of processes. Hence, only a constant number of processes compete to join

an empty ring.

Theorem 5.2.2 The fancy join protocol is livelock-free.
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Proof idea: We observe that an attempt to join, say, the α0-ring may only fail due

to one of the following two reasons: (1) the α-ring is expanding, or (2) there is a

process with a higher order also attempting to join the α0-ring. Since there are only

finite number of processes and rings, attempts to join a ring leads to the expansion

of some ring (although maybe a different ring). Hence, the system is livelock-free.

5.3 Maintenance of Bidirectional Ranch

Similar to Section 4.5, our approach to designing a protocol that maintains bidi-

rectional Ranch under both joins and leaves is to first design a join protocol and a

leave protocol, and then combine them. As it turns out, while handling both joins

and leaves for a ring requires an additional conjunct, handling both joins and leaves

for Ranch is much more complicated than handling them separately.

5.3.1 Joins for Bidirectional Ranch

The join protocol for bidirectional Ranch is a simple combination of the ideas in

Sections 4.3 and 5.2. Figure 5.4 shows the protocol. We omit its correctness proofs

as they are subsumed by those to be presented in Section 5.3.3.

5.3.2 Leaves for Bidirectional Ranch

A process leaves Ranch ring by ring, starting from the ring with the longest bit string

among all the rings in which the node participates. The leave protocol for bidirec-

tional Ranch is a straightforward extension of the leave protocol in Section 4.4.

Figure 5.5 shows the protocol. We omit its correctness proofs as they are subsumed

by those to be presented in Section 5.3.3.
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process p

var id : dynamic bit string; s : dynamic array of {out , in, jng , busy};
r, l, t : dynamic array of V ′; a : V ′; i : integer; d : 0..1

init id = ε ∧ s[0] = out
begin

T1 s[k] = out ∨ s[k] = in →
if s[k] = out → a, d := contact (), any
[] s[k] = in → a, d := r[k], random; id := p.grow (id , d) fi;
if a = p → r[k], l[k], s[k] := p, p, in
[] a 6= p → s[k] := jng ; send join(p, k, d) to a fi

T2 [] rcv join(a, i, d) from q →
if a = p → r[k], l[k], s[k] := p, p, in
[] a 6= p ∧ i > 0 ∧ s[i′] = in ∧ (k < i ∨ id [i′] 6= d) →

send join(a, i, d) to r[i′]
[] a 6= p ∧ ((i = 0 ∧ s[i] 6= in) ∨ (i > 0 ∧ (s[i′] 6= in

∨ (k ≥ i ∧ id [i′] = d ∧ s[i] 6= in)))) → send retry() to a

[] a 6= p ∧ (i = 0 ∨ (s[i′] = in ∧ k ≥ i ∧ id [i′] = d)) ∧ s[i] = in →
send grant(r[i]) to a; r[i], s[i], t[i] := a, in, r[i] fi

T3 [] rcv grant(a, i) from q → send ack(l[i]) to a; l[i] := a

T4 [] rcv ack(a) from q → r[k], l[k], s[k] := q, a, in ; send done(k) to l[k]
T5 [] rcv done(i) from q → s[i], t[i] := in,nil
T6 [] rcv retry() from q → s[k] := out

if k > 0 → shrink (id)
[] k = 0 → skip fi

end

Figure 5.4: The join protocol for bidirectional Ranch. The notational conventions
are similar to those used in Figure 5.1.
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process p

var id : dynamic bit string; s : dynamic array of {out , in, jng};
r : dynamic array of V ′; a : V ′; i : integer; d : 0..1

init s[0..k] = in
begin

T1 [] s[k] = in →
if l[k] = p → r[k], l[k], s[k] := nil,nil, out ;

if k > 0 → id := p.shrink(id)
[] k = 0 → skip fi

[] l[k] 6= p → s[k] := lvg ; send leave(r[k], k) to l[k] fi

T2 [] rcv leave(a, i) from q →
if s[i] = in ∧ r[i] = q → send grant(q, i) to a;

r[i], s[i], t[i] := a, busy , r[i]
[] s[i] 6= in ∨ r[i] 6= q → send retry() to q fi

T3 [] rcv grant(a, i) from q → send ack(nil) to a; l[i] := q

T4 [] rcv ack(a) from q → send done(k) to l[k];
r[k], l[k], s[k] := nil,nil, out ;
if k > 0 → id := p.shrink(id)
[] k = 0 → skip fi

T5 [] rcv done(i) from q → s[i], t[i] := in,nil
T6 [] rcv retry() from q → s[k] := in

end

Figure 5.5: The leave protocol for bidirectional Ranch. The notational conventions
are similar to those used in Figure 5.1.

5.3.3 Joins and Leaves for Bidirectional Ranch

Designing a protocol that handles both joins and leaves is a much more challenging

problem than designing two that handle them respectively. In particular, there are

two subtleties.

The first subtlety is as follows. Suppose that there is a join(a, |α0|, 0) message

in transmission from u to v, both of which are in the α-ring. Since we only assume

reliable delivery, when this join message is in transmission, v may leave the α-ring,

and even worse, v may join the α-ring again, but at a different location. If this

happens, then the join message may “skip” part of the α-ring, which may contain

some processes in the α0-ring. Therefore, if the join message comes back to process
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a, it causes a to form a singleton ring, resulting in two α0-rings, which violates the

definition of Ranch. Figure 5.6 describes this subtlety.

The second subtlety is as follows. Suppose that u and v belong to the α-ring

and w is the only process in the α0-ring. Then u decides to join the α0-ring and

sends out a join(u, |α0|, 0) message. But when this message has passed v but has

not reached w, v also decides to join the α0-ring and sends out a join(v, |α0|, 0)
message. Since we only assume reliable delivery, the join(v) message may reach w

earlier than the join(u) message does. Hence, v is granted into the α0-ring, but then

w may leave the α0-ring. Therefore, the join(u) message does not encounter any

process in the α0-ring before it comes back to u, causing u to create the α0-ring.

This violates the Ranch definition, because the α0-ring already exists and consists

of v. Figure 5.7 describes this subtlety.

We use the following idea to overcome these two subtleties. When u decides

to join, say, the α0-ring. It changes u.s[|α|] (from in) to wtg (waiting), a new state.

Upon receiving a join(u, i, 0) message, process v first checks if v.s[i − 1] = in. If so,

v takes appropriate decision as before, and if it needs to forward the join message, v

changes v.s[i−1] to wtg . If not, v sends a retry message to u. After u receives either

a grant or a retry message, it sends an end message, which is forwarded on, to change

the state of those processes which has been set to wtg by its join message back to

in. Intuitively, changing a state to wtg prevents a process from performing certain

join or leave operation that may jeopardize an ongoing join operation. Figure 5.8

describes this idea. The protocol that realizes this idea is shown in Figures 5.9

and 5.10.
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v

join

v

join

Figure 5.6: The first subtlety in maintaining bidirectional Ranch under both joins
and leaves: (a) u sends a join message; (b) v leaves the 01-ring; (c) v joins back the
01-ring but at a different location; (d) the join message from u is forwarded back to
u.
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Figure 5.7: The second subtlety in maintaining bidirectional Ranch under both
joins and leaves: (a) u sends a join(u) message; (b) v forwards the join(u) message
because v has not decided to join the 01-ring yet; (c) v decides to join the 01-ring
and sends a join(v) message; (d) the join(v) message arrives w before the join(u)
message does and v is granted into the 01-ring; (e) all the nodes, except v, leave the
01-ring; (f) the join(u) message comes back to u.
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Figure 5.8: Changing nodes to the wtg (waiting) state.

5.3.4 Proof of Correctness

We next identify an invariant for this protocol. In what follows, we use k ′ as a

shorthand for k − 1. We first introduce some definitions.

f(u) = #join(u, ∗, ∗) + m+(leave, u) + #grant(u, ∗) + m−(ack , u)

+ m−(retry , u),

g(u, i) = m+(grant(∗, i), u) + m−(done(i), u) + h(u, i),

h(u, i) =











m(ack , u.t[i], u.r[i]) + m(ack , u.r[i], u.t[i]) if u.t[i] 6= nil ∧ u.r[i] 6= nil

0 otherwise,

u.r′[i] =



















































v if u.s[i] = jng ∧ #grant(u, i) = 1 ∧ m−(grant(u, i), v) = 1

v if u.s[i] = jng ∧ #grant(u, i) = 0

∧ m−(ack , u) = 1 ∧ m(ack , v, u) = 1

nil if u.s[i] = lvg ∧ #grant(u, i) + m−(ack , u) = 1

u.r[i] otherwise,

113



process p

var id : dynamic bit string;
s : dynamic array of {in, out , jng , lvg , busy ,wtg};
r, l, t : dynamic array of V ′; a : V ′; i : integer; d : [0..1]

init id = ε ∧ s[0] = out
begin

T
j
1 s[k] = out ∨ s[k] = in →

if s[k] = out → a, d := contact(), any
[] s[k] = in → a, d := r[k], random; id := grow (id , d) fi;
if a = p → r[k], l[k], s[k] := p, p, in
[] a 6= p → s[k] := jng ; send join(p, k, d) to a;

if k > 0 → s[k′] := wtg
[] k = 0 → skip fi fi

T l
1 [] s[k] = in →

if l[k] = p → r[k], l[k], s[k] := nil,nil, out ;
if k > 0 → id := shrink (id)
[] k = 0 → skip fi

[] l[k] 6= p → s[k] := lvg ; send leave(r[k], k) to l[k] fi

T
j
2 [] rcv join(a, i, d) from q →

if a = p → r[i], l[i], s[i] := p, p, in;
if i > 0 → s[i′] := in; send end(p, i′) to r[i′]
[] i = 0 → skip fi

[] a 6= p ∧ i > 0 ∧ s[i′] = in ∧ (k < i ∨ id [i′] 6= d) →
s[i′] := wtg ; send join(a, i, d) to r[i′]

[] a 6= p ∧ ((i = 0 ∧ s[i] 6= in) ∨ (i > 0 ∧ (s[i′] 6= in
∨ (k ≥ i ∧ id [i′] = d ∧ s[i] 6= in)))) → send retry() to a

[] a 6= p ∧ (i = 0 ∨ (s[i′] = in ∧ k ≥ i ∧ id [i′] = d)) ∧ s[i] = in →
send grant(a, i) to r[i]; r[i], s[i], t[i] := a, busy , r[i] fi

Figure 5.9: The combined protocol for bidirectional Ranch (to be continued in
Figure 5.10). We use k, k′, and i′ as shorthands for |id |, k−1, and i−1, respectively.
The arrays s, r, l, t all have range [0..k]. When s grows, the new element is initialized
to out ; when r, l, t grow, the new elements are initialized to nil.
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T l
2 [] rcv leave(a, i) from q →

if s[i] = in ∧ r[i] = q → send grant(q, i) to a;
r[i], s[i], t[i] := a, busy , r[i]

[] s[i] 6= in ∨ r[i] 6= q → send retry() to q fi

T3 [] rcv grant(a, i) from q →
if l[i] = q → send ack(l[i]) to a; l[i] := a

[] l[i] 6= q → send ack(nil) to a; l[i] := q fi

T4 [] rcv ack(a) from q →
if s[k] = jng → r[k], l[k], s[k] := q, a, in ; send done(k) to l[k];

if k > 0 → s[k′] := in; send end(a, k′) to r[k′]
[] k = 0 → skip fi

[] s[k] = lvg → send done(k) to l[k]; r[k], l[k], s[k] := nil,nil, out ;
if k > 0 → id := shrink(id)
[] k = 0 → skip fi fi

T5 [] rcv done(i) from q → s[i], t[i] := in,nil
T6 [] rcv retry() from q →

if s[k] = jng → s[k] := out ;
if k > 0 → id := shrink(id); s[k] := in; send end(q, k) to r[k]
[] k = 0 → skip fi

[] s[k] = lvg → s[k] := in fi

T7 [] rcv end(a, i) from q →
if p 6= a → s[i] := in; send end(a, i) to r[i]
[] p = a → skip fi

end

Figure 5.10: The combined protocol for bidirectional Ranch (continuing from Fig-
ure 5.9).
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u.l′[i] =







































































































v if u.s[i] = jng ∧ #grant(u, i) = 1 ∧ m+(grant(u, i), v) = 1

x if u.s[i] = jng ∧ #grant(u, i) = 0 ∧ m−(ack , u) = 1

∧ m−(ack(x), u) = 1

nil if u.s[i] = lvg ∧ #grant(u, i) + m−(ack , u) = 1

x if #grant(u, i) + m−(ack , u) = 0 ∧ m−(grant(∗, i), u) = 1 ∧
m−(grant(x, i), u) = 1 ∧ x.s[i] = jng

v if #grant(u, i) + m−(ack , u) = 0 ∧ m−(grant(∗, i), u) = 1 ∧
m(grant(x, i), v, u) = 1 ∧ x.s[i] = lvg

u.l[i] otherwise,

∆(u) =







































































































X if u.k > 0 ∧ u.s[u.k] = jng ∧ f(u) = 1

∧ m−(join(u, ∗, ∗), v) = 1 ∧ path+(u, v, r′[u.k′])

X if u.k > 0 ∧ u.s[u.k] = jng ∧ f(u) = 1

∧ m+(grant(u, ∗), v) = 1 ∧ path+(u, v, r′[u.k′])

X if u.s[u.k] = jng ∧ f(u) = 1

∧ m−(ack(v), u) = 1 ∧ path+(u, v, r′[u.k′])

X if u.s[u.k] = jng ∧ f(u) = 1

∧ m(retry , v, u) = 1 ∧ path+(u, v, r′[u.k′])

∅ otherwise,

where

X = {u} ∪ {w : 0 < dist(u,w, r′[u.k′]) < dist(u, v, r′[u.k′])}.

We use µ and ν to denote instances of the end message and, with a slight abuse of

notation, we use µ1 to denote the first parameter of µ and we use µ2 to denote the

second parameter of µ. For every instance µ of the end message, where µ is being
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sent to u and µ1 = v, define Γ(µ) to be:

Γ(µ) =



































{u} ∪ {w : 0 < dist(u,w, r′[µ2]) < dist(u, v, r′[µ2])}
if path+(u, v, r′[µ2]) ∧ u 6= v

∅
otherwise.

An invariant of the combined protocol is shown in Figure 5.11. In order to reuse the

proofs in Section 4.5, we do not strive to simplify the invariant in Figure 5.11. For

example, the C and F conjuncts can be combined, but we do not do so because the

C conjunct is almost identical to the C conjunct of the invariant for the combined

protocol for a single ring presented in Section 4.5.

Theorem 5.3.1 invariant I.

Proof: It suffices to check that every action preserves every conjunct of I. We

observe that conjunct D1 is trivially preserved by every action.

{I} T
j
1 {I}: [A1] If a join message is sent, then this action establishes both p.s[p.k] =

jng and f(p) = 1. If no join message is sent, then this action preserves both

p.s[p.k] 6= jng |lvg and f(p) = 0. [A2] This action preserves p.s[p.k] 6= busy . [A3] This

action either preserves p.k = 0 or increments p.k by 1; in either case, it establishes

p.s[p.k] = in|jng . [B1] If a join message is sent, then ↓ p.s[p.k] = jng ∧ p.r[p.k] =

p.l[p.k] = nil. If no join message is sent, then ↓ p.s[p.k] = in∧p.r[p.k] = p.l[p.k] = p.

[B2] This action changes a state from out |in to in|jng . [C] Similar to the proof for a

ring. [Ej
1] Suppose that a join message is sent. If p.k remains 0, then the consequent

clearly holds. If p.k becomes positive, then this action establishes p.s[p.k ′] = wtg

and sends the join message to p.r[p.k ′], and R implies that path+(p, p, r′[p.k′]). [El
1]

This action preserves m+(leave , p) = 0. [E2] This action may falsify the consequent

only if x = p. But A1 implies that l #grant(p, ∗) = 0. [Ej
3, E

j
5] This action may

truthify the antecedents or falsify the consequents only if v = p. But A1 implies that
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I = A ∧ B ∧ C ∧ D ∧ E ∧ F ∧ R

A1 = (u.s[u.k] = jng |lvg ≡ f(u) = 1) ∧ f(u) ≤ 1
A2 = (u.s[j] = busy ≡ g(u, j) = 1) ∧ g(u, j) ≤ 1
A3 = u.s[0..u.k) = in|busy |wtg ∧ (u.k = 0 ∨ u.s[u.k] 6= out)
B1 = (u.s[j] 6= out |jng ≡ u.r[j] 6= nil ∧ u.l[j] 6= nil)

∧ (u.r[j] 6= nil ≡ u.l[j] 6= nil)
B2 = u.s[j] = busy ≡ u.t[j] 6= nil
C l

1 = m+(leave(x, j), u) > 0 ⇒ u.k = j ∧ u.s[j] = lvg ∧ u.r[j] = x

C
j
2 = m(grant(x, j), u, v) > 0 ∧ x.s[j] = jng ⇒ u.t[j] = v ∧ v.l[j] = u

C l
2 = m(grant(x, j), u, v) > 0 ∧ x.s[j] = lvg

⇒ u.t[j] = x ∧ u.r[j] = v ∧ v.l[j] = x ∧ x.l[j] = u

C
j
3 = m(ack(x), u, v) > 0 ∧ v.s[v.k] = jng ⇒ x.t[v.k] = u ∧ x.r[v.k] = v

C l
3 = m(ack(x), u, v) > 0 ∧ v.s[v.k] = lvg

⇒ x = nil ∧ v.l[v.k].t[v.k] = v ∧ v.l[v.k].r[v.k] = u

C4 = m(done(j), u, v) > 0 ⇒ v.t[j] 6= nil
D1 = #grant(nil, ∗) = 0
D2 = #join(u, j, e) > 0 ⇒ j = u.k ∧ (j = 0 ∨ e = u.id [j ′])

E
j
1 = m(join(w, j, ∗), u, v) > 0

⇒ (j = 0 ∧ u 6= v) ∨ (u.s[j ′] = wtg ∧ u.r[j ′] = v ∧ path+(w, u, r′[j′]))
E2 = m(grant(x, j), u, v) > 0

⇒ j = x.k ∧ (j = 0 ∨ x.s[j] = lvg ∨ path+(x, u, r′[j′]))

E
j
3 = m(ack(x), u, v) > 0 ∧ v.s[v.k] = jng ∧ v.k ≥ 1 ⇒ path+(v, x, r′[v.k′])

E
j
5 = m(retry , u, v) > 0 ∧ v.s[v.k] = jng ∧ v.k ≥ 1 ⇒ path+(v, u, r′[v.k′])

E6 = m−(end(v, j), u) > 0 ⇒ u = v ∨ path+(u, v, r′[j]))
F1 = u.k = v.k ⇒ ∆(u) ∩ ∆(v) = ∅
F2 = µ2 = ν2 ⇒ Γ(µ) ∩ Γ(ν) = ∅
F3 = µ2 = u.k′ ⇒ ∆(u) ∩ Γ(µ) = ∅
F4 = ∆(u) ∩ Uu.id ⊆ {u}
F5 = v ∈ ∆(u) ⇒ v.s[u.k′] = wtg
F6 = u ∈ Γ(µ) ⇒ u.s[µ2] = wtg
R = biranch(U, r′, l′)

Figure 5.11: An invariant of the combined protocol for bidirectional Ranch. For the
sake of brevity, we have omitted the ∀ quantification. All the predicates above are
quantified by ∀ with appropriate dummies. For example, B = 〈∀u :: B1 ∧ B2〉.
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l m−(ack , p) + m−(retry , p) = 0. [E6] This action does not falsify the consequent

because it does not falsify path+(u, v, r′[j]) for any u, v, j. [F1,4] This action preserves

∆(p) = ∅. [F2,3] This action does not generate or remove any end message, it does

not falsify path+(u, v, r′[j]) for any u, v, j and it preserves ∆(p) = ∅. [F5] This action

preserves ∆(p) = ∅ and does not falsify v.s[j] = wtg for any v, j. [F6] This action

does not truthify the antecedent because, if a join message is sent, then all the r ′

values are preserved, and if no join message is sent, then after the action, p is the

only process with some r′ value becomes p. This action does not falsify u.s[j] = wtg

for any u, j. [R] If this action does not send a join message, then it creates the

β-ring, where β is the new p.id . If this action sends a join message, then it does

not affect R.

{I} T l
1 {I}: [A1] Similar to the proof for a ring. [A2] Similar to the proof for a

ring. [A3] Let ` be the new p.k. The first branch either establishes p.s[0] = out

or p.s[`] = in|busy |wtg (by A3). The second branch changes p.s[`] from in to lvg .

[B1] Similar to the proof for a ring. [B2] Similar to the proof for a ring. [C] Similar

to the proof for a ring. [D2] By A1, l #join(p, ∗, ∗) = 0. [Ej
1 , first branch] Let `

be the old p.k. By R, before this action, p is the only process whose r ′[`] value is

p. Hence, this action may falsify the consequent only if u = p. But ↑ p.s[`] = in.

[Ej
1, second branch] This action does not falsify the consequent because it preserves

p.s[`] 6= wtg . [El
1, first branch] By A1, l m+(leave, p) = 0. [El

1, second branch]

This action establishes m+(leave(p, p.k), p) > 0. [E2, first branch] This action may

falsify the consequent only if x = p, but A1 implies that l #grant(p, ∗) = 0. [E2,

second branch] This action preserves p.s[p.k] 6= jng . [E j
3, first branch] This action

may falsify the consequent only if x = p. But A1 implies that l #ack(p) = 0. [Ej
3,

second branch] This action preserves p.s[p.k] 6= jng . [E j
5, first branch] This action

may falsify the consequent only if u = p. But C3 implies that l m−(retry , p) = 0.

[Ej
5, second branch] This action preserves p.s[p.k] 6= jng . [E6] This action may falsify
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the consequent only if u = v = p. [F1, first branch] Let β be the old p.id . Since

before this action, p is the only process on the β-ring, removing p from the β-ring

does not affect any ∆ value. [F1, second branch] Unaffected. [F2, first branch] By

E6, if p has any incoming end(u, `) message, then u = p. Hence, removing p from

the β-ring preserves the emptiness of the Γ value of those messages. [F2, second

branch] Unaffected. [F3, first branch] This action preserves all the Γ and ∆ values.

It may truthify the antecedent only if u = p, but l ∆(p) = ∅. [F3, second branch]

Unaffected. [F4] This action preserves ∆(p) = ∅ and the first branch establishes

Uβ = ∅ where β is a the old p.id . [F5,6] This action preserves all the ∆ and Γ

values and preserves p.s[`] 6= wtg . [R, first branch] This action removes p from the

singleton β-ring. [R, second branch] Unaffected.

{I} T
j
2 {I}: Suppose that this action takes the first branch (i.e., self). [A1] This

action decreases f(p) from 1 to 0 and establishes p.s[p.k] = in. [A2] This action

does not truthify p.s[j] = busy for any j. [A3] This action changes p.s[p.k] from jng

to in, and changes p.s[p.k− 1] from wtg to in if necessary. [B1] This action changes

p.s[p.k] from jng to in and truthifies both p.r[p.k] 6= nil and p.l[p.k] 6= nil. [B2]

This action preserves p.s[p.k] 6= busy. [C l
1] By A1 and ↑ #join(p, ∗, ∗) > 0, we have

l m+(leave , p) = 0. [C2,3] This action truthifies p.r[p.k] 6= nil and p.l[p.k] 6= nil.

Hence it does not falsify any of the consequents. [C4] Unaffected. [D2] This action

removes a join message and falsifies both p.s[p.k] = jng and p.s[p.k ′] = wtg if

necessary. [Ej
1] This action removes a join message. It may falsify the consequent

only if u = p and j = p.k. We observe that there is no outgoing join(x, p.k, ∗)
message from p, for any x, because otherwise, by the definition of ∆ and by E

j
1, p ∈

∆(p) ∧ p ∈ ∆(x), contradicting F1. [E2] This action does not falsify the consequent

because it preserves p.s[p.k] 6= lvg and truthifies p.r ′[p.k] 6= nil. [Ej
3, E

j
5] This action

falsifies p.s[p.k] = jng and truthifies p.r ′[p.k] 6= nil. [E6] This action does not falsify

the consequent because it truthifies p.r ′[p.k] 6= nil. [F1] This action preserves p.k and

120



truthifies ∆(p) = ∅. [F2] Let S be the old ∆(p). This action creates a new instance

ρ of the end message, and Γ(ρ) = S \ {p}. Thus, by F3, this action preserves F2.

[F3] By F1, this action preserves F3. [F4] Let β be p.id . By R and the definition

of ∆, ↑ ∆(p) = Vp.id [0..p.k′). Hence, F4 and ↑ p.r′[p.k] = nil imply that ↑ Uβ = ∅.
This action puts p into Uβ but establishes ∆(p) = ∅. [F5] This action does not

truthify the antecedent because it establishes ∆(p) = ∅. This action may falsify the

consequent only if v = p and u.k = p.k. But F1 implies that p does not belong

to ∆(u) of any u such that u.k = p.k and u 6= p. [F6] This action creates a new

instance ρ of the end message such that Γ(ρ) = S \ {p} where S is the old ∆(p).

Hence, by F5, this action preserves F6. [R] This action creates a singleton β-ring.

{I} T
j
2 {I}: Suppose that this action takes the second branch (i.e., forward). [A1]

This action preserves f(a) = 1. [A2] Unaffected. [A3] Unaffected. [B1] Unaffected.

[B2] Unaffected. [C] Unaffected because this action changes p.s[i′] from in to wtg .

[D2] This action forwards the join message unchanged. [E j
1] This action establishes

both m(join(a, i, ∗), p, p.r[i′]) > 0 and p.s[i′] = wtg . By E
j
1, ↑ path+(a, q, r′[i′]) ∧

q.r′[i′] = p. Hence, ↓ path+(a, p, r′[i′]). [E2, E
j
3, E

j
5] This action preserves p.s[i′] 6=

jng . [E6] Unaffected. [F1] This action adds p to ∆(a), and F1 is preserved due to

F5. [F2] Unaffected. [F3] This action adds p to ∆(a), and F3 is preserved due to F6.

[F4] This action adds p to ∆(a), but due to the guard of this branch, p 6∈ Ua.id . [F5]

This action adds p to ∆(a) and truthifies p.s[a.k ′] = wtg . [F6] This action truthifies

p.s[i′] = wtg . [R] Unaffected.

{I} T
j
2 {I}: Suppose that this action takes the third branch (i.e., retry). [A1] This

action preserves f(a). [A2] Unaffected. [A3] Unaffected. [B1] Unaffected. [B2]

Unaffected. [C] Unaffected. [D2] This action removes a join message. [Ej
1] This

action removes a join message. [E2, E
j
3, E6] Unaffected. [Ej

5] This action truthifies

m(retry , p, a) > 0, and E
j
1 implies that if a.k ≥ 1, then path+(a, p, r′[a.k′]). [F ]

Unaffected because ∆(p) is preserved. [R] Unaffected.
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{I} T
j
2 {I}: Suppose that this action takes the fourth branch (i.e., grant). [A1]

Similar to the proof for a ring. [A2] Similar to the proof for a ring. [A3] This action

changes p.s[i] from in to busy . [B1] Similar to the proof for a ring. [B2] Similar to

the proof for a ring. [C] Similar to the proof for a ring. [D2] This action removes

a join message. [Ej
1] This action removes a join message. It does not falsify the

consequent because ↑ p.s[i′] 6= wtg and this action does not falsify path+(w, u, r′[j′])

for any w, u, j because it changes p.r ′[i] to a and changes a.r′[a.k] from nil to the old

p.r′[i]. [E2] Let w be the old p.r[i]; B1 implies that w 6= nil. This action establishes

m(grant(a, i), p, w) > 0. By D2, i = a.k ∧ a.s[i] = jng , and by E
j
1, if i ≥ 1, then

path+(a, p, r′[i′]). This action does not falsify the consequent because it preserves

p.k and p.s[i] 6= jng , and this action does not falsify path+(x, u, r′[j′]) for any x, u, j.

[Ej
3, E

j
5] This action preserves p.s[i] 6= jng and does not falsify path+(v, x, j) for any

v, x, j. [E6] This action does not falsify path+(u, v, r′[j]) for any u, v, j. [F1] This

action preserves ∆(a). Since ↑ p.s[i] = in ∧ a.s[i] = jng , by F5, neither of them is in

∆(w) where w.k = i + 1. Hence, changing p.r ′[i] and a.r′[i] does not affect any ∆

value. [F2] Since ↑ p.s[i] = in ∧ a.s[i] = jng , by F6, neither of them is in Γ(ρ) where

ρ.k = i. Hence, changing p.r′[i] and a.r′[i] does not affect any Γ value. [F3] Similar

to F1. Unaffected. [F4] Let β be a.id . This action preserves ∆(a). It truthifies

a.r′[a.k] 6= nil and hence adds a to Uβ. [F5] This action preserves both ∆(a) and

p.s[i] 6= wtg . [F6] Similar to F2, all Γ values are preserved, and this action preserves

p.s[i] 6= wtg . [R] Similar to the proof for a ring.

{I} T l
2 {I}: [A1] Similar to the proof for a ring. [A2] Similar to the proof for a ring.

[A3, first branch] This action changes p.s[i] from in to busy . [A3, second branch]

Unaffected. [B1] Similar to the proof for a ring. [B2] Similar to the proof for a

ring. [C] Similar to the proof for a ring. [D2] Either branch preserves p.id . [Ej
1,

first branch] This action may falsify the consequent only if u = p or u = a. But

↑ p.s[i] 6= wtg and ↑ a.s[i] 6= wtg . [Ej
1, second branch] Unaffected. [E2, first branch]
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Let w be the old p.r[i]. This action establishes m(grant(q, i), p, w) > 0. By C l
1, we

have i = q.k. This action may falsify the consequent only if u = q and j ′ = q.k. But

A1 and C l
2 imply that l m+(grant(∗, q.k+1), q) = 0. [E2, second branch] Unaffected.

[Ej
3, first branch] This action preserves p.s[i] 6= jng . It may falsify the consequent

only if x = q. But C3 implies that l #ack(q) = 0. [Ej
3, second branch] Unaffected.

[Ej
5, first branch] This action preserves p.s[i] 6= jng . It may falsify the consequent

only if u = q. But ↑ p.s[i] = in. [Ej
3, second branch] This action establishes

m(retry , p, q) > 0, but q.s[q.k] 6= jng . [E6, first branch] This action may falsify the

consequent only if v = q and j = q.k. If ↑ m−(end(q, q.k), w) > 0 for some w, then

by F6, ↑ p.s[q.k] = wtg because ↑ p ∈ Γ(µ) for some µ, contradicting ↑ p.s[q.k] = in.

[E6, second branch] Unaffected. [F1, first branch] Since ↑ p.s[i] = in ∧ q.s[i] = lvg ,

by F5, we have p 6∈ ∆(w) and q 6∈ ∆(w) for any w such that w.k = i + 1. Hence,

this action preserves all the ∆ values. [F1, second branch] Unaffected. [F2, first

branch] By F6, we observe that this action preserves all the Γ values. [F2, second

branch] Unaffected. [F3] Similar to F1 and F2. This action preserves all the ∆ and Γ

values. [F4, first branch] This action preserves all the ∆ values and removes q from

Uq.id . [F4, second branch] Unaffected. [F5, first branch] This action preserves all

the ∆ values and preserves both p.s[i] 6= wtg and q.s[i] 6= wtg . [F5, second branch]

Unaffected. [F6] Similar to F5. [R] Similar to the proof for a ring.

{I} T3 {I}: [A1] Similar to the proof for a ring. [A2] Similar to the proof for a

ring. [A3] Unaffected. [B1] Similar to the proof for a ring. [B2] Similar to the proof

for a ring. [C] Similar to the proof for a ring. [D2] Unaffected. [Ej
1] Unaffected.

[E2] This action removes a grant message. [Ej
3, first branch] This action establishes

m(ack(q), p, a) > 0. By E2, we have ↑ path+(a, q, r′[a.k′]). [Ej
3 , second branch] We

observe that ↑ a.s[i] = lvg . [Ej
5] Unaffected. [E6] Unaffected. [F ] Unaffected. [R]

Similar to the proof for a ring.

{I} T4 {I}: Suppose that this action takes the first branch. [A1] Similar to the
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proof for a ring. [A2] Similar to the proof for a ring. [A3] This action changes

p.s[p.k] from jng to in and changes p.s[p.k ′] from wtg to in if necessary. [B1] Similar

to the proof for a ring. [B2] Similar to the proof for a ring. [C] Similar to the

proof for a ring. [D2] This action may falsify the consequent only if u = p. But

A1 implies that l #join(p, ∗, ∗) = 0. [Ej
1] This action may falsify the consequent

only if u = p and j = p.k. But p has no outgoing join(w, p.k, ∗) message for any

w because that makes p ∈ ∆(p) and p ∈ ∆(w), violating F1. [E2] This action

preserves p.s[p.k] 6= lvg. [Ej
3] This action removes an ack message and falsifies

p.s[p.k] = jng . [Ej
5] This action falsifies p.s[p.k] = jng . [E6] Let w be p.r[p.k′]. This

action establishes m(end(a, p.k′), w) > 0. If a 6= w, then by E2 and ↑ p.r′[p.k′] = w,

we have ↓ path+(w, a, r′[p.k′]). [F1] This action establishes ∆(p) = ∅. [F2] Let S

be the old ∆(p). This action creates an instance ρ of the end message such that

Γ(ρ) = S \ {p}. Hence, by F3, this action preserves F2. [F3] By F1, this action

preserves F3. [F4] This action establishes ∆(p) = ∅. [F5] This action establishes

∆(p) = ∅ and falsifies p.s[p.k′] = wtg . By F1, we observe that p 6∈ ∆(w) for any w

such that w.k = p.k. [F6] By F5, this action preserves F6. [R] Similar to the proof

for a ring.

{I} T4 {I}: Suppose that this action takes the second branch. [A1] Similar to the

proof for a ring. [A2] Similar to the proof for a ring. [A3] This action changes

p.s[p.k] from lvg to out , and shrinks p.id if necessary. [B1] Similar to the proof for

a ring. [B2] Similar to the proof for a ring. [C] Similar to the proof for a ring.

[D2] This action may falsify the consequent only if u = p, but A1 implies that

l join(p, ∗, ∗) = 0. [Ej
1] This action preserves p.s[`] 6= wtg , where ` is the old p.k.

[E2] This action falsifies p.s[p.k] = lvg . [Ej
3] This action removes an ack message

and preserves p.s[p.k] 6= jng and decreases p.k by 1. [E j
5] This action preserves

p.s[p.k] 6= jng . [E6] Unaffected. [F ] Unaffected. Note that this action preserves

p.s[p.k] 6= wtg . [R] Similar to the proof for a ring.
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{I} T5 {I}: [A1] Similar to the proof for a ring. [A2] Similar to the proof for a ring.

[A3] This action changes p.s[i] from busy to in. [B1] Similar to the proof for a ring.

[B2] Similar to the proof for a ring. [C] Similar to the proof for a ring. [D2, E, F ]

Unaffected. [R] Similar to the proof for a ring.

{I} T6 {I}: Suppose that this action takes the first branch. [A1] Similar to the proof

for a ring. [A2] Similar to the proof for a ring. [A3] This action changes p.s[p.k] from

jng to out and p.s[p.k′] from wtg to in if necessary. [B1] Similar to the proof for a

ring. [B2] Similar to the proof for a ring. [C] Similar to the proof for a ring. [D2]

This action may falsify the consequent only if u = p. But A1 and ↑ m−(retry , p) > 0

imply that l #join(p, ∗, ∗) = 0. [Ej
1] This action falsifies p.s[`] = wtg if necessary,

where ` is the new p.k. We observe that p has no other outgoing join(w, `, ∗)
message because otherwise ↑ p ∈ ∆(p) ∧ p ∈ ∆(w), violating F1. [E2] This action

may falsify the consequent only if x = p. But A1 and ↑ m−(retry , p) > 0 imply

that l #grant(p, ∗) = 0. [Ej
3] This action falsifies p.s[p.k] = jng . [Ej

5] This action

removes a retry message and falsifies p.s[p.k] = jng . [E6] Let ` be the new p.k and

let w be p.r[`]. This action establishes m(end(q, `), w) > 0. If q 6= w and ` ≥ 1,

then by E
j
5, we have path+(w, q, r′[`]). [F1] This action establishes ∆(p) = ∅. [F2]

Let S be the old ∆(p). Then this action creates an instance ρ of the end message

such that Γ(ρ) = S \ {p}. Then by F3, this action preserves F2. [F3] By F1, this

action preserves F3. [F4] This action establishes ∆(p) = ∅. [F5] This action falsifies

p.s[`] = wtg . But F1 implies that ↑ p 6∈ ∆(w) for any w such that w.k = ` + 1. [F6]

This action falsifies p.s[`] = wtg . But F3 implies that ↑ p 6∈ Γ(ρ) for any ρ such that

ρ.k = `. [R] Similar to the proof for a ring.

{I} T6 {I}: Suppose that this action takes the second branch. [A1] Similar to the

proof for a ring. [A2] Similar to the proof for a ring. [A3] This action changes

p.s[p.k] from lvg to out and shrinks p.id if necessary. [B1] Similar to the proof for

a ring. [B2] Similar to the proof for a ring. [C] Similar to the proof for a ring.
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[D2] This action may falsify the consequent only if u = p, but A1 implies that

l join(p, ∗, ∗) = 0. [Ej
1] This action preserves p.s[p.k] 6= wtg . [E2] This action may

falsify the consequent only if x = p. But A1 implies that l #grant(p, ∗) = 0. [Ej
3]

This action preserves p.s[p.k] 6= jng . [Ej
5 ] This action preserves p.s[p.k] 6= jng . [E6]

Unaffected. [F ] Unaffected. [R] Similar to the proof for a ring.

{I} T7 {I}: If p = a, then I is trivially preserved because this action only removes

an end message. Suppose that p 6= a. [A,B] By F6, this action changes p.s[i] from

wtg to in. [C] By F6, this action changes p.s[i] from wtg to in. [D2] It follows

from A1 that l #join(p, ∗, ∗) = 0. [Ej
1] This action falsifies p.s[i] = wtg . But F3

implies that p does not have any outgoing join(w, i + 1, ∗) message. [E2, E
j
3, E

j
5 ]

This action preserves p.s[i] 6= lvg and p.s[i] 6= jng . [E6] This action establishes

m−(end(a, i), p.r[i]) > 0. If a 6= p.r[i], then E6 implies that ↓ path+(p.r[i], a, r′[i]).

[F1] Unaffected. [F2] This action removes an instance ρ, and creates an instance

ρ′, of the end message, such that Γ(ρ) = Γ(ρ′) ∪ {p}. [F3] Similar to F2. [F4]

Unaffected. [F5] This action falsifies p.s[i] = wtg . But F3 implies that p 6∈ ∆(w)

such that w.k = i + 1. [F6] This action falsifies p.s[i] = wtg . But F2 implies that

p 6∈ Γ(ρ) such that ρ.k = i. [R] Unaffected.

Therefore, I is an invariant.

The protocol in Figures 5.9 and 5.10 satisfy progress properties similar to

those stated in Section 5.2.2. That is, the protocol restores the bidirectional Ranch

topology once relevant messages are delivered, and a join or an end message will not

be forwarded forever. The reasoning is similar to that presented in Section 5.2.2. To

see that an end message will not be forwarded forever, consider an end(v, i) message

with sender u. Note that every node w on the path from u to v satisfies w.s[i] = wtg

and hence cannot change its r[i]. Hence, the end message will be forwarded until v

is encountered, where the end message is removed.
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5.3.5 Discussions

A desirable property for a topology maintenance protocol is that a process that has

left the network does not have any incoming message related to the network. This

property, however, is not provided by the protocol in Figures 5.9 and 5.10 if we only

assume reliable, but not ordered delivery. On the other hand, if we assume reliable

and ordered delivery of messages and we extend the protocol using a method similar

to the one suggested in Section 4.6, then the extended combined protocol provides

this property.

This combined protocol in Figures 5.9 and 5.10 is not livelock-free. In fact,

as pointed out in Section 4.4, the leave protocol for a single ring is not livelock-free.

We remark that this property is not provided by existing work either; see a detailed

discussion in Chapter 2 and in [33]. Lynch et al. [39] have noted the similarity

between this problem and the classical dining philosophers problem, for which there

is no deterministic symmetric solution that avoids starvation [29]. However, one

may use a probabilistic algorithm similar to the one in [29] to provide this property,

or, as in the Ethernet protocol, a process may delay a random amount of time before

sending out another leave request.
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Chapter 6

Simulation Results

This chapter presents some preliminary simulation results. Our main focus is on

the scalability and locality awareness of Ranch.

6.1 Simulation Setup

We have implemented in C++ a simulator for Ranch. All experiments are done

on a Dell Dimension 340 with Intel Pentium 4 CPU and 512MB memory. All

experimental results are the average of 10 runs.

6.2 Scalability Properties

This section evaluates the scalability properties of Ranch. We evaluate node node

ID lengths, node degrees, efficiency of joins, and lookup hops.

As shown in Section 3.3, node ID lengths are O(log n) whp. Figure 6.1 shows

the ID lengths. The x axis is the number of nodes in the network; we simulate up

to 219 = 524, 288 nodes. The y axis is the ID lengths divided by lg n. The figure

shows five plots:
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Figure 6.1: ID lengths.

max: maximum ID length among all the nodes in the network;

99 percentile: 99% of the node IDs are below this plot;

avg: the average node IDs;

1 percentile: 1% of the node IDs are below this plot.

min: minimum ID length among all the nodes in the network.

We use the efficient implementation in our experiments (i.e., every node

keeps the right neighbors and flip neighbors). Figure 6.2 shows the in-degrees of

the nodes. Figure 6.3 shows the out-degrees of the nodes. Figure 6.4 shows the

number of messages expended for joins. Figure 6.5 shows the number of messages

expended for lookups. The meanings of the plots are similar to those of Figure 6.1.

Figure 6.5 shows the distribution of the number of messages for lookups. These sim-
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Figure 6.2: In-degrees.

ulation results confirm our theoretical results on the scalability of Ranch, analyzed

in Section 3.3.

6.3 Locality Awareness

Ranch exploits locality by correlating the nodes in the rings to the physical locations

of the nodes. This section evaluates the effectiveness of this approach. Clearly,

the effectiveness depends on the underlying metric space. To make our case, we

only investigate a simple metric space: the 2-dimensional Euclidean metric space.

In particular, we randomly put n points on a 1 × 1 square. To investigate the

effectiveness of Ranch, we compare the average lookup distance in Ranch with that

in Chord and with that in PRR. We choose these two topologies because PRR is

cost-minimizing, while Chord ignores locality, at least in its basic construction.
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Figure 6.3: Out-degrees.
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Figure 6.4: Efficiency of joins.
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Clearly, for Ranch to exploit locality effectively, Ranch needs to create a

“good ring”. A simple way to create such a ring is to use the minimum-spanning

tree approximation algorithm to construct a travelling sales person tour. (See, e.g.,

the CLRS book [15] for a description of this algorithm.) It is worth noting that

the MST algorithm only creates a ring within a factor of two of the optimum. In

fact, many known algorithms can produce a ring within only a few percent of the

optimum. (See, e.g., [28] for such algorithms.) However, the point we are trying

to make is that Ranch need not rely on an optimal ring to be locality-effective; a

reasonably good ring suffices.

Figure 6.7 shows the average lookup distance for Ranch, PRR, and Chord.

There are two plots for Ranch. One is “random”, which means Ranch simply orga-

nize the nodes into a random ring, disregarding their actual locations. The other is

“MST”, which means Ranch uses the MST algorithm to organize the nodes into a

ring. Figure 6.7 shows that a reasonably good ring significantly reduces the aver-

age lookup distance. In practice, many methods or heuristics can be employed to

construct a locality-aware ring.
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Chapter 7

Concluding Remarks

In this dissertation, we have presented Ranch, a simple dynamic network topology

for structured peer-to-peer networks. Ranch has a number of desirable properties,

including scalability, locality awareness, and fault tolerance. We have addressed

topology maintenance, a central problem for structured peer-to-peer networks. We

have designed, and proved the correctness of, protocols that maintain the ring topol-

ogy, the basis of several structured peer-to-peer networks. The protocols handle

both joins and leaves and they maintain the ring topology actively (i.e., they up-

date neighbor variables once a join or a leave occurs). We have used an assertional

method to prove the correctness of the protocols. Using the protocol that maintains

a ring as a building block, we have presented protocols, along with their assertional

proofs, that actively maintain the Ranch topology under both joins and leaves.

In Chapter 3, we have pointed out that Ranch exploits locality by correlating

the logical rings with the physical location of the nodes. It remains an open prob-

lem how to construct the logical rings that has provable locality properties, under

arbitrary classes of metric spaces. It is well-known that PRR is a cost-minimizing

topology. How well does Ranch compare to PRR? For example, given any metric

space, how to construct the logical rings such that the average lookup distance in
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Ranch is within a constant factor of that in PRR?

Our work on topology maintenance is only the first step towards providing

practical topology maintenance protocols that have rigorous theoretical foundations.

Firstly, the protocols we presented maintain topologies in the fault-free environment.

In practice, topology maintenance protocols should be fault-tolerant. Extending

our protocols to handle various kinds of faults would be an interesting research

problem. Secondly, it would be interesting to obtain machine-checked proofs for

our protocols, using a general-purpose theorem prover like ACL2 [26]. Thirdly, it

would be interesting to investigate whether certain techniques such as reduction

and composition can help to reduce the proof lengths. Fourthly, as pointed out in

Chapters 4 and 5, our protocols do not provide certain progress properties. Hence,

it would be interesting to design protocols that provide those progress properties.
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Appendix A

Tail Bounds for the Binomial

Distribution

In this section we state several standard bounds on the tail of the binomial distri-

bution. See, for example, the text by Alon and Spencer [2] for derivations of these

inequalities.

Let n be a nonnegative integer and let p be a real [0, 1]. Let X denote the

random variable corresponding to the total number of successes in n independent

Bernoulli trials, each of which succeeds with probability p. The random variable X

is said to be binomially distributed with parameters n and p. Note that E [X] = np;

let µ denote E [X].

The following pair of inequalities are useful for bounding the upper tail of

the binomial distribution. The first is valid for all δ in [0, 1]:

Pr [X ≥ (1 + δ)µ] ≤ e−δ2µ/3. (A.1)

The second holds for all δ ≥ 0:

Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ

. (A.2)
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The following inequality is useful for bounding the lower tail of the binomial distri-

bution; it is valid for all δ in [0, 1].

Pr [X ≤ (1 − δ)µ] ≤ e−δ2µ/2. (A.3)
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Appendix B

On the Atomicity of Actions

We assume that actions, which usually consists of a number of steps (to be defined

below), are atomic. We justify in this section that this assumption does not weaken

our concurrency results.

Every action consists of a number of steps, where a step is one of the following

three statements: a local statement (i.e., an assignment to a local variable), a send

statement, and a receive statement. A receive statement can only be the first step

of an action. We assume that every step is atomic. An execution of a protocol is

equivalent to a sequence of steps. Given an arbitrary sequence of steps where the

steps belonging to different actions may be interleaved, our goal is to establish that

this sequence, called an interleaving execution, is equivalent to some sequence where

the steps of every action are contiguous, called a sequential execution. Subsequent

results of this dissertation hold for arbitrary sequential executions, and this theorem

implies that those results also hold for any execution, interleaving or sequential.

There is, however, one exception. Note that in action T1, the contact() func-

tion is invoked to find an existing process in the ring. Suppose that the ring has no

process, and if two processes p and q call contact() at the same time, then contact()

returns p and q to them, respectively, causing the creation of two rings. Hence, we
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assume that two executions of T1 do not interleave. The only situation that may

cause a problem is when the ring is empty and two nodes call contact() simultane-

ously. Therefore, if the ring is nonempty, then even T1 actions can interleave with

each other.

Theorem B.0.1 Every interleaving execution of the protocol is equivalent to some

sequential execution of the protocol.

Proof: It suffices to show that the nonfirst steps of an action, if separated by steps

in other actions, can be left moved to be adjacent to the first step of the action.

Consider two adjacent steps s and t in the interleaving execution, where s and t

belong to different actions and t is not the first step of its action. First note that

s and t belong to different processes because a process completes an action before

executing another one. Our goal is to show that st = ts (i.e., executing s first and t

next is equivalent to executing t first and s next). Consider the following cases (note

that t cannot be a receive statement). If t is a local statement, then clearly st = ts.

If t is a send statement, then: (1) if s is a send statement, since s and t belong to

different processes, these two sends affect different channels, and hence st = ts; (2)

if s is a local statement, then clearly st = ts; (3) if s is a receive statement, since

the receive statement successfully receives some message, putting t before s does

not prevent t from receiving that message, and hence st = ts.
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Appendix C

Notations

The following notations are used throughout this dissertation.

V set of all the nodes

nil a special node not belonging to V

V ′ V ∪ {nil}
u, v, w nodes (i.e., processes), of type V

x, y, z neighbor variables, of type V ′

α, β bit strings

|α| length of α

α[i] bit i of α, where 0 ≤ i < |α|
α[i..j] bit string from α[i] to α[j]

α[i..j) bit string from α[i] to α[j − 1]; empty string iff i = j

u.id the identifier of node u

u.k the length of u.id (i.e., u.k = |u.id |)
u.db the local name database at node u

u.dim the dimension of u

u.sim the similarity neighbors of u
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Φα the best match set for bit string α

n number of nodes in the network

α ◦ β the longest common prefix of bit strings α and β

W (u, i) shorthand for Vu.id [0..i]

Vα the set of nodes in V whose IDs are prefixed by α

ring(x) boolean predicate meaning that all the nodes in V form

a unidirectional ring

via their x neighbors

biring(x, y) boolean predicate meaning all the nodes in V form

a bidirectional ring

via their x and y neighbors

ranch(S, x) the set of nodes S form a unidirectional Ranch via

their x neighbor arrays

biranch(S, x, y) the set of nodes S form a unidirectional Ranch via

their x and y neighbor arrays

path+(u, v, x) boolean predicate meaning that there is an x-path

of positive length from u to v

m(msg , u, v) number of messages of type msg from u to v

m+(msg , u) number of outgoing messages of type msg from u

m−(msg , u) number of incoming messages of type msg to u

#msg number of messages of type msg in all channels

↑, ↓, l shorthand for “before this action”, “after this action”,

and “before and after this action”, respectively

lg n log2 n

k′, i′, j′ shorthands for k − 1, i − 1, j − 1, respectively
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[51] R. Rajaraman, A. W. Richa, B. Vöcking, and G. Vuppuluri. A data tracking

scheme for general networks. In Proceedings of the 13th Annual ACM Sympo-

sium on Parallel Algorithms and Architectures, pages 247–254, July 2001.

[52] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable con-

tent addressable network. In Proceedings of the 2001 ACM SIGCOMM Confer-

ence on Applications, Technologies, Architectures, and Protocols for Computer

Communication, pages 161–172, 2001.

[53] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multi-

cast using content-addressable networks. In Proceedings of the 3rd International

Workshop on Network Group Communications, pages 14–29, November 2001.

[54] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location

and routing for large-scale peer-to-peer systems. In Proceedings of the 18th

IFIP/ACM International Conference on Distributed Systems Platforms, pages

329–350, November 2001.

[55] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-

to-peer file sharing systems. In Proceedings of Multimedia Computing and Net-

working 2002 (MMCN 2002), January 2002.

[56] SETI@Home. Available at http://setiathome.ssl.berkeley.edu.

[57] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, F. Kaashoek, F. Dabek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for Internet ap-

plications. IEEE/ACM Transactions on Networking, 11:17–32, February 2003.

[58] K. C. Zatloukal and N. J. A. Harvey. Family trees: An ordered dictionary with

optimal congestion, locality, degree, and search time. In Proceedings of the

149



15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 308–317,

January 2004.

[59] H. Zhang, A. Goel, and R. Govindan. Incrementally improving lookup latency

in distributed hash table systems. In Proceedings of the 2003 ACM SIGMET-

RICS International Conference on Measurement and Modeling of Computer

Systems, pages 114–125, June 2003.

[60] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubia-

towicz. Tapestry: A resilient global-scale overlay for service deployment. IEEE

Journal on Selected Areas in Communications, 22:41–53, January 2003.

[61] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An

architecture for scalable and fault-tolerant wide-area data dissemination. In

Proceedings of the 11th International Workshop on Network and OS Support

for Digital Audio and Video, pages 11–20, July 2001.

150



Vita

Xiaozhou Li was born on May 6, 1974 in Qingyuan, Guangdong, China to Naimin

Li and Baocui Ouyang. Xiaozhou attended Qingyuan Middle School in Qingyuan

from 1985 to 1991. He received his B.S. degree in Computer Science from Zhong-

shan University, Guangzhou, China, in July 1995. He received his M.S. degree in

Computer Science from the University of Texas at Austin in December 1999.

Permanent Address: 9417 Great Hills Trail #2026

Austin, TX 78759

This dissertation was typeset with LATEX2εby the author.

151


