
A Data Mining Environment for Modeling the

Performance of Scienti�c Software �

Elias N. Houstis, Vassilios S. Verykios, Ann C. Catlin

Department of Computer Sciences, Purdue University

Naren Ramakrishnan

Computer Science Department, Virginia Tech

John R. Rice

Department of Computer Sciences, Purdue University

March 2, 1999

Abstract

Complex problems, whether scienti�c or engineering, are most often solved today

by utilizing public domain or commercial libraries or some form of problem solving

environment. The task of \selecting" the best software for a targeted application

or computation is often di�cult and sometimes even intractable. We have proposed

an approach for dealing with this issue by \mining" performance data of scienti�c

software to generate knowledge that can be used to select software for a particular

scienti�c problem, assuming some computational objectives. In this paper we describe

a framework together with its software implementation for mining performance data

of scienti�c software and use the results to generate knowledge necessary to solve the

software selection problem.

1 Introduction

Very often scientists are faced with the task of locating appropriate solution software for
their problems and then selecting from among many alternatives. Most extant software
systems are characterized by a signi�cant number of parameters a�ecting e�ciency and
applicability which must be speci�ed by the user. This complexity is signi�cantly increased
by the number of parameters associated with the execution environment. Furthermore, one

�This work was supported in part by NSF grant CDA 91-23502, PRF 6902851, DARPA grant N 66001-
97-C-8533 (Navy), DOE LG-6982, and the Purdue Research Foundation.

1

Phases Description

Determine Identify the computational objectives for which the performance
evaluation evaluation of the selected scienti�c software is carried out.
objectives
Data preparation (1) Identify the evaluation benchmark, its problem features, experiments
(1) selection (i.e., population of scienti�c problems for the generation of performance

data).
(2) pre-processing (2) Identify the performance indicators to be measured.

(3) Identify the actual software to be tested, along with the numerical
values of their parameters.
(4) Generate performance data.

Data mining (1) Transform the data into an analytic or summary form.
(2) Model the data to suit the intended analysis and data format
required by the data mining algorithms.
(3) Mine the transformed data to identify patterns or �t models to the
data; this is the heart of the process, and is entirely automated.

Analysis of results This is a post-processing phase done by knowledge engineers and
domain experts to ensure correctness of the results.

Assimilation of Create an intelligent interface to utilize the knowledge and to
knowledge identify the scienti�c software (with parameters) for user's

problems and computational objectives.

Table 1: A KDD methodology for modeling the performance evaluation of scienti�c software.

can create many alternative solutions of the same problem by selecting di�erent software
that implements the various phases of the computation. Thus, the task of selecting the
best software for a particular problem or computation is often di�cult and sometimes even
intractable. In [HHR+91] we had proposed an approach for dealing with these issues by
\mining" performance data obtained from \testing" software.

In [VHR98] we proposed a knowledge discovery in databases (KDD) [FPSS96, FHS96])
methodology for modeling the performance of scienti�c software. For completeness the pro-
cess is summarized in Table 1. Assuming a \densely" distributed set of benchmark problems
from the targeted application domain, this KDD methodology is based in a four-pronged
strategy: feature determination of benchmark problems, performance evaluation of scienti�c
software, data mining of performance data, and the automatic knowledge discovery of soft-
ware performance. In this paper we describe the implementation of the KDD methodology
as an open-ended software environment so that various users can customize the system for
di�erent case studies (i.e., modeling the performance of various software domains) or plug
and evaluate di�erent data mining techniques or knowledge discovery strategies. Figure 1
depicts the software architecture of PYTHIA-II.

Speci�cally, from the end-user perspective, PYTHIA-II will allow users (i) to import
performance data according to a pre-de�ned schema (for various a priori de�ned software
domains), (ii) to specify new database schemas for new software domains, (ii) to utilize
existing facilities (PELLPACK [HRW+98]) to automatically generate performance data, (iii)
to mine the performance data using statistical techniques to identify performance pro�les
and rankings of software together with con�dent intervals, (iv) to use the data mining results
to automatically generate knowledge rules that model the performance of the software under
user speci�ed conditions 1.

The paper is organized as follows. Sections 2 and 3 present the design and components

1PYTHIA-II is an extension and a new implementation of the PYTHIA framework [WHR+97] for selecting
scienti�c algorithms utilizing database, customized data mining techniques and well established knowledge
discovery strategies.

2

Database
Layer

Relational
Engine

Data
Mining

Generation
Data

statistical
data

pattern
extraction
module

recommender
system
interface

problem
population data and

features

performance

problem
execution
environment

statistical
analysis
module

knowledge
engineer
interface

Recommender

User
Interface/

����

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

postgres95

Recommendation
Generation

base
knowledge

Figure 1: A block diagram of PYTHIA-II displaying the software components and the soft-
ware architecture of the system.

of PYTHIA-II system. Section 4 describes the use of PYTHIA-II to model the performance
of elliptic partial di�erential equation software. Some concluding remarks are incorporated
in Section 5.

2 System Design

In this section we describe the overall design of the system in terms of its components and
structure and the data ow.

2.1 Architecture

The modular design of PYTHIA-II is shown in Figure 1. The hierarchical architecture of
the system consists of four layers:

� user interface layer

� data generation, data mining, and recommendation generation layer

� relational engine layer, and

� database layer.

The database layer provides permanent storage for the problem population, the perfor-
mance data and problem features, and the computed statistical data. The next layer is the
relational engine which supports an extended version of the SQL database query language
and provides the required functionality for the stored data to be accessible to the upper
layers. The third layer consists of three subsystems: the data generation system, the data

3

mining system, and the recommendation generation system. The data generation system
accesses the records de�ning the problem population and processes them within the prob-
lem execution environment, invoking integrated scienti�c software for solving the problem
and generating performance data. The statistical data analysis module and the pattern
extraction module comprise the data mining subsystem. The statistical analysis module is
a prototype software implementation of a non-parametric statistical method applied to the
generated performance data. PYTHIA-II integrates a variety of publicly available pattern
extraction tools adhering to di�erent learning paradigms.

In the highest layer, a graphical user interface allows the knowledge engineer to exploit
the capabilities of the system for generating knowledge as well as query the system for facts
stored in the database layer. The end-user interface also resides in the top layer. It uses
the knowledge generated by the lower layers, encoding it appropriately as a knowledge base
for an expert or recommender system. The facts stored in the database drive the process
of answering domain speci�c questions posed by end users. The architecture of PYTHIA-
II is extensible, with well de�ned interfaces among the components of the various layers.
The interfaces of these components are discussed in Section 2.2, and their functionality and
implementation are described in Section 3.

For storage and database management, we selected the POSTGRES95 relational database
and used PgTcl as the application programming interface of PYTHIA-II and the POST-
GRES95 back-end. Using Tcl/Tk as the basic programming environment for the implemen-
tation of PYTHIA-II allows the database to be accessed in a transparent and intuitive way.
PgTcl is e�cient for database access, since it communicateswith the back-end directly via the
front-end-back-end protocol, without the need for intermediate C libraries (similar to Oracle
Pro*C). It also handles multiple back-end connections from a single front-end application.
The implementation code can either use library calls for connecting/selecting/reading from
the database, or can execute embedded SQL statements, making the data access simple and
exible.

2.2 Data Flow

The PYTHIA-II design presented above supports two di�erent user interfaces, one for the
knowledge engineer and the other for end users who request domain speci�c advice about
the problems they want to solve. This section describes the data ow and I/O interfaces
between the main components of the PYTHIA-II system from the perspective of these two
interfaces.

Knowledge engineer perspective: The data ow is depicted graphically in Figure 2, where
the boxes represent stored entities, the edges represent operations related to the underlying
database, and the self-edges represent operations related to various external programs such as
statistical analysis, transformations and data �ltering. The automated knowledge discovery
process begins with populating the problem speci�c database tables. In PYTHIA-II, the
underlying database schema is �xed, but extensible and dynamic. The knowledge engineer
has to specify his understanding of the domain in terms of the relational data model to
match PYTHIA-II's database schema. The front-end interface for populating the database
includes a full-edged graphical environment with menus, editors and database speci�c forms
for presentation purposes, very much like those supported by Oracle's SQL*Forms.

4

Problem
Records

Input Files/
Output Files

Selection/
Projection/
Program

Transformation

Program
Execution

Performance
Data Records/

Profile
Records

Data
Colection

Statistical
Analysis

Predicate
Records

Collection/
Filtering

Discovered Rules/
Knowledge Base

Selection/
Projection/

Join/
Filtering/
Mining

Transformation

Problem
Features

Selection/
Projection

Figure 2: Data ow and I/O interfaces.

select perfdata.nproc, ' ',

perfdata.time[1:perfdata.nproc][4:4][1:1]

from perfdata, sequences

where

perfdata.solverseq = sequences.name

and composite_id = 'pde03'

and rundata = 'IBM SP2'

and perfdata.memoryvals[2] = '950x950'

and sequences.names[6] = 'itpack-jacobi cg';

Figure 3: Example analyzer query for retrieving performance data identi�ed by a pro�le.

An experiment database record combines problem records into classes of problems, and
a high level problem speci�cation is generated by a program-based transformation of the
experiment record into a complete and correct input �le speci�cation. These �les are passed
to the problem execution environment which invokes the appropriate scienti�c software for
program execution. Although the variability of the input speci�cation is dealt with by
the speci�c schema of the problem record, the variations in the output format for the �les
generated during execution are handled by utilizing a system speci�c and user selected �le
template. The template lists, among other things, the full speci�cation for the program to
be called for the collection of the \important" data contained in the output �les generated by
the program execution. This data is automatically collected by the data collection program,
and stored in the performance data records for further processing, while all the output �les
are deleted. The performance data records keep logical references to the problem records in
the form of foreign keys. In this manner, performance data can be matched with problem
features by executing n-way joins, which is necessary for pattern extraction.

By combining data from a number of performance records, while maintaining all but
one of the experimental variables constant, we can generate a pro�le that characterizes the
behavior of a certain parameter with respect to other parameters. The statistical analyzer
uses the instructions for extracting performance data contained in a pro�le database table,
which contains the number of experiments deemed necessary by the knowledge engineer for
the analyzer to produce rankings of the pro�les with the required statistical signi�cance. The
analyzer submits \canned" SQL queries to retrieve the data to use for further processing.
Figure 3 presents an instance of this process for the case study considered in Section 4.

After the performance data has been retrieved and combined, it is provided to the statis-
tical analyzer for ranking based on the domain parameter selected by the user for evaluation.

5

The ranking produces an ordering of these parameters which is statistically signi�cant (i.e.,
if the performance data shows no signi�cant di�erence between parameters then they are
shown as tied in rank). The ranking can be used in a number of di�erent ways to drive
the pattern extraction process. Before the data is handed over to this process however, yet
another abstraction level is used. A predicate record de�nes the collection of pro�le records
to be used in pattern extraction. This means that the knowledge engineer can change the set
of input pro�le records as easily as updating a database record. The predicate also contains
all the required information used by the program that creates input for the algorithms used
in pattern extraction.

A �lter program is called for the selected predicate record to collect and transform the
information to the input format required by the pattern extraction programs. After the
input data is prepared, the programs generate output in the form of \logic" rules, \if-then"
rules or decision trees/graphs for categorization purposes. In this process there is open-ended
extensibility regarding the integration of tools like neural networks, genetic algorithms, fuzzy
logic tool-boxes, rough set systems, etc.

End user perspective: The Recommender is the module within PYTHIA-II which is
accessed by the end-user for requesting domain speci�c advice. The front-end for the rec-
ommender system must be con�gurable and adaptable for satisfying a variety of user needs.
It is well understood that end users of a recommender system for scienti�c computing are
most interested in questions regarding accuracy of a solution method, performance of a hard-
ware system, optimal number of processors to be used in a parallel machine, how to achieve
certain accuracy by keeping the execution time under some limit, etc. The PYTHIA-II rec-
ommender interface allows users to specify the characteristics of the problems to solve, as
well as the performance objectives or constraints. The software system that supports this
functionality in PYTHIA-II is CLIPS [?]. This is an expert system shell tool-box, which
uses the induced knowledge, even background knowledge provided by domain experts, and
facts from the problem, feature, performance, pro�le and predicate tables to provide the
user with the best recommended solution to the problem presented. It is also possible that
the user's objective cannot be satis�ed. In that case, the user can specify weights for the
various objectives, and then the system tries to satisfy the objectives (e.g., accuracy �rst,
then memory constraints) based on the ordering implied by the weights.

3 System Components

This section describes the functionality of the components of PYTHIA-II contained in the
top two layers of Figure 1.

3.1 Data Generation

Information in the performance database drives PYTHIA-II's data analysis and rule genera-
tion. The performance database may be a pre-existing store of performance measures or the
data may be produced by executing scienti�c software within the problem execution envi-
ronment. PYTHIA-II is independent of the characteristics and functionality of the software
used for execution purposes, and it imposes no requirements or restrictions on the internal

6

Algorithm 1 Algorithm 2 � � � Algorithm k

Problem 1 X11 X12 � � � X1k

Problem 2 X21 X22 � � � X2k
...

...
...

...
...

Problem n Xn1 Xn2 � � � Xnk

Rank R1 R2 � � � Rk

Average Rank R�1 R�2 � � � R�k

Table 2: Algorithm ranking table based on Friedman Rank Sums using the two-way layout.
Xij is the performance of algorithm j on problem i, and Rj, R�j are the rank assignments.

operation of this software. In fact, it allows the scienti�c software to operate entirely as a
black box as long as it has well de�ned interfaces for communicating with the other parts of
the PYTHIA-II system.

3.2 Data Mining

Data mining encompasses the process of extracting and �ltering performance data for sta-
tistical analysis, generating solver pro�les and ranking them, selecting and �ltering data for
pattern extraction, and generating the knowledge base. The two components involved in this
process are the statistical analysis module (analyzer) and the pattern extraction module.

PYTHIA-II runs the analyzer as a separate process, sending it an input �le and a set
of parameters for output speci�cation. Since the call to the analyzer is con�gurable, data
analyzers can easily be integrated into the system. The statistical analyzer is independent of
the problem domain since it operates on the �xed schema of the performance records. The
current analyzer was developed in-house.

The task of the analyzer is to assign a ranking to a set of algorithms for a selected problem
population based on a priori determined performance criteria. It assumes that the algorithms
are executed on the selected problems, and that the resulting performance measures for each
execution are collected and inserted in the database. The analyzer accesses the database to
extract the performance data based on the speci�cation of a selected predicate record.

A predicate record de�nes the complete set of analyzer runs which are to be used as input
for a single invocation of the rules generator. The predicate �elds of interest to the analyzer
are (1) the list of algorithms to rank, and (2) a pro�le matrix, where each row represents
a single analyzer run and the columns identify the pro�le records to be accessed for that
run. Each pro�le record speci�es how the analyzer should gather and assess the performance
measures produced by one problem execution. Table 2 shows how the analyzer interprets
one row of the predicate' s pro�le matrix. The table columns are the speci�ed algorithms,
and the table rows are the problems represented by the pro�les speci�ed in a single row of
the predicate' s pro�le matrix. The Xij are values computed by the analyzer based on the
pro�le record speci�cation for problem i and algorithm j (see below for the discussion of the
methods used to compute the Xij).

The process for ranking the algorithms uses multiple comparisons and contrast estimators
based on Friedman rank sums [HW73]. The two-way layout associated with distribution-free

7

testing is shown in Table 2, which assumes nk data values from each of k algorithms for n
problems. This assumption is not strictly necessary; the analyzer can \�ll in" missing values
using various methods, for example, averaging values in the algorithm column. The ranking
proceeds as follows:

� For each problem i rank the algorithms' performance. Let rij denote the rank of Xij

in the joint rankings of Xi1; :::Xik and compute Rj =
Pn

i=1 rij.

� Let R�j =
Rj

n
where Rj is the sum over all problems of the ranks for algorithms j, and

then R�j is the average rank for algorithm j. Use R�j to rank the algorithms over all

problems.

� Compute Q = q(�; k;1)
q

n�k�(k+1)
12

where q(�; k;1) is the critical value for k indepen-
dent algorithms for experimental error �. j Ru � Rv j> Q implies that algorithms u
and v di�er signi�cantly for the given threshold �.

The R�j's are the desired algorithm ranks.
It remains to discuss the methods used to compute the Xij. The assignment of a single

value to represent the performance of algorithm j for problem i, which can then be compared
to other performance values in the framework of the two-way layout, is not a simple matter.
Even when comparing elapsed execution time, there are many parameters which should be
varied for a serious evaluation of algorithm speed : problem size, execution platform, number
of processors (for parallel code), etc. To accommodate these variances in the algorithm
execution, the analyzer uses the method of least squares approximation for a collection of
observed data over a given variation of problem executions.

A pro�le record is the set of all lines created by a least square approximation to the raw
performance data for a given problem over all methods. The analyzer accesses the pro�le

records named by the predicate to identify exactly which performance measures are to be
used for a given problem. This record lists the choices for the x and y axis, and de�nes which
invariants to use in the selection process. In addition, the record identi�es where these values
are stored in the performance records generated by the execution of the problem.

The goal of the pattern-extraction module is to support the automatic knowledge acqui-
sition process and to extract patterns/models from the data to be used by the recommender
to provide advice to end users. This process is independent of the problem domain.

The relational model of PYTHIA-II automatically handles the book-keeping of the raw
data and o�ers a unique opportunity for easily generating and storing any amount of raw
performance data as well as manipulating them. In order to test various learning method-
ologies, we choose a speci�c format for the data that will be used by the pattern extraction
process, and then write �lters that transform this format (on the y) to the format required
by the various data mining tools integrated into PYTHIA-II. Since the idea behind knowl-
edge acquisition is to support recommendations with as few changes to the automatically
generated knowledge as possible, we have integrated mostly systems that generate compre-
hensible knowledge in the form of logic rules, if-then-else rules or decision trees.

The �rst learning system we integrated was GOLEM [MF90]. It can be classi�ed as an
empirical single predicate Inductive Logic Programming (ILP) learning system [Dze96]. It is
a batch non-interactive system with noise handling capabilities that implements the relative

8

least general generalization principle that can be considered as careful generalization in the
search space of possible concept descriptions.

Rules generated by GOLEM can be processed in a language like �rst order predicate
logic. These rules can be easily utilized by an expert system as its rule base, as described
below. In addition to GOLEM, we have also integrated the following learning systems into
PYTHIA-II: PROGOL, MLC++ library, CN2, PEBLS, and OC1.

3.3 Recommendation Generator

The recommender system is the end-user module of the PYTHIA-II system. It is a form of
decision support system and is the only module in PYTHIA-II that is case study dependent as
well as domain dependent. We will describe how a recommender system has been generated
as an interface for the knowledge generated by GOLEM.

GOLEM is a relational learning system that uses positive examples for generalization and
negative examples for specialization. Each logical rule generated by GOLEM is associated
with an information compression factor measuring the generalization accuracy of the rule.
Its simple formula is f = p � (c + n + h) where p and n are the number of positive and
negative examples respectively covered by a speci�c rule, while c and h are information that
is related to the form of the rule. The information compression factor is used for ordering
the rules in the rule base in a decreasing order.

Each rule selected by GOLEM covers a number of positive and negative examples. The
set of positive examples covered for each rule along with the rules, is one part of the input
given to the recommender system. The recommender system asks the user to specify the
features of the problem he wants to solve. It then uses the CLIPS inference engine and
checks its rule base to �nd a rule whose left-hand side satis�es the user selected problem
features. Every rule that is found to match the problem features speci�ed by the user is
selected and is placed into the agenda. Rules are sorted in decreasing order based on their
generality (number of examples they cover), and the very �rst rule in the agenda is �red to
determine the best algorithm for the problem the user speci�es. Since each rule provided
by GOLEM to the recommender system is associated with a set of positive examples that
are covered by this rule, the recommender system goes through the list of positive examples
associated with the �red rule and retrieves the example that has the most common features
with the user speci�ed problem. This step aids in subsequent parameter estimation.

After this example problem is selected, the fact base of the recommender system is pro-
cessed in order to provide the user with any required set of parameters for which the user
asks advice. The fact base consists of all the raw performance data stored in the database.
The recommender system accesses this information by submitting queries generated on the
y, based on the user's objectives and selections. If the user objectives cannot be met, a
recommendation is provided as described at the end of Section 2.2. For the recommender
system used in the case study presented in the next section, the �nal step is the recommen-
dation of a certain method, as the best method to use to satisfy the given conditions. It also
indicates what grid size should be used to achieve the speci�ed the accuracy within the time
limitations imposed by the user.

9

Figure 4: PYTHIA-II's top level window. A web-based version of the front-end recommender
system can be accessed from: http://www.cs.purdue.edu/research/cse/pythia-II.

3.4 User Interface

The modular implementation of PYTHIA-II makes it possible to accomplish much of the
work involved in knowledge discovery without resorting to the graphical interface, and in
some cases this is the preferred way of completing a given task. For example,

1. Creating database records for the problem population and experiments: the SQL com-
mands can be given directly inside the POSTGRES95 environment.

2. Generating executable programs from the experiments: the program generator is a
separate process called from the problem execution environment which is speci�c to
the scienti�c software used. The process is invoked with an argument list describing
the I/O for the program generation, and it may be called outside of PYTHIA-II.

3. Executing programs: the execution process is controlled by scripts invoked by PYTHIA-
II. These scripts can also be called outside of PYTHIA-II since they simply operate on
the generated program �les which reside in a particular directory.

4. Collecting data: the data collector is called by PYTHIA-II as a separate process, and
it is speci�c to the scienti�c software. As in (2) above, this process is invoked with an
argument list describing its I/O.

With respect to the above items, the graphical interfaces that assist in those tasks are most
useful for knowledge engineers who are unfamiliar either with the structure of PYTHIA-II
or with the SQL language used by POSTGRES95. In this case, the interfaces provided by
PYTHIA-II's dbEdit and dataGEN are invaluable. The top level window of the PYTHIA-II
system is shown in Figure 4.

The graphical interface to the POSTGRES95 database is called dbEdit. dbEdit supports
browsing, editing, deletion, and insertion of all kinds of records contained in the database.
Records are displayed as forms very much like those supported by ORACLE's SQL*Forms,
implemented in TCL/Tk in such a way that half of the form displays static information
related to the schema of the record retrieved, and the rest displays data kept by the record
which has been accessed based on a user speci�ed selection. In addition to the above function-
ality, we have incorporated in our environment the immediate access of the POSTGRES95
backend through the subset of SQL supported by the underlying DBMS and a text-based
window.

10

dataGEN facilitates the tasks involved in the data generation process. Users familiar with
the implementation of the system may prefer to call these processes on their own, but when
many users are involved in the (lengthy) data generation process, the graphical interface is
most useful.

dataMINE encompasses the statistical analysis of data in selected performance records
and the pattern extraction process. Even for the most experienced users, it is impractical
to attempt either of these tasks outside of PYTHIA-II. A template query is used to extract
the performance data of interest in order to generate input for the statistical analyzer. The
input speci�cation for pattern extraction is equally di�cult to build; it retrieves and matches
scores of features across hundreds of performance records, and �lters ranking data from the
statistical analyzer output. In addition to carrying out essential data preparation tasks
that cannot be handled outside of the graphical user interface, dataMINE presents a simple
menu system that walks the user through the process of selecting the predicate, calling the
statistical analyzer, generating graphical pro�les of the ranked methods, and calling the
knowledge generator.

As a bonus, dataMINE is integrated with DataSplash [OWA+98], an easy-to-use inte-
grated environment for navigating, creating, and querying visual representations of data.
DataSplash is a visualization system that has been built on top of POSTGRES95, therefore
interaction with PYTHIA-II is built into it.

4 Case Study : Modeling the Performance of Elliptic

PDE Software

To validate the design and implementation of PYTHIA-II, a knowledge base was gener-
ated for evaluating PELLPACK [HRW+98] solvers based on performance data produced
by a population of 2-dimensional, singular, steady state PDE problems. This case study
which corresponds to existing studies [RHD81, WHR+97, HR82], allows for validation of the
adopted KDD process. The algorithm selection problem for this domain can be formally
stated as follows:

Select an algorithm to solve
Lu = f on

Bu = g on @

so that relative error �r � � and time ts � T

where L is a second order, linear elliptic operator, B is a di�erential operator involving up
to �rst order partial derivatives of u,
 is a bounded open region in 2{dimensional space,
and �, T are performance criteria constraints.

4.1 Performance Database Description

In this study, we restrict ourselves to rectangular domains. Accuracy is measured as the
maximum absolute error on the rectangular mesh divided by the maximum absolute value
of the PDE solution. Performance studies are conducted and the amount of time required

11

Problem Component Generalized Forms Parameterization

Equation coef1(x; y) �Uxx + coef2(x; y) � Uyy operator coe�cients are
coef3(x; y) �Ux + coef4(x; y) �Uy speci�ed in the database

coef5(x; y) �U = f(x; y) as parameter records and
right-hand-sides are speci�ed
as Fortran routines in data
�les referenced by the
database equation records.

Domain unit square endpoints are speci�ed in the
square [�1;1]� [�1; 1] database as parameter
rectangle [0; :5]� [0; :75] records
rectangle [a; b]� [c; d]

rectangle [a; b]� [a+ c; b+ c]
Boundary Conditions u = 0 on outer boundary true(x,y) is speci�ed as

u = true(x; y) on outer boundary Fortran routines in data �les
referenced by database
equation records

Table 3: General form of the PDE problems included in the study.

Module Type Module Names Performance Criteria

Grid 5 x 5, 9 x 9, 17 x 17, 33 x 33, 65 x 65
Discretizer 5-point star, hermite collocation
Indexer as is, red-black

Linear System Solver band ge, itpack-jacobi cg
Triple �t 9 point, dyakanov-cg, dyakanov-cg4

Solver sequence grid, 5-point star, as is, band ge error, elapsed time
grid, �t 9 point (orders 2,4,6)

grid, hermite collocation, as is, band ge
grid, dyakanov-cg
grid, dyakanov-cg 4

Table 4: Methods and solver sequences used for the case study.

to obtain three levels of accuracy | 10�3, 10�4 and 10�5 | are collected by the PYTHIA-II
system.

Table 3 shows the general form of the PDE problems included in the study. In Table 4,
the solver modules and solver sequences which were applied to the problems are listed. Table
5 identi�es the features of the problem components used to drive the rules generation and
form the basis for user inquiries to the PYTHIA-II recommender system. Table 6 uses the
\raw data" descriptions in Tables 3 and 4 to demonstrate how the recommendermethodology
of PYTHIA-II was applied to the case study.

De�ning the PDE population and experiments required 21 equation records with up to
10 parameter sets each, 3 rectangle domain records of di�ering dimensions, 5 sets of bound-
ary conditions records, 10 grid records de�ning uniform grids from coarse to �ne, several
discretizer, indexing, linear solver and triple records with corresponding parameters, and a
set of 40 solver sequence records de�ning the solution schemes. Using these components, 37
experiments were speci�ed, each de�ning a collection of PDE programs involving up to 35
solver sequences for a given PDE problem.

The 37 experiments were executed sequentially on a SPARCstation5 with 32MB memory
running Solaris 2.5.1 from within PYTHIA-II's execution environment. All 37 test cases
executed successfully, resulting in the insertion of over 500 performance records into the
database. The analyzer evaluated the solver performance based on generated measures for
time vs problem size and time vs error. The analyzer rankings and problem features were

12

Problem Component Features

Equation �rst tier operator: Laplace, Poisson, Helmholtz, self-adjoint, general
second tier operator: analytic, entire, constant coe�cients,
operator smoothness tier: constant, entire, analytic
right-hand-side tier : entire, analytic, singular(in�nite),
singular derivatives, constant coe�cients, nearly singular,
peaked, oscillatory, homogeneous, computationally complex
right-hand-side smoothness tier: constant, entire, analytic,
computationally complex, singular, oscillatory, peaked

Domain unit square,
[a; b]� [a+ x; b+ x], where x can vary
[a; b]� [a+ c; b+ c], where c is a constant

Boundary Conditions U = 0 on all boundaries
AU = f on all boundaries
BUn = f on some boundaries
AU +BUn = f on some boundaries
constant coe�cients, non-constant coe�cients

Table 5: Features for the problem population of the case study.

Phases Description Implementation

Determine Evaluate the e�ciency and accuracy of a set of Manual
evaluation solution methods and their associated parameters
objectives with respect to elapsed time, error and problem size.
Data preparation (1) problem population: Table 3 POSTGRES95
(1) selection (2) measures: elapsed solver time, discretization error. SQL

(3) methods: Table 4 Tcl/Tk
(2) pre-processing (4) Generate performance data. PERL
Data Mining (1) Collect the data for error and time across all TCL/Tk

solvers, grid sizes PERL
(2) Use the method of least squares to develop linear In-house
approximations of time vs error across all grid sizes. statistical
Develop pro�les of the methods for all problems, and software
rank the methods.
(3) Use the rankings and the problem features to GOLEM
identify patterns and generate rules.

Analysis of results Domain experts ensure correctness of the results. Manual
Assimilation of Create an intelligent interface to utilize the knowledge CLIPS
knowledge to identify the \best method" with associated parameters

for user's problems and computational objectives.

Table 6: Applying PYTHIA-II to the PELLPACK case study.

passed to the rules generator which produced logic-based rules governing method selection for
PELLPACK solvers. The recommender system was then used to predict the best method and
estimate the corresponding parameters for user speci�ed features and performance criteria.
Speci�cally, if an end-user identi�ed a problem with features such as \Poisson equation"
with \computationally complex" right-hand-side on a unit square having \mixed boundary
conditions", and speci�ed that the error should not exceed \10�4" with execution time less
than .5 CPU seconds, the recommender system predicted the best grid size and solver which
satis�ed the performance criteria for a problem with those features. It also listed the expected
error and execution time, and identi�ed the \closest" matching problem from the fact base.

The POSTGRES95 database was populated with 44 records de�ning problems, features,
methods, and experiments. Each record had a corresponding form in the PYTHIA-II graph-
ical interface which was used to create and edit the records. Three record de�nitions are
shown in Figures 5, 6, and 7. The dbEdit interface is used for editing problem, method and
experiment records.

13

create table EQUATION (

name text, -- record name (primary key)

system text, -- software that solves equations of this type

nequations integer, -- number of equations

equations text[], -- text describing equations to solve

forfile text -- source code file (used in equation definition)

);

Figure 5: Equation records list the equations; terms are de�ned using the syntax of the
scienti�c software.

create table SEQUENCES (

name text, -- record name (primary key)

system text, -- software that provides the solver modules

nmod integer, -- number of modules in the solution scheme

types text[], -- array of record types (e.g., grid, discr, solver)

names text[], -- array of record names (foreign key)

parms text[] -- array of module parameters (foreign key)

);

Figure 6: A solver sequence record lists the order of module processing to solve a PDE
problem; the sequence is translated to library calls from software associated with the named
system.

4.2 Data Mining and Knowledge Discovery Process

After the experiment records were de�ned, dataGEN was used to select them from the
database and execute them. Each experiment represented up to 35 PDE programs. When
program execution was complete, the raw performance output was located in a speci�ed
target directory, and the data collection facility was invoked to extract data from the output
and trace �les and insert them in the performance database. The dataMINE interface was
used to access the performance data according to the speci�cation of the predicate and
pro�le records created for the case study. A portion of the predicate record is shown in
Figure 9. The predicate speci�ed all problems and methods so that the data available to
the recommender system for making inferences based on user inquiries was as broad as
possible. The analyzer used this predicate to generate pro�les and rankings for the seven
PELLPACK solvers. Figure 8 lists the ranking produced by the analyzer for all solvers over a
parameterized problem. The rankings and features were used by GOLEM to generate rules.

Example of rules mined by this process include:

R1: best(A,FFT6) :- dom_us(A), op_laplace(A).

R2: best(A,P3C1C) :- rs_s(A), op_general(A).

R3: best(A,PS5) :- rs_s(A), smo_cc(A).

...

The �rst rule R1, for instance, indicates that the method FFT6 is best if the problem
has a Laplacian operator and the domain under consideration is a unit square2.

2While these rules appear to use a hard-wired absolute ranking encoded by the best predicate, they can

14

create table EXPERIMENT (

name text, -- record name (primary key)

system text, -- software identification used for program generation

nopt integer, -- number of options

options text[], -- array of option record names (foreign key)

noptparm integer, -- number of parameter specific options

optparm text[], -- array of option record names

equation text, -- equation record which defines the equation

neqnparm integer, -- number of equation parameters

eqnparm text[], -- array of equation parameter names

domain text, -- domain record on which the equation is defined

ndomparm integer, -- number of domain parameters

domparm text[], -- array of domain parameter names

bcond text, -- boundary condition record

nbcparm integer, -- number of bcond parameters

bcparm text[], -- array of bcond parameter names

nparm integer, -- number of parameters applied across all definitions

parm text[], -- array of problem-wide parameters (no. of programs)

sequences text[], -- names of the sequence records containing soln. schemes

nout integer, -- number of output records

output text[], -- array of output record names

nfor integer, -- number of source code files to include

fortran text[] -- names of the files to include

);

Figure 7: The experiment record speci�es the components of a PDE problem and identi�es
the collection of sequences to use in solving it.

4.3 Knowledge Discovery Outcome

The rules discovered con�rm the statistically discovered conclusion in [HR82] that higher
order methods are better for elliptic PDEs with singularities (which was a subset of the
population used in our study). They also con�rm the general hypothesis that there is a
strong correlation between the order of a method and its e�ciency. More importantly, the
rules impose an ordering of the various solvers for each of the problems considered in this
study. Interestingly, this ranking corresponds almost exactly with the subjective rankings
published in [HR82]. This shows that these simple rules capture much of the complexity of
algorithm selection in this domain. Table 7 compares these results. There were several other
interesting inferences drawn. Whenever the DCG method is best, so is DCG4. The rule that
had the maximum cover from the data was the one which stated that FFT6 is best for a
PDE if the PDE has a Laplacian operator, homogeneous and Dirichlet boundary conditions
and discontinuous derivatives on the right side. This can also be seen from rule R1, which
recognizes the signi�cant presence of a Laplace operator in a majority of the PDE population.
Other rules also indicated when a certain method is inappropriate for a problem. The FFT6
module, for example is a `bad' method whenever the problem has boundary conditions with
variable coe�cients. There are many more such interesting observations and we mention
only the most interesting here. Finally, an approximate ordering was requested for the
overall population. This gave rise to the ordering | FFT6, FFT4, FFT2, DCG4, DCG2,
PS5. This is pertinent because this ranking corresponds most closely to that for Poisson

be easily updated to reect new data, via the cover heuristic detailed in Section 3.3. The exact algorithm
for e�ecting this \incremental learning" capability is beyond the scope of this paper.

15

The rank analysis produces the following comparison

listed in order from ``best'' to ``worst'':

The Linear Solver Ranks

(avg rank in parenthesis)

5pt star & bdge : 60 (1.67)

herm coll & bdge : 60 (1.67)

fft 9pt order 2 : 132 (3.67)

dyakanov-cg : 132 (3.67)

fft 9pt order 6 : 186 (5.17)

dyakanov-cg 4 : 192 (5.33)

fft 9pt order 4 : 246 (6.83)

Distribution of slopes for each Linear Solver

Linear Solver Avg Min Quart_1 Med Quart_3 Max

--

fft 9pt order 2 -1.89 -2.54 -1.89 -1.89 -1.52 -1.42

fft 9pt order 4 -3.95 -5.21 -3.95 -3.95 -3.09 -2.95

fft 9pt order 6 -2.94 -5.54 -2.94 -2.94 -1.70 -1.43

5pt star & bdge -1.00 -1.61 -0.98 -0.80 -0.77 -0.52

herm coll & bdge -0.961 -1.09 -0.98 -0.90 -0.88 -0.83

dyakanov-cg -1.87 -2.02 -1.87 -1.87 -1.77 -1.72

dyakanov-cg 4 -2.53 -3.00 -2.53 -2.53 -2.40 -2.07

Figure 8: Ranking for the PELLPACK solvers for a parameterized problem from the PDE
population.

problems which formed the bulk of our population. Furthermore, all the selections made
by PYTHIA-II are `valid' (a selection is considered `invalid' if the method is inappropriate
for the given problem or if any of the parameters do not apply correctly to the method).
In prior research, accuracy of algorithm selection was measured as the fraction of the valid
selections that are also correct (a correct selection is one where the selected method and
parameters does result in solutions satisfying the requested criteria). In overall, the rules
from this study performed best algorithm recommendation for 100% of the cases.

5 Conclusion

The PYTHIA-II software environment, facilitates the knowledge discovery in databases
(KDD) process for manipulating performance data related to scienti�c computing appli-
cations. Its architecture is both exible (allowing extension to newer domains) and scalable
(providing a variety of options to the knowledge engineer for mining data, while storage
and retrieval issues are handled by an integrated database system). The modular approach
subsumed by the system maximizes the ability of an end-user to visualize the entire KDD
process, either in parts or as a whole. The high extensibility of the system is facilitated by
the large number of alternative paths available at every stage.

16

Field | Value

name | PELLPACK Solution Methods Study

reference | pellpack

num_rankings | 1

max_num_blocks| 37

prof_recs |{{"pde3-1","pde3-2","pde7","pde8-1","pde8-2","pde8-4",

"pde9-1", "pde9-2", "pde9-3", "pde10-2", "pde10-3"}}

best | method

nbest | 7

bestlist | {"fft 9pt order 2","fft 9pt order 4","fft 9pt order 6",

"5point star & bandge", "herm coll & bandge",

"dyakanov-cg", "dyakanov-cg 4"}

featurelist | {"operator","right-hand-side","domain","bconds","matrix"}

possiblevalues| {{"opLaplace","opPoisson","opHelmholtz","opGeneral"},

{"rhsEntire","rhsConstCoeff", "rhsSingular", "rhsAnalytic"}}

recordlist | {"equation","equation","domain","bcond","perfdata"}

indexlist | {"featurevals[1]","featurevals[5]"}

Figure 9: Partial listing of a predicate record from the PDE benchmark.

References

[Dze96] Saso Dzeroski. Inductive logic programming and knowledge discovery in
databases. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 117{
152. AAAI Press/MIT Press, Menlo Park, CA, 1996.

[FHS96] U. Fayyad, D. Haussler, and P. Stolorz. Mining scienti�c data. Comm. ACM,
39(11):51{57, 1996.

[FPSS96] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowl-
edge discovery: An overview. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining,
pages 1{34. AAAI Press/MIT Press, Meno Park, CA, 1996.

[HHR+91] C.E. Houstis, E.N. Houstis, J.R. Rice, P. Varadaglou, and T.S. Papatheodorou.
Athena: A Knowledge Based System for //ELLPACK. In E. Diday and
Y. Lechavallier, editors, Symbolic{numeric data analysis and learning, pages 459{
467. Nova Science, 1991.

[HR82] E.N. Houstis and J. R. Rice. High order Methods for elliptic partial di�erential
equations with singularities. Inter. J. Numer. Meth. Engin., 18:737{754, 1982.

[HRW+98] E.N. Houstis, J.R. Rice, S. Weerawarana, A.C. Catlin, M. Gaitatzes, P. Papa-
chiou, and K. Wang. PELLPACK: A problem solving environment for PDE based
applications on multicomputer platforms. ACM Trans. Math. Soft., 24(1):30{73,
1998.

[HW73] M. Hollander and D.A. Wolfe. Nonparametric statistical methods. John Wiley
and Sons, 1973.

17

No. PDE First Method First Method Second Method Second Method
(from [HR82]) (from PYTHIA-II) (from [HR82]) (from PYTHIA-II)

1 3{1 FFT6 FFT6 FFT2 FFT4
2 3{2 FFT6 FFT6 FFT4 FFT4
3 7{1 FFT6, FFT4 FFT6 | FFT4
4 8{2 FFT6 FFT6 FFT2 FFT4
5 9{1 FFT4 FFT4 FFT2 FFT2
6 9{2 FFT4 FFT4 FFT2 FFT2
7 9{3 FFT4 FFT4 FFT2 FFT2
8 10{2 FFT6 FFT6 FFT4 FFT4
9 10{3 FFT6 FFT6 FFT4 FFT4
10 10{4 FFT6 FFT6 FFT4 FFT4
11 10{7 FFT6 FFT6 FFT4 FFT4
12 11{2 FFT6 FFT6 FFT4 FFT4
13 11{3 FFT6 FFT6 FFT4 FFT4
14 11{4 FFT6 FFT6 FFT4 FFT4
15 11{5 FFT6 FFT6 FFT4 FFT4
16 13{1 DCG4, DCG DCG | DCG4
17 15{1 P3C1C P3C1C PS5 PS5
18 15{2 P3C1C P3C1C PS5 PS5
19 17{1 FFT6 FFT6 FFT4 FFT4
20 17{2 FFT6 FFT6 FFT4 FFT4
21 17{3 FFT6 FFT6 FFT4 FFT4
22 20{1 PS5 PS5 P3C1C P3C1C
23 20{2 PS5 PS5 P3C1C P3C1C
24 28{2 DCG DCG PS5, DCG4 PS5
25 30{4 PS5 P3C1C P3C1C P3C1C
26 30{8 P3C1C P3C1C PS5 P3C1C
27 34{1 DCG4 DCG4 DCG2, P3C1C DCG4
28 35{1 DCG4 DCG4 DCG2, P3C1C DCG4
29 36{2 PS5,P3C1C P3C1C | P3C1C
30 39{2 PS5 PS5 DCG4, DCG2 P3C1C
31 39{4 P3C1C PS5 PS5, DCG4, DCG2 P3C1C
32 44{2 P3C1C P3C1C PS5 P3C1C
33 44{3 P3C1C P3C1C PS5, DCG4, DCG2 P3C1C
34 47{2 FFT6 FFT6 FFT4 FFT4
35 49{3 P3C1C P3C1C PS5 PS5
36 51{1 PS5 PS5 P3C1C P3C1C
37 54{1 PS5 PS5 P3C1C P3C1C

Table 7: A comparison between two di�erent rankings of problem solving modules for elliptic
PDEs. The third and �fth columns give the subjective rankings made in an earlier study.
The fourth and sixth columns give those inferred by our knowledge methodology. The very
high correlation between these rankings is readily seen.

[MF90] S. Muggleton and C. Feng. E�cient induction of logic programs. In S. Arikawa,
S. Goto, S. Ohsuga, and T. Yokomori, editors, Proceedings of the First Inter-

national Conference on Algorithmic Learning Theory, pages 368{381. Japanese
Society for Arti�cial Intelligence, Tokyo, 1990.

[OWA+98] C. Olston, A. Woodru�, A. Aiken, M. Chu, V. Ercegovac, M. Lin, M. Spalding,
and M. Stonebraker. Datasplash. In Proceedings of the ACM-SIGMOD Confer-

ence on Management of Data, pages 550{552, ACM, New York, NY, 1998.

[RHD81] J. R. Rice, E.N. Houstis, and W.R. Dyksen. A population of linear, second order,
elliptic partial di�erential equations on rectangular domains. Mathematics of

Computation, 36:475{484, 1981.

18

[VHR98] V. S. Verykios, E. N. Houstis, and J. R. Rice. A knowledge discovery methodoloy
for the performance evaluation of scienti�c software. Technical Report TR-98-
031, Dept. Comp. Sci., Purdue University, 1998.

[WHR+97] S. Weerawarana, E. N. Houstis, J. R. Rice, A. Joshi, and C. Houstis. Pythia: A
knowledge based system to select scienti�c algoritms. ACM Trans. Math. Soft.,
23:447{468, 1997.

19

