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1 Overview

In these lectures, we see how graphical models can be expressed as exponential families. Using this characterization
of graphical models, we then look at some connections with convex analysis.

2 Exponential Family Via Maximum Entropy

We motivate exponential families for graphical models by interpreting it as a maximum entropy distribution.
Suppose, we have a set I that indexes functions φα : X → R ∀α ∈ I. For any distribution p(X) over X , we
can compute the |I|-dimensional vector of expectations

µ = (µα : α ∈ I), where µα = Ep[φα(X)]

Now, consider the reverse problem. We are given a vector of moments µ̂ = (µ̂α : α ∈ I), and we would
like to find a distribution p(X) that is consistent with these moments i.e. Ep[φα(X)] = µ̂α. There may be many
distributions that are consistent with these moments. However, it turns out that if we choose the distribution with
the maximum entropy, it belongs to the exponential family. More formally, let P be the set of all distributions on
the random vector X. Then, we have the optimization problem :

max
p∈P

H(p) := −
∑

X∈X

p(X) log(p(X))

s.t.
∑

X∈X

p(X) = 1, p(X) ≥ 0 ∀X ∈ X

Ep[φα(X)] = µ̂α ∀α ∈ I

If p∗ is the optimal solution of the above, then p∗ has the form

p∗(X) ∝ exp

(

∑

α

λαφα(X)

)

where λα are the Lagrange multipliers associated with the moment constraints. (Verify this as an exercise)
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3 Exponential Families

As described in earlier lectures, given a set of sufficient statistics φ = (φα : α ∈ I), where φα : X → R and I
is an index set (|I| = d), we can associate an exponential family with φ by the distribution

p(X; θ) ∝ exp

(

∑

α

θαφα(X) − A(θ)

)

where θ = (θα : α ∈ I) is an associated parameter vector. A(θ) is the normalizing term i.e. exp(A(θ)) =
∑

X∈X
exp (

∑

α θαφα(X)), and is called the log-partition function. The set of valid parameters θ is

Ω = {θ ∈ R
d | A(θ) < +∞}

A minimal exponential family is an exponential family where there is no non-zero vector a ∈ R
d such that

∑

α∈I

aαφ(X) = b (a constant)

The family is called overcomplete if such a non-zero vector a ∈ R
d exists. In case of overcomplete families, more

than one set of parameters would lead to the same distribution. Given a set of parameters θ, consider a new set
of parameters β := θ + a. Then,

p(X;β) ∝ exp

(

∑

α

βαφα(X)

)

∝ exp

(

∑

α

θαφα(X)

)

.eb

= p(X; θ) ,

since eb is just a constant and so it cancels with the normalizing term.

4 Graphical Models as Exponential Families

Graphical Models have been described earlier as a product of functions. When representing these as exponential
families however, the products become additive decompositions. We now have a few examples :

4.1 Ising Model

Given a graph G = (V,E), we have a random variable Xs ∈ {0, 1} associated with each node s ∈ V . We have
potentials associated with each node and edge. The sufficient statistics for an Ising model are :

{Xs ∀ s ∈ V } ∪ {XsXt ∀ (s, t) ∈ E}

This gives us the family :

p(X; θ) = exp





∑

s∈V

θsXs +
∑

(s,t)∈E

θstXsXt −A(θ)





Ising models can also be generalized to have k-order terms, for any k ≥ 2. Such models are called k-spin Ising
models. The above is a 2-spin Ising model.
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4.2 Standard Overcomplete Model

This is a generalization of the Ising model where for each node s ∈ V , the random variable Xs ∈ {0, 1, . . . , r−1}
(instead of just {0, 1} as earlier). For each node s ∈ V , a particular label j defines the sufficient statistic :

Is,j(X) =

{

1 if Xs = j

0 otherwise

Also, for each edge (s, t) ∈ E, the tuple (i, j) of labels defines another sufficient statistic :

Ist,jk(X) =

{

1 if (Xs, Xt) = (j, k)

0 otherwise

This gives us the distribution :

p(X; θ) ∝ exp





∑

s∈V,j

θs,jIs,j(X) +
∑

(s,t)∈E,j,k

θst,jkIst,jk(X)−A(θ)





Note that the set of sufficient statistics described above are overcomplete (Why ? ), and such a representation
using indicator functions is called the standard overcomplete representation.

This model is useful since any discrete graphical model can be expressed in this form.

5 Mean Parameterization

So far, an exponential family has been described by the set of parameters θ ∈ Ω. Any exponential family has an
alternate parameterization in terms of the mean parameter vector µ = (µα : α ∈ I), where µα = Ep[φα(X)].
We define a marginal polytope M as the set of all possible mean parameter vectors, for sufficient statistics
φ = {φα : α ∈ I}. So,

M = {µ ∈ R
d | µ = Ep[φ(X)], for some p : X → R s.t.

∑

X∈X

p(X) = 1 and p(X) ≥ 0 ∀X ∈ X}

We now describe the link between the log-partition function A(θ) and the mean vector µ. We know

A(θ) = log(
∑

X∈X

exp(θTφ(X)))

Consider ∇A(θ),

∇A(θ) =
φ(X).

∑

X∈X
exp(θTφ(X))

∑

X∈X
exp(θTφ(X))

=
∑

X∈X

φ(X)
exp(θTφ(X))

∑

X∈X
exp(θTφ(X))

= µ

Thus, ∇A(θ) = µ. In fact, ∇A(·) can be thought of as a map from the parameter vector θ to the mean parameter
µ i.e. ∇A : Ω → M, and it is called the forward mapping. Some other properties of the log-partition function
are :

• ∇2A(θ) = cov(φ, φ) (Verify as an exercise)

• A(θ) is a convex function. This is because ∇2A(θ) = cov(φ, φ) � 0. This also implies that Ω is convex.
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• If the exponential family is minimal, A is a strictly convex function. This can be seen as follows,

For any a ∈ R
d, we have aTφ(X) 6= a constant

⇒Var(aTφ(X)) 6= 0

⇒Var(aTφ(X)) > 0

⇒aT cov(φ, φ)a > 0

⇒aT∇2A(θ)a > 0

Thus, ∇2A(θ) ≻ 0 ⇒ A is strictly convex. Also, this implies that ∇A is a one-one function.

• ∇A is onto Int(M) (Int(·) represents the interior of a set). This means that for any µ ∈ Int(M), ∃ θ ∈ Ω
such that Epθ

[φ(X)] = µ.

Some properties of the marginal polytope M are :

• M is a convex set (Verify as an exercise)

• M = conv{φ(X) | ∀ X ∈ X}, which means that M is the convex hull of all points {φ(X)} ∀ X ∈ X .
This implies that M is a polytope (and hence its name). This also implies that M can be written as an
intersection of halfspaces i.e.

M = ∩j{u | aTj u ≥ bj}

The mean parameters have an important role in marginal inference. Consider the following examples :

• Ising Model For the Ising Model, we have the sufficient statistics {Xs}s∈V ∪ {XsXt}(s,t)∈E . Then,

µs = Ep[Xs] = P (Xs = 1) and µst = Ep[XsXt] = P (Xs = 1, Xt = 1)

The mean vector µ is the vector of all µs and µst.

• Potts Model For the Potts Model, we have the sufficient statistics {Is,j(X)}s∈V,j ∪{Ist,jk(X)}(s,t)∈E,j,k.
Then,

µs,j = Ep[Is,j(X)] = P (Xs = j) and µst,jk = Ep[Ist,jk(X)] = P (Xs = j,Xt = k)

Thus, clearly, in both the ising model and the potts model, the mean parameters correspond to marginals. In
general, the problem of computing the forward mapping ∇A can be considered an important inference problem
for exponential families.

The problem of computing the reverse mapping (∇A)−1, also has an interesting interpretation in terms of
the max log-likelihood estimate of θ for a given set of samples. Suppose we have a set of p samples D =
{X1, X2, . . . , Xp} that have been independently drawn from an exponential family for which θ is unknown.

Suppose that we choose to obtain an estimate θ̂ by maximizing the likelihood of the data. Then,

θ̂ = argmax
θ∈Ω

p
∑

i=1

log
(

P (Xi; θ)
) 1

p

= argmax
θ∈Ω

p
∑

i=1

θTφ(Xi)−A(θ)

p

= argmax
θ∈Ω

θT µ̂−A(θ), where µ̂ =

p
∑

i=1

φ(Xi)

p

Thus, θ̂ satisfies

∇A(θ̂) = µ̂

⇒θ̂ = (∇A)−1(µ̂)
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Thus, finding the MLE solution θ̂, is equivalent to computing the backward mapping (under suitable conditions
when it is unique).

Let us now look at the conjugate dual of the log partition function A. This helps in providing a variational
representation to A and can be used to approximate the log-partition function, as we shall see.

For A : Ω → R, we have its fenchel conjugate defined as :

A∗(µ) = sup
θ∈Ω

θTµ−A(θ)

Note that θTµ−A(θ) is simply the negative entropy for the distribution p(X; θ). This is because :

log p(X; θ) = θTφ(X)−A(θ)

⇒ E[log p(X; θ)] = θTµ−A(θ)

⇒ −H(p(X; θ)) = θTµ−A(θ)

Now,

A∗(µ) = sup
θ∈Ω

θTµ−A(θ)

= θTµµ−A(θµ) for some θµ such that ∇A(θµ) = µ, i.e. θµ = (∇A)−1(µ)

= −H(p(X; θµ))

However, such a θµ may not always exist. It turns out that,

A∗(µ) =

{

−H(p(X; θµ)) if µ ∈ M

+∞ if µ /∈ Cl(M)

where Cl(·) represents the closure of a set, i.e. the set with all its limit points. For any µ ∈ Cl(M) \M (i.e. µ
on boundary of M), we have

A∗(µ) = lim
k→+∞

A∗(µk) for any sequence {µk}
∞
k=1 → µ such that µk ∈ M ∀ k ∈ N

Then, the conjugate of A∗ is,

A∗∗(θ) = sup
µ∈Rd

θTµ−A∗(µ)

= sup
µ∈M

θTµ−A∗(µ)

Now, since A is known to be convex, we must have A(θ) = A∗∗(θ). Thus,

A(θ) = sup
µ∈M

θTµ−A∗(µ)

The above is a convex optimization problem. But, computing A(θ) is still intractable since we do not have a
closed form for A∗(µ) or M and describing M explicitly can require up to an exponential number of constraints.
However, the above formulation does give a direction in which to proceed to approximate A(θ) viz. by approxi-
mating the set M and the function A∗(µ).

Recall that in the Potts model, we had the mean parameters {µs,j ∀ s ∈ V, j} ∪ {µst,jk ∀ (s, t) ∈ E, j, k}.
Using these, we define the set satisfying the obvious constraints on µ,

L = {µ ∈ R
d | µs,j ≥ 0, µst,jk ≥ 0,

∑

j

µs,j = 1,
∑

k

µst,jk = µs,j}

Then, it can be shown that
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• M ⊆ L

• M = L if the underlying graph for the distribution is a tree.

Note that L has been described by only a polynomial number of constraints.

To approximate A∗(u), one can use the Bethe function (which is convex), defined as :

B∗(µ) =
∑

s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(µst)

where Hs(µs) = −
∑

Xs∈Xs

µs,Xs
log(µs,Xs

) and

Ist(µst) =
∑

Xs∈Xs,Xt∈Xt

µst,XsXt
log

(

µst,XsXt
∑

t µst,XsXt
+
∑

s µst,XsXt

)

Therefore, the optimization problem becomes :

sup
u∈L

θTµ−B∗(µ)

It can be shown that the Sum-Product algorithm solves the above optimization problem.
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