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Graphical Models: Introduction

Graphical Models can be of two types: Directed (Bayes Network) and Undirected
(Markov Random fields).

Directed Acyclic Graph(DAG) : This graph has directed edges. u is the ancestor
of v iff there is a directed path from u to v depicted by u — v

I1(S) = parents of node S
Py(X, | Xr(s)) = denotes the graphical model of the DAG.

P(X)=P(Xy,X,,..X,) = HPS(XS | Xrs))
5

This can reduce the number of expressions needed to represent P(Xz) For exam-
ple,in the following DAG, X5 +— X; — X3

P(Y) = P(X1)P(X2 | X1)P(X3 | X1)
/ / / P(X1)P(Xs | X1)P(X3 | X1)dX2dX3d X, =/ P(X1)P(X5 | X1)dX3dXy
X, J X3 JXs X1 /X3

=1

Undirected Acyclic Graph : Here there are no directed edges and hence no
notion of ancestor as shown in Fig.1.

Cliques : These refer to fully connected sub-graphs of a undirected graph. The
clique which cannot be grown any further,i.e, has maximum possible vertices in it
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Figure 1: undirected graphical model

is called Maximal Clique.

Cg = set of all possible cliques in graph G
¢ € Cg, ¥.(X.) = compatibility function

1
P(X)= 7 H U.(X.) where Z is the normalising constant
ceCq

Factor Graph Model : Here the graph is considered to constitute of a product
of factors ¥ with each factor being contributed by variables/vertices within a clique.
For example, in the Fig. 2, P(X) = £ [1; Vs (Xs) where Xy can be (X1, X5, X3)
or (XS» X47 X57 Xﬁ)

xl

1,23
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Figure 2: Factor Graph

Conditional Independence Assumption : Given a particular connected graph,
two sub-graphs are considered conditionally independent given the set of nodes
which separates them . The separating nodes form the Separator Set. Here, A and
B are conditionally independent given the separator set consisting of X3 and X .

Figure 3: Separator Set separating A and B

The Hammersley-Clifford Theorem states that a probability distribution function



satisfies pairwise Markov property with respect to an undirected graphical model if
the distribution function can be factorized according to the graph.

Graphical Model Inference: There can be several kinds of inference desired
from a given graphical model for a set of variables Y =21, T2,...zp like

1. finding P(Xz) . This is hard as finding the normalizing constant Z is hard as
it requires a summation over all possible configurations of XZ

2. A CV (vertex set). Finding P4(X4)
3. A,BCV. Finding P(X4 | XB)

4. argmaz— P(7). Finding maximum a posteriori (MAP)

Applications:
1. Constraint Satisfaction:

Xl,XQ, Xp where Xk S {07 1}

0 (X1,Xs,X3) =001,
1 otherwise

1,2,3(X1, X2, X3) = {

2. Signal Decoding: As seen in Fig. 4, we find the configuration of X corre-
sponding to the maximum probability.

Figure 4: Signal decoding with parity check



X1, X, .. X, Y1, Ys, .Y,
1 if check(parity code) is satisfied,

X1, X5, X3) =
V1,2,3(X1, X2, X3) {0 otherwise

¥1(X1) = P(Y1 | X4) € {0, 1} noise probability
1¢(Xy) = {0 orl} parity code configuration

P(X) = % [T w.(xo)w,(xy)

3. Hidden Markov Model: This has application in vision and speech recognition
and represented by the following graphical model.

Xl XZ I3
Y, Y, Y,

Figure 5: Hidden Markov Model



