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Graphical Models: Introduction

Graphical Models can be of two types: Directed (Bayes Network) and Undirected
(Markov Random �elds).
Directed Acyclic Graph(DAG) : This graph has directed edges. u is the ancestor
of v i� there is a directed path from u to v depicted by u −→ v

Π(S) ≡ parents of node S

Ps(Xs | Xπ(S)) ≡ denotes the graphical model of the DAG.

P (X) ≡ P (X1, X2, ...Xn) =
∏
S

PS(XS | Xπ(S))

This can reduce the number of expressions needed to represent P (
−→
X ). For exam-

ple,in the following DAG, X2 ←− X1 −→ X3

P (
−→
X ) = P (X1)P (X2 | X1)P (X3 | X1)∫

X1

∫
X3

∫
X2

P (X1)P (X2 | X1)P (X3 | X1)dX2dX3dX1 =

∫
X1

∫
X3

P (X1)P (X3 | X1)dX3dX1

= 1

Undirected Acyclic Graph : Here there are no directed edges and hence no
notion of ancestor as shown in Fig.1.

Cliques : These refer to fully connected sub-graphs of a undirected graph. The
clique which cannot be grown any further,i.e, has maximum possible vertices in it
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Figure 1: undirected graphical model

is called Maximal Clique.

CG ≡ set of all possible cliques in graph G

c ∈ CG,Ψc(Xc) ≡ compatibility function

P (X) =
1

Z

∏
c∈CG

Ψc(Xc) where Z is the normalising constant

Factor Graph Model : Here the graph is considered to constitute of a product
of factors Ψ with each factor being contributed by variables/vertices within a clique.
For example, in the Fig. 2, P (X) = 1

Z

∏
f Ψf (Xf ) where Xf can be (X1, X2, X3)

or (X3, X4, X5, X6)

Figure 2: Factor Graph

Conditional Independence Assumption : Given a particular connected graph,
two sub-graphs are considered conditionally independent given the set of nodes
which separates them . The separating nodes form the Separator Set. Here, A and
B are conditionally independent given the separator set consisting of X3 and X4 .

Figure 3: Separator Set separating A and B

The Hammersley-Cli�ord Theorem states that a probability distribution function
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satis�es pairwise Markov property with respect to an undirected graphical model if
the distribution function can be factorized according to the graph.

Graphical Model Inference: There can be several kinds of inference desired

from a given graphical model for a set of variables
−→
X = x1, x2, ...xp like

1. �nding P (
−→
X ) . This is hard as �nding the normalizing constant Z is hard as

it requires a summation over all possible con�gurations of
−→
X .

2. A ⊆ V (vertex set). Finding PA(XA)

3. A,B ⊆ V . Finding P (XA | XB)

4. argmax−→x P (−→x ). Finding maximum a posteriori (MAP)

Applications:

1. Constraint Satisfaction:

X1, X2, ..Xp where Xk ∈ {0, 1}

ψ1,2,3(X1, X2, X3) =

{
0 (X1, X2, X3) = 001,

1 otherwise

2. Signal Decoding: As seen in Fig. 4, we �nd the con�guration of X corre-
sponding to the maximum probability.

Figure 4: Signal decoding with parity check
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X1, X2, ..Xp Y1, Y2, ...Yp

ψ1,2,3(X1, X2, X3) =

{
1 if check(parity code) is satis�ed,

0 otherwise

ψ1(X1) = P (Y1 | X1) ∈ {0, 1} noise probability

ψf (Xf ) = {0 or1} parity code con�guration

P (X) =
1

Z

∏
s

Ψs(Xs)Ψf (Xf )

3. Hidden Markov Model: This has application in vision and speech recognition
and represented by the following graphical model.

Figure 5: Hidden Markov Model
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