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Abstract—Relative to the large literature on upper bounds
on complexity of convex optimization, lesser attention hasbeen
paid to the fundamental hardness of these problems. Given the
extensive use of convex optimization in machine learning and
statistics, gaining an understanding of these complexity-theoretic
issues is important. In this paper, we study the complexity of
stochastic convex optimization in an oracle model of computation.
We introduce a new notion of discrepancy between functions,
and use it to reduce problems of stochastic convex optimization
to statistical parameter estimation, which can be lower bounded
using information-theoretic methods. Using this approach, we
improve upon known results and obtain tight minimax complexity
estimates for various function classes.
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I. I NTRODUCTION

Convex optimization forms the backbone of many algo-
rithms for statistical learning and estimation. Given thatmany
statistical estimation problems are large-scale in nature—with
the problem dimension and/or sample size being large—it is
essential to make efficient use of computational resources.
Stochastic optimization algorithms are an attractive class of
methods, known to yield moderately accurate solutions in a
relatively short time [1]. Given the popularity of such stochas-
tic optimization methods, understanding the fundamental com-
putational complexity of stochastic convex optimization is
thus a key issue for large-scale learning. A large body of
literature is devoted to obtaining rates of convergence of
specific procedures for various classes of convex optimization
problems. A typical outcome of such analysis is an upper
bound on the error—for instance, gap to the optimal cost—
as a function of the number of iterations. Such analyses have
been performed for many standard optimization algorithms,
among them gradient descent, mirror descent, interior point
programming, and stochastic gradient descent, to name a few.

A. Agarwal is with the Department of EECS at the University ofCalifornia,
Berkeley. P. Ravkimuar is with the Department of Computer Science at
University of Texas, Austin. M. J. Wainwright is with the Departments of
Statistics and EECS, University of California, Berkeley. P. Bartlett is with the
Departments of Statistics and EECS, University of California, Berkeley, and
and the Department of Mathematical Sciences, QUT, Brisbane, Australia.

1AA and PLB gratefully acknowledge partial support from NSF awards
DMS-0707060 and DMS-0830410 and DARPA-HR0011-08-2-0002.AA was
also supported in part by a Microsoft Research Fellowship. MJW and PR were
partially supported by funding from the National Science Foundation (DMS-
0605165, and DMS-0907632). In addition, MJW received funding from the
Air Force Office of Scientific Research (AFOSR-09NL184). We also thank the
anonymous reviewers for helpful suggestions, and corrections to our results
and for pointing out the optimality of our bounds in the primal-dual norm
setting. This paper was presented in part at NIPS 2009 conference.

We refer the reader to various standard texts on optimization
(e.g., [2], [3], [4]) for further details on such results.

On the other hand, there has been relatively little study
of the inherent complexity of convex optimization problems.
To the best of our knowledge, the first formal study in this
area was undertaken in the seminal work of Nemirovski
and Yudin [5], hereafter referred to as NY. One obstacle
to a classical complexity-theoretic analysis, as these authors
observed, is that of casting convex optimization problems in a
Turing Machine model. They avoided this problem by instead
considering a natural oracle model of complexity, in which
at every round the optimization procedure queries an oracle
for certain information on the function being optimized. This
information can be either noiseless or noisy, depending on
whether the goal is to lower bound the oracle complexity of
deterministic or stochastic optimization algorithms. Working
within this framework, the authors obtained a series of lower
bounds on the computational complexity of convex optimiza-
tion problems, both in deterministic and stochastic settings. In
addition to the original text NY [5], we refer the interested
reader to the book by Nesterov [4], and the lecture notes by
Nemirovski [6] for further background.

In this paper, we consider the computational complexity of
stochastic convex optimization within this oracle model. In
particular, we improve upon the work of NY [5] for stochastic
convex optimization in two ways. First, our lower bounds have
an improved dependence on the dimension of the space. In the
context of statistical estimation, these bounds show how the
difficulty of the estimation problem increases with the number
of parameters. Second, our techniques naturally extend to give
sharper results for optimization over simpler function classes.
We show that the complexity of optimization for strongly
convex losses is smaller than that for convex, Lipschitz losses.
Third, we show that for a fixed function class, if the set
of optimizers is assumed to have special structure such as
sparsity, then the fundamental complexity of optimizationcan
be significantly smaller. All of our proofs exploit a new notion
of the discrepancy between two functions that appears to be
natural for optimization problems. They involve a reduction
from stochastic optimization to a statistical parameter esti-
mation problem, and an application of information-theoretic
lower bounds for the estimation problem. We note that special
cases of the first two results in this paper appeared in the ex-
tended abstract [7], and that a related study was independently
undertaken by Raginsky and Rakhlin [8].

The remainder of this paper is organized as follows. We
begin in Section II with background on oracle complexity,
and a precise formulation of the problems addressed in this
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paper. Section III is devoted to the statement of our main
results, and discussion of their consequences. In Section IV,
we provide the proofs of our main results, which all exploit a
common framework of four steps. More technical aspects of
these proofs are deferred to the appendices.

a) Notation: For the convenience of the reader, we
collect here some notation used throughout the paper. For
p ∈ [1,∞], we use‖x‖p to denote thè p-norm of a vector
x ∈ Rp, and we let q denote the conjugate exponent,
satisfying 1

p + 1
q = 1. For two distributionsP and Q, we

useD(P ‖Q) to denote the Kullback-Leibler (KL) divergence
between the distributions. The notationI(A) refers to the 0-
1 valued indicator random variable of the setA. For two
vectorsα, β ∈ {−1,+1}d, we define the Hamming distance
∆H(α, β) :=

∑d
i=1 I[αi 6= βi]. Given a convex function

f : Rd → R, the subdifferential off at x is the set∂f(x)
given by
{
z ∈ Rd | f(y) ≥ f(x) + 〈z, y − x〉 for all y ∈ Rd

}
.

II. BACKGROUND AND PROBLEM FORMULATION

We begin by introducing background on the oracle model
of convex optimization, and then turn to a precise specification
of the problem to be studied.

A. Convex optimization in the oracle model

Convex optimization is the task of minimizing a convex
function f over a convex setS ⊆ Rd. Assuming that
the minimum is achieved, it corresponds to computing an
elementx∗f that achieves the minimum—that is, an element
x∗f ∈ argminx∈S f(x). An optimization methodis any pro-
cedure that solves this task, typically by repeatedly selecting
values fromS. For a given class of optimization problems, our
primary focus in this paper is to determine lower bounds on
the computational cost, as measured in terms of the number
of (noisy) function and subgradient evaluations, requiredto
obtain an ε-optimal solution to any optimization problem
within the class.

More specifically, we follow the approach of Nemirovski
and Yudin [5], and measure computational cost based on the
oracle model of optimization. The main components of this
model are anoracle and aninformation set. An oracle is a
(possibly random) functionφ : S 7→ I that answers any query
x ∈ S by returning an elementφ(x) in an information set
I. The information set varies depending on the oracle; for
instance, for an exact oracle ofmth order, the answer to a
query xt consists off(xt) and the firstm derivatives off
at xt. For the case of stochastic oracles studied in this paper,
these values are corrupted with zero-mean noise with bounded
variance. We then measure the computational labor of any
optimization method as the number of queries it poses to the
oracle.

In particular, given a positive integerT corresponding to the
number of iterations, an optimization methodM designed to
approximately minimize the convex functionf over the convex
setS proceeds as follows. At any given iterationt = 1, . . . , T ,

the methodM queries atxt ∈ S, and the oracle reveals the
informationφ(xt, f). The method then uses the information
{φ(x1, f), . . . , φ(xt, f)} to decide at which pointxt+1 the
next query should be made. For a given oracle functionφ, let
MT denote the class of all optimization methodsM that make
T queries according to the procedure outlined above. For any
methodM ∈ MT , we define its error on functionf after T
steps as

εT (M, f, S, φ) := f(xT )−min
x∈S

f(x) = f(xT )−f(x∗f ), (1)

where xT is the method’s query at timeT . Note that by
definition ofx∗f as a minimizing argument, this error is a non-
negative quantity.

When the oracle is stochastic, the method’s queryxT at time
T is itself random, since it depends on the random answers
provided by the oracle. In this case, the optimization error
εT (M, f, S, φ) is also a random variable. Accordingly, for
the case of stochastic oracles, we measure the accuracy in
terms of the expected valueEφ[εT (M, f, S, φ)], where the
expectation is taken over the oracle randomness. Given a class
of functionsF defined over a convex setS and a classMT of
all optimization methods based onT oracle queries, we define
the minimax error

ε∗T (F , S;φ) := inf
M∈MT

sup
f∈F

Eφ[εT (M, f, S, φ)]. (2)

In the sequel, we provide results for particular classes of
oracles. So as to ease the notation, when the oracleφ is clear
from the context, we simply writeε∗T (F , S).

B. Stochastic first-order oracles

In this paper, we study stochastic oracles for which the
information setI ⊂ R×Rd consists of pairs of noisy function
and subgradient evaluations. More precisely, we have:

Definition 1. For a given setS and function classF , the class
of first-order stochastic oracles consists of random mappings
φ : S ×F → I of the formφ(x, f) = (f̂(x), ẑ(x)) such that

E[f̂(x)] = f(x), E[ẑ(x)] ∈ ∂f(x), and

E
[
‖ẑ(x)‖2p

]
≤ σ2. (3)

We useOp,σ to denote the class of all stochastic first-order
oracles with parameters(p, σ). Note that the first two
conditions imply thatf̂(x) is an unbiased estimate of the
function valuef(x), and that̂z(x) is an unbiased estimate of
a subgradientz ∈ ∂f(x). When f is actually differentiable,
then ẑ(x) is an unbiased estimate of the gradient∇f(x). The
third condition in equation (3) controls the “noisiness” ofthe
subgradient estimates in terms of the`p-norm.

Stochastic gradient methods are a widely used class of
algorithms that can be understood as operating based on
information provided by a stochastic first-order oracle. As
a particular example, consider a function of the separable
form f(x) = 1

n

∑n
i=1 hi(x), where eachhi is differentiable.

Functions of this form arise very frequently in statistical
problems, where each termi corresponds to a different sample
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and the overall cost function is some type of statistical loss
(e.g., maximum likelihood, support vector machines, boosting
etc.) The natural stochastic gradient method for this problem is
to choose an indexi ∈ {1, 2, . . . , n} uniformly at random, and
then to return the pair(hi(x),∇hi(x)). Taking averages over
the randomly chosen indexi yields 1

n

∑n
i=1 hi(x) = f(x), so

thathi(x) is an unbiased estimate off(x), with an analogous
unbiased property holding for the gradient ofhi(x).

C. Function classes of interest

We now turn to the classesF of convex functions for which
we study oracle complexity. In all cases, we consider real-
valued convex functions defined over some convex setS. We
assume without loss of generality thatS contains an open set
around0, and many of our lower bounds involve the maximum
radiusr = r(S) > 0 such that

S ⊇ B∞(r) :=
{
x ∈ Rd | ‖x‖∞ ≤ r

}
. (4)

Our first class consists ofconvex Lipschitz functions:

Definition 2. For a given convex setS ⊆ Rd and parameter
p ∈ [1,∞], the classFcv(S, L, p) consists of all convex
functionsf : S → R such that

∣∣f(x)− f(y)
∣∣ ≤ L ‖x− y‖q for all x, y ∈ S, (5)

where 1
q = 1− 1

p .

We have defined the Lipschitz condition (5) in terms of
the conjugate exponentq ∈ [1,∞], defined by the relation
1
q = 1 − 1

p . To be clear, our motivation in doing so is to
maintain consistency with our definition of the stochastic first-
order oracle, in which we assumed thatE

[
‖ẑ(x)‖2p

]
≤ σ2.

We note that the Lipschitz condition (5) is equivalent to the
condition

‖z‖p ≤ L ∀z ∈ ∂f(x), and for allx ∈ int(S).

If we consider the case of a differentiable functionf , the
unbiasedness condition in Definition 1 implies that

‖∇f(x)‖p = ‖E[ẑ(x)]‖p
(a)

≤ E‖ẑ(x)‖p
(b)

≤
√
E‖ẑ(x)‖2p ≤ σ,

where inequality (a) follows from the convexity of the
`p-norm and Jensen’s inequality, and inequality (b) is a result
of Jensen’s inequality applied to the concave function

√
x.

This bound implies thatf must be Lipschitz with constant
at mostσ with respect to the dual̀q-norm. Therefore, we
necessarily must haveL ≤ σ, in order for the function
class from Definition 2 to be consistent with the stochastic
first-order oracle.

A second function class consists of strongly convex functions,
defined as follows:

Definition 3. For a given convex setS ⊆ Rd and parameter
p ∈ [1,∞], the classFscv(S, p;L, γ) consists of all convex
functionsf : S → R such that the Lipschitz condition(5)

holds, and such thatf satisfies thè 2-strong convexity condi-
tion

f (αx+ (1− α)y) ≥

αf(x) + (1− α)f(y) + α(1 − α)
γ2

2
‖x− y‖22 (6)

for all x, y ∈ S.

In this paper, we restrict our attention to the case of strong
convexity with respect to thè2-norm. (Similar results on the
oracle complexity for strong convexity with respect to different
norms can be obtained by straightforward modifications of the
arguments given here). For future reference, it should be noted
that the Lipschitz constantL and strong convexity constantγ
interact with one another. In particular, wheneverS ⊂ Rd

contains thè ∞-ball of radiusr, the LipschitzL and strong
convexityγ constants must satisfy the inequality

L

γ2
≥ r

4
d1/p. (7)

In order to establish this inequality, we note that strong
convexity condition withα = 1/2 implies that

γ2

8
≤ 2f

(
x+y
2

)
− f(x)− f(y)

2‖x− y‖22
≤ L‖x− y‖q

2‖x− y‖22
We now choose the pairx, y ∈ S such that‖x−y‖∞ = r and
‖x − y‖2 = r

√
d. Such a choice is possible whenever

S contains the `∞ ball of radius r. Since we have

‖x − y‖q ≤ d1/q‖x − y‖∞, this choice yieldsγ
2

4 ≤ Ld
1
q
−1

r ,
which establishes the claim (7).

As a third example, we study the oracle complexity of op-
timization over the class of convex functions that have sparse
minimizers. This class of functions is well-motivated, since
a large body of statistical work has studied the estimation of
vectors, matrices and functions under various types of sparsity
constraints. A common theme in this line of work is that the
ambient dimensiond enters the rates only logarithmically, and
so has a mild effect. Consequently, it is natural to investigate
whether the complexity of optimization methods also enjoys
such a mild dependence on ambient dimension under sparsity
assumptions.

For a vectorx ∈ Rd, we use‖x‖0 to denote the number
of non-zero elements inx. Recalling the setFcv(S, L, p) from
Definition 2, we now define a class of Lipschitz functions with
sparse minimizers.

Definition 4. For a convex setS ⊂ Rd and positive integer
k ≤ bd/2c, let Fsp(k; S, L) be the set of be the class of all
convex functions that areL-Lipschitz in the`∞-norm, and
have at least onek-sparse optimizer, meaning that there exists
some

x∗ ∈ argmin
x∈S

f(x) satisfying‖x∗‖0 ≤ k, (8)

We frequently use the shorthand notationFsp(k) when the set
S and parameterL are clear from context.
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III. M AIN RESULTS AND THEIR CONSEQUENCES

With the setup of stochastic convex optimization in place,
we are now in a position to state the main results of this paper,
and to discuss some of their consequences. As previously
mentioned, a subset of our results assume that the setS

contains aǹ ∞ ball of radiusr = r(S). Our bounds scale
with r, thereby reflecting the natural dependence on the size
of the setS. Also, we set the oracle second moment boundσ
to be the same as the Lipschitz constantL in our results.

A. Oracle complexity for convex Lipschitz functions

We begin by analyzing the minimax oracle complexity of
optimization for the class of bounded and convex Lipschitz
functionsFcv from Definition 2.

Theorem 1. LetS ⊂ Rd be a convex set such thatS ⊇ B∞(r)
for some r > 0. Then there exists a universal constant
c0 > 0 such that the minimax oracle complexity over the class
Fcv(S, L, p) satisfies the following lower bounds:

(a) For 1 ≤ p ≤ 2,

sup
φ∈Op,L

ε∗T (Fcv, S;φ) ≥ min

{
c0L r

√
d

T
,
Lr

144

}
. (9)

(b) For p > 2,

sup
φ∈Op,L

ε∗T (Fcv, S;φ) ≥ min

{
c0L r

d1−
1
p

√
T
,
Ld1−1/pr

72

}
.

(10)

Remarks:Nemirovski and Yudin [5] proved the lower bound
Ω
(

1√
T

)
for the function classFcv, in the special case thatS is

the unit ball of a given norm, and the functions are Lipschitzin
the correspondingdual norm. For p ≥ 2, they established the
minimax optimality of this dimension-independent result by
appealing to a matching upper bound achieved by the method
of mirror descent. In contrast, here we do not require the two
norms—namely, that constraining the setS and that for the
Lipschitz constraint—to be dual to one other; instead, we give
give lower bounds in terms of the largest`∞ ball contained
within the constraint setS. As discussed below, our bounds do
include the results for the dual setting of past work as a special
case, but more generally, by examining the relative geometry
of an arbitrary set with respect to the`∞ ball, we obtain results
for arbitrary sets. (We note that thè∞ constraint is natural
in many optimization problems arising in machine learning
settings, in which upper and lower bounds on variables are
often imposed.) Thus, in contrast to the past work of NY on
stochastic optimization, our analysis gives sharper dimension
dependence under more general settings. It also highlightsthe
role of the geometry of the setS in determining the oracle
complexity.

In general, our lower bounds cannot be improved, and
hence specify the optimal minimax oracle complexity. We
consider here some examples to illustrate their sharpness.
Throughout we assume thatT is large enough to ensure
that the 1/

√
T term attains the lower bound and not the

L/144 term. (This condition is reasonable given our goal
of understanding the rate asT increases, as opposed to the

transient behavior over the first few iterations.)

(a) We start from the special case that has been primarily con-
sidered in past works. We consider the classFcv(Bq(1), L, p)
with q = 1−1/p and the stochastic first-order oraclesOp,L for
this class. Then the radiusr of the largest̀ ∞ ball inscribed
within the Bq(1) scales asr = d−1/q. By inspection of the
lower bounds bounds (9) and (10), we see that

sup
φ∈Op,L

ε∗T (Fcv,Bq(1);φ) =




Ω
(
L d1/2−1/q

√
T

)
for 1 ≤ p ≤ 2

Ω
(
L√
T

)
for p ≥ 2.

(11)

As mentioned previously, the dimension-independent lower
bound for the casep ≥ 2 was demonstrated in Chapter 5
of NY, and shown to be optimal2 since it is achieved using
mirror descent with the prox-function‖ · ‖2q. For the case of
1 ≤ p < 2, the lower bounds are also unimprovable, since
they are again achieved (up to constant factors) by stochastic
gradient descent. See Appendix C for further details on these
matching upper bounds.
(b) Let us now consider how our bounds can also make sharp
predictions for non-dual geometries, using the special case
S = B∞(1). For this choice, we haver(S) = 1, and hence
Theorem 1 implies that for allp ∈ [1, 2], the minimax oracle
complexity is lower bounded as

sup
φ∈Op,L

ε∗T (Fcv,B∞(1);φ) = Ω

(
L

√
d

T

)
.

Up to constant factors, this lower bound is sharp for all
p ∈ [1, 2]. Indeed, for any convex setS, stochastic gradient
descent achieves a matching upper bound (see Section 5.2.4,
p. 196 of NY [5], as well as Appendix C in this paper for
further discussion).

(c) As another example, suppose thatS = B2(1). Observe that
this `2-norm unit ball satisfies the relationB2(1) ⊃ 1√

d
B∞(1),

so that we haver(B2(1)) = 1/
√
d. Consequently, for this

choice, the lower bound (9) takes the form

sup
φ∈Op,L

ε∗T (Fcv,B2(1);φ) = Ω

(
L

1√
T

)
,

which is a dimension-independent lower bound. This lower
bound forB2(1) is indeed tight forp ∈ [1, 2], and as before,
this rate is achieved by stochastic gradient descent [5].

(d) Turning to the case ofp > 2, whenS = B∞(1), the lower
bound (10) can be achieved (up to constant factors) using
mirror descent with the dual norm‖·‖2q; for further discussion,
we again refer the reader to Section 5.2.1, p. 190 of NY [5],
as well as to Appendix C of this paper. Also, even though
this lower bound requires the oracle to have only bounded
variance, our proof actually uses a stochastic oracle based
on Bernoulli random variables, for which all moments exist.
Consequently, at least in general, our results show that there

2There is an additional logarithmic factor in the upper bounds for p =
Ω(log d).
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is no hope of achieving faster rates by restricting to oracles
with bounds on higher-order moments. This is an interesting
contrast to the case of havingless than two moments, in
which the rates are slower. For instance, as shown in Section
5.3.1 of NY [5], suppose that the gradient estimates in a
stochastic oracle satisfy the moment boundE‖ẑ(x)‖bp ≤ σ2

for someb ∈ [1, 2). In this setting, the oracle complexity is
lower bounded byΩ

(
T−(b−1)/b

)
. SinceT

b−1

b � T
1
2 for all

b ∈ [1, 2), there is a significant penalty in convergence rates
for having less than two bounded moments.
(e) Even though the results have been stated in a first-order
stochastic oracle model, they actually hold in a stronger sense.
Let ∇if(x) denote theith-order derivative off evaluated at
x, when it exists. With this notation, our results apply to an
oracle that responds with a random functionf̂t such that

E[f̂t(x)] = E[f(x)], and E[∇if̂t(x)] = ∇if(x)

for all x ∈ S and i such that∇if(x) exists, along with
appropriately bounded second moments of all the derivatives.
Consequently, higher-order gradient information cannot im-
prove convergence rates in a worst-case setting. Indeed, the
result continues to hold even for the significantly stronger
oracle that responds with a random function that is a noisy
realization of the true function. In this sense, our result is
close in spirit to a statistical sample complexity lower bound.
Our proof technique is based on constructing a “packing set”
of functions, and thus has some similarity to techniques used
in statistical minimax analysis (e.g., [9], [10], [11], [12]) and
learning theory (e.g., [13], [14], [15]). A significant difference,
as will be shown shortly, is that the metric of interest for
optimization is very different than those typically studied in
statistical minimax theory.

B. Oracle complexity for strongly convex Lipschitz functions

We now turn to the statement of lower bounds over the
class of Lipschitz and strongly convex functionsFscv from
Definition 3. In all these statements, we assume thatγ2 ≤
4Ld−1/p

r , as is required for the definition ofFscv to be sensible.

Theorem 2. Let S = B∞(r). Then there exist universal
constantsc1, c2 > 0 such that the minimax oracle complexity
over the classFscv(S, p;L, γ) satisfies the following lower
bounds:
(a) For p = 1, the oracle complexitysupφ∈Op,L

ε∗(Fscv, φ) is
lower bounded by

min

{
c1

L2

γ2T
, c2Lr

√
d

T
,

L2

1152γ2d
,
Lr

144

}
. (12)

(b) For p > 2, the oracle complexitysupφ∈Op,L
ε∗(Fscv, φ) is

lower bounded by

min

{
c1
L2d1−2/p

γ2T
, c2

Lrd1−1/p

√
T

,
L2d1−2/p

1152γ2
,
Lrd1−1/p

144

}
.

(13)

As with Theorem 1, these lower bounds are sharp. In par-
ticular, for S = B∞(1), stochastic gradient descent achieves
the rate (12) up to logarithmic factors [16], and closely related

algorithms proposed in very recent works [17], [18] match the
lower bound exactly up to constant factors. It should be noted
Theorem 2 exhibits an interesting phase transition between
two regimes. On one hand, suppose that the strong convexity
parameterγ2 is large: then as long asT is sufficiently large,
the first termΩ(1/T ) determines the minimax rate, which
corresponds to the fast rate possible under strong convexity.
In contrast, if we consider a poorly conditioned objective
with γ ≈ 0, then the term involvingΩ(1/

√
T ) is dominant,

corresponding to the rate for a convex objective. This behavior
is natural, since Theorem 2 recovers (as a special case) the
convex result withγ = 0. However, it should be noted that
Theorem 2 applies only to the setB∞(r), and not to arbitrary
setsS like Theorem 1. Consequently, the generalization of
Theorem 2 to arbitrary convex, compact sets remains an
interesting open question.

C. Oracle complexity for convex Lipschitz functions with
sparse optima

Finally, we turn to the oracle complexity of optimization
over the classFsp from Definition 4.

Theorem 3. Let Fsp be the class of all convex functions that
areL-Lipschitz with respect to the‖·‖∞ norm and that have a
k-sparse optimizer. LetS ⊂ Rd be a convex set withB∞(r) ⊆
S. Then there exists a universal constantc > 0 such that for
all k ≤ bd2c, we have

sup
φ∈O∞,L

ε∗(Fsp, φ) ≥ min



cLr

√
k2 log d

k

T
,
Lkr

432



 . (14)

b) Remark:If k = O(d1−δ) for someδ ∈ (0, 1) (so that
log d

k = Θ(log d)), then this bound is sharp up to constant
factors. In particular, suppose that we use mirror descent based
on the ‖ · ‖1+ε norm with ε = 2 log d/(2 log d− 1). As we
discuss in more detail in Appendix C, it can be shown that

this technique will achieve a solution accurate toO(
√

k2 log d
T )

within T iterations; this achievable result matches our lower
bound (14) up to constant factors under the assumed scaling
k = O(d1−δ) . To the best of our knowledge, Theorem 3
provides the first tight lower bound on the oracle complexity
of sparse optimization.

IV. PROOFS OF RESULTS

We now turn to the proofs of our main results. We be-
gin in Section IV-A by outlining the framework and estab-
lishing some basic results on which our proofs are based.
Sections IV-B through IV-D are devoted to the proofs of
Theorems 1 through 3 respectively.

A. Framework and basic results

We begin by establishing a basic set of results that are
exploited in the proofs of the main results. At a high-level,our
main idea is to show that the problem of convex optimization
is at least as hard as estimating the parameters of Bernoulli
variables—that is, the biases ofd independent coins. In order
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to perform this embedding, for a given error toleranceε, we
start with an appropriately chosen subset of the vertices ofa
d-dimensional hypercube, each of which corresponds to some
values of thed Bernoulli parameters. For a given function
class, we then construct a “difficult” subclass of functionsthat
are indexed by these vertices of the hypercube. We then show
that being able to optimize any function in this subclass to
ε-accuracy requires identifying the hypercube vertex. Thisis a
multiway hypothesis test based on the observations provided
by T queries to the stochastic oracle, and we apply Fano’s
inequality [19] or Le Cam’s bound [20], [12] to lower bound
the probability of error. In the remainder of this section,
we provide more detail on each of steps involved in this
embedding.

1) Constructing a difficult subclass of functions:Our first
step is to construct a subclass of functionsG ⊆ F that we use
to derive lower bounds. Any such subclass is parametrized by
a subsetV ⊆ {−1,+1}d of the hypercube, chosen as follows.
Recalling that∆H denotes the Hamming metric, we letV =
{α1, . . . , αM} be a subset of the vertices of the hypercube
such that

∆H(αj , αk) ≥ d

4
for all j 6= k, (15)

meaning thatV is a d
4 -packing in the Hamming norm. It is

a classical fact (e.g., [21]) that one can construct such a set
with cardinality |V| ≥ (2/

√
e)d/2.

Now let Gbase = {f+
i , f

−
i , i = 1, . . . , d} denote some base

set of2d functions defined on the convex setS, to be chosen
appropriately depending on the problem at hand. For a given
toleranceδ ∈ (0, 14 ], we define, for each vertexα ∈ V , the
functionx 7→ gα(x) given by

c

d

d∑

i=1

{
(1/2 + αiδ)f

+
i (x) + (1/2− αiδ) f

−
i (x)

}
. (16)

Depending on the result to be proven, our choice of the base
functions{f+

i , f
−
i } and the pre-factorc will ensure that each

gα satisfies the appropriate Lipschitz and/or strong convexity
properties overS. Moreover, we will ensure that that all
minimizersxα of eachgα are contained withinS.

Based on these functions and the packing setV , we define
the function class

G(δ) :=
{
gα, α ∈ V

}
. (17)

Note thatG(δ) contains a total of|V| functions by construc-
tion, and as mentioned previously, our choices of the base
functions etc. will ensure thatG(δ) ⊆ F . We demonstrate
specific choices of the classG(δ) in the proofs of Theorems 1
through 3 to follow.

2) Optimizing well is equivalent to function identification:
We now claim that if a method can optimize over the subclass
G(δ) up to a certain tolerance, then it must be capable of
identifying which functiongα ∈ G(δ) was chosen. We first
require a measure for theclosenessof functions in terms of
their behavior near each others’ minima. Recall that we use
x∗f ∈ Rd to denote a minimizing point of the functionf . Given

a convex setS ⊆ Rd and two functionsf, g, we define

ρ(f, g) := inf
x∈S

[
f(x) + g(x)− f(x∗f )− g(x∗g)

]
. (18)

This discrepancy measure is non-negative, symmetric in its

x∗f x∗g

f(x∗f )

g(x∗g)

infx∈S
{
f(x) + g(x)}

Fig. 1. Illustration of the discrepancy functionρ(f, g). The
functionsf andg achieve their minimum valuesf(x∗

f ) and
g(x∗

g) at the pointsx∗

f andx∗

g respectively.

arguments, and satisfiesρ(f, g) = 0 if and only if x∗f = x∗g,
so that we may refer to it as a premetric. (It does not satisfy
the triangle inequality nor the condition thatρ(f, g) = 0 if
and only if f = g, both of which are required forρ to be a
metric.)

Given the subclassG(δ), we quantify how densely it is
packed with respect to the premetricρ using the quantity

ψ(G(δ)) := min
α6=β∈V

ρ(gα, gβ). (19)

We denote this quantity byψ(δ) when the classG is clear from
the context. We now state a simple result that demonstrates the
utility of maintaining a separation underρ among functions in
G(δ).
Lemma 1. For any x̃ ∈ S, there can be at most one function
gα ∈ G(δ) such that

gα(x̃)− inf
x∈S

gα(x) ≤
ψ(δ)

3
. (20)

Thus, if we have an element̃x ∈ S that approximately
minimizes one function in the setG(δ) up to toleranceψ(δ),
then it cannot approximately minimize any other function in
the set.

Proof: For a givenx̃ ∈ S, suppose that there exists an
α ∈ V such thatgα(x̃)− gα(x

∗
α) ≤ ψ(δ)

3 . From the definition
of ψ(δ) in (19), for anyβ ∈ V , β 6= α, we have

ψ(δ) ≤ gα(x̃)− inf
x∈S

gα(x) + gβ(x̃)− inf
x∈S

gβ(x)

≤ ψ(δ)

3
+ gβ(x̃)− inf

x∈S

gβ(x).

Re-arranging yields the inequalitygβ(x̃)− gβ(x
∗
β) ≥ 2

3 ψ(δ),
from which the claim (20) follows.
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Suppose that for some fixed but unknown functiongα∗ ∈
G(δ), some methodMT is allowed to makeT queries to an
oracle with information functionφ(· ; gα∗), thereby obtaining
the information sequence

φ(xT1 ; g
∗
α) := {φ(xt; g∗α), t = 1, 2, . . . , T }.

Our next lemma shows that if the methodMT achieves a low
minimax error over the classG(δ), then one can use its output
to construct a hypothesis test that returns the true parameter
α∗ at least2/3 of the time. (In this statement, we recall the
definition (2) of the minimax error in optimization.)

Lemma 2. Suppose that based on the dataφ(xT1 ; g
∗
α), there

exists a methodMT that achieves a minimax error satisfying

E
[
εT (MT ,G(δ), S, φ)

]
≤ ψ(δ)

9
. (21)

Based on such a methodMT , one can construct a hypothesis
test α̂ : φ(xT1 ; g

∗
α) → V such thatmax

α∗∈V
Pφ[α̂ 6= α∗] ≤ 1

3 .

Proof: Given a methodMT that satisfies the bound (21),
we construct an estimator̂α(MT ) of the true vertexα∗ as
follows. If there exists someα ∈ V such thatgα(xT ) −
gα(xα) ≤ ψ(δ)

3 then we set̂α(MT ) equal toα. If no such
α exists, then we choosêα(MT ) uniformly at random from
V . From Lemma 1, there can exist only one suchα ∈ V that
satisfies this inequality. Consequently, using Markov’s inequal-
ity, we havePφ[α̂(MT ) 6= α∗] ≤ Pφ

[
εT (MT , gα∗ , S, φ) ≥

ψ(δ)/3
]
≤ 1

3 . Maximizing overα∗ completes the proof.
We have thus shown that having a low minimax optimization
error overG(δ) implies that the vertexα∗ ∈ V can be identified
most of the time.

3) Oracle answers and coin tosses:We now describe
stochastic first order oraclesφ for which the samples
φ(xT1 ; gα) can be related to coin tosses. In particular, we
associate a coin with each dimensioni ∈ {1, 2, . . . , d}, and
consider the set of coin bias vectors lying in the set

Θ(δ) =
{
(1/2 + α1δ, . . . , 1/2 + αdδ) | α ∈ V

}
, (22)

Given a particular functiongα ∈ G(δ)—or equivalently,
vertexα ∈ V—we consider two different types of stochastic
first-order oraclesφ, defined as follows:

By construction, the function value and gradients returned
by Oracle A are unbiased estimates of those ofgα. In
particular, since each co-ordinatei is chosen with probability
1/d, the expectationE

[
ĝα,A(x)

]
is given by

c

d

d∑

i=1

[
E[bi]f

+
i (x) + E[1− bi]f

−
i (x)

]
= gα(x),

with a similar relation for the gradient. Furthermore, as long
as the base functionsf+

i andf−
i have gradients bounded by

1, we haveE[‖ẑα,A(x)‖p] ≤ c for all p ∈ [1,∞].

Parts of proofs are based on an oracle which responds with
function values and gradients that ared-dimensionalin nature.

As with Oracle A, this oracle returns unbiased estimates of
the function values and gradients. We frequently work with
functionsf+

i , f
−
i that depend only on theith coordinatex(i).

In such cases, under the assumptions| ∂f
+

i

∂x(i) | ≤ 1 and| ∂f
−
i

∂x(i) | ≤
1, we have

‖ẑα,B(x)‖2p =
c2

d2

(
d∑

i=1

∣∣∣∣bi
∂f+

i (x)

∂x(i)
+ (1− bi)

∂f−
i (x)

∂x(i)

∣∣∣∣
p
)2/p

≤ c2d2/p−2. (23)

In our later uses of Oracles A and B, we choose the pre-
factor c appropriately so as to produce the desired Lipschitz
constants.

4) Lower bounds on coin-tossing:Finally, we use
information-theoretic methods to lower bound the probability
of correctly estimating the true parameterα∗ ∈ V in our
model. At each round of either Oracle A or Oracle B, we
can consider a set ofd coin tosses, with an associated vector
θ∗ = (12 + α∗

1δ, . . . ,
1
2 + α∗

dδ) of parameters. At any round,
the output of Oracle A can (at most) reveal the instantiation
bi ∈ {0, 1} of a randomly chosen index, whereas Oracle B can
at most reveal the entire vector(b1, b2, . . . , bd). Our goal is to
lower bound the probability of estimating the true parameter
α∗, based on a sequence of lengthT . As noted previously in
remarks following Theorem 1, this part of our proof exploits
classical techniques from statistical minimax theory, including
the use of Fano’s inequality (e.g., [9], [10], [11], [12]) and Le
Cam’s bound (e.g., [20], [12]).

Lemma 3. Suppose that the Bernoulli parameter vectorα∗

is chosen uniformly at random from the packing setV , and
suppose that the outcome of` ≤ d coins chosen uniformly at
random is revealed at each roundt = 1, . . . , T . Then for any
δ ∈ (0, 1/4], any hypothesis test̂α satisfies

P[α̂ 6= α∗] ≥ 1− 16`T δ2 + log 2
d
2 log(2/

√
e)

, (24)

where the probability is taken over both randomness in the
oracle and the choice ofα∗.

Note that we will apply the lower bound (24) with̀= 1 in
the case of Oracle A, and̀= d in the case of Oracle B.

Proof: For each timet = 1, 2, . . . , T , let Ut denote
the randomly chosen subset of size`, Xt,i be the outcome
of oracle’s coin toss at timet for coordinate i and let
Yt ∈ {−1, 0, 1}d be a random vector with entries

Yt,i =

{
Xt,i if i ∈ Ut, and

−1 if i /∈ Ut.

By Fano’s inequality [19], we have the lower bound

P[α̂ 6= α∗] ≥ 1− I({(Ut, Yt}Tt=1;α
∗) + log 2

log |V| ,

where I({(Ut, Yt}Tt=1;α
∗) denotes the mutual information

between the sequence{(Ut, Yt)}Tt=1 and the random param-
eter vectorα∗. As discussed earlier, we are guaranteed that
log |V| ≥ d

2 log(2/
√
e). Consequently, in order to prove the
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Oracle A: 1-dimensional unbiased gradients
(a) Pick an indexi ∈ {1, . . . , d} uniformly at random.
(b) Draw bi ∈ {0, 1} according to a Bernoulli distribution with parameter1/2 + αiδ.
(c) For the given inputx ∈ S, return the valuêgα,A(x) and a sub-gradient̂zα,A(x) ∈ ∂ĝα,A(x) of the function

ĝα,A := c
[
bif

+
i + (1 − bi)f

−
i

]
.

Oracle B: d-dimensional unbiased gradients
(a) For i = 1, . . . , d, draw bi ∈ {0, 1} according to a Bernoulli distribution with parameter1/2 + αiδ.
(b) For the given inputx ∈ S, return the valuêgα,B(x) and a sub-gradient̂zα,B(x) ∈ ∂ĝα,B(x) of the function

ĝα,B :=
c

d

d∑

i=1

[
bif

+
i + (1− bi)f

−
i

]
.

lower bound (24), it suffices to establish the upper bound
I({Ut, Yt}Tt=1;α

∗) ≤ 16T ` δ2.
By the independent and identically distributed nature of the

sampling model, we have

I(((U1, Y1), . . . , (UT , YT ));α
∗) =

T∑

t=1

I((Ut, Yt);α
∗)

= T I((U1, Y1);α
∗),

so that it suffices to upper bound the mutual information for
a single round. To simplify notation, from here onwards we
write (Y, U) to mean the pair(Y1, U1). With this notation,
the remainder of our proof is devoted to establishing that
I(Y ;U) ≤ 16 ` δ2,

By chain rule for mutual information [19], we have

I((U, Y );α∗) = I(Y ;α∗ | U) + I(α∗;U). (25)

Since the subsetU is chosen independently ofα∗, we have
I(α∗;U) = 0, and so it suffices to upper bound the first term.
By definition of conditional mutual information [19], we have

I(Y ;α∗ | U) = EU
[
D(PY |α∗,U ‖ PY |U )

]

Sinceα has a uniform distribution overV , we havePY |U =
1
|V|
∑

α∈V PY |α,U , and convexity of the Kullback-Leibler (KL)
divergence yields the upper bound

D(PY |α∗,U ‖ PY |U ) ≤
1

|V|
∑

α∈V
D(PY |α∗,U ‖ PY |α,U ). (26)

Now for any pair α∗, α ∈ V , the KL divergence
D(PY |α∗,U ‖ PY |α,U ) can be at most the KL divergence
betweeǹ independent pairs of Bernoulli variates with param-
eters1

2+δ and 1
2−δ. LettingD(δ) denote the Kullback-Leibler

divergence between a single pair of Bernoulli variables with
parameters12 + δ and 1

2 − δ, a little calculation yields

D(δ) =

(
1

2
+ δ

)
log

1
2 + δ
1
2 − δ

+

(
1

2
− δ

)
log

1
2 − δ
1
2 + δ

= 2δ log

(
1 +

4δ

1− 2δ

)

≤ 8δ2

1− 2δ
.

Consequently, as long asδ ≤ 1/4, we haveD(δ) ≤ 16δ2.
Returning to the bound (26), we conclude that
D(PY |α∗,U ‖ PY |U ) ≤ 16 ` δ2. Taking averages over
U , we obtain the boundI(Y ;α∗ | U) ≤ 16 ` δ2, and
applying the decomposition (25) yields the upper bound
I((U, Y );α∗) ≤ 16 ` δ2, thereby completing the proof.

The reader might have observed that Fano’s inequality
yields a non-trivial lower bound only when|V| is large enough.
Since |V| depends on the dimensiond for our construction,
we can apply the Fano lower bound only ford large enough.
Smaller values ofd can be lower bounded by reduction to the
cased = 1; here we state a simple lower bound for estimating
the bias of a single coin, which is a straightforward application
of Le Cam’s bounding technique [20], [12]. In this special
case, we haveV = {1/2 + δ, 1/2− δ}, and we recall that the
estimatorα̂(MT ) takes values inV .

Lemma 4. Given a sample sizeT ≥ 1 and a parameter
α∗ ∈ V , let {X1, . . . , XT } be T i.i.d Bernoulli variables
with parameterα∗. Let α̂ be any test function based on
these samples and returning an element ofV . Then for any
δ ∈ (0, 1/4], we have the lower bound

sup
α∗∈{ 1

2
+δ, 1

2
−δ}

Pα∗ [α̂ 6= α∗] ≥ 1−
√
8Tδ2.

Proof: We observe first that for̂α ∈ V , we have

Eα∗ [|α̂− α∗|] = 2δPα∗ [α̂ 6= α∗],

so that it suffices to lower bound the expected error. To ease
notation, letQ1 andQ−1 denote the probability distributions
indexed byα = 1

2 + δ andα = 1
2 − δ respectively. By Lemma

1 of Yu [12], we have

sup
α∗∈V

Eα∗ [|α̂− α∗|] ≥ 2δ
{
1− ‖Q1 −Q−1‖1/2

}
.

where we use the fact that|(1/2+δ)− (1/2−δ)| = 2δ. Thus,
we need to upper bound the total variation distance‖Q1 −
Q−1‖1. From Pinkser’s inequality [19], we have

‖Q1 −Q−1‖1 ≤
√
2D(Q1 ‖Q−1)

(i)

≤
√
32Tδ2,
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where inequality (i) follows from the calculation following
equation 26 (see proof of Lemma 3), and uses our assumption
that δ ∈ (0, 1/4]. Putting together the pieces, we obtain a
lower bound on the probability of error

sup
α∗∈V

P[α̂ 6= α∗] = sup
α∗∈V

E|α̂ − α∗|
2δ

≥ 1−
√
8Tδ2,

as claimed.
Equipped with these tools, we are now prepared to prove our
main results.

B. Proof of Theorem 1

We begin with oracle complexity for bounded Lipschitz
functions, as stated in Theorem 1. We first prove the result
for the setS = B∞(12 ).

a) Proof for p ∈ [1, 2]: Consider Oracle A that returns
the quantities(ĝα,A(x), ẑα,A(x)). By definition of the oracle,
each round reveals only at most one coin flip, meaning that we
can apply Lemma 3 with̀ = 1, thereby obtaining the lower
bound

P[α̂(MT ) 6= α] ≥ 1− 2
16Tδ2 + log 2

d log(2/
√
e)

. (27)

We now seek an upper boundP[α̂(MT ) 6= α] using
Lemma 2. In order to do so, we need to specify the base
functions(f+

i , f
−
i ) involved. Fori = 1, . . . , d, we define

f+
i (x) :=

∣∣∣∣x(i) +
1

2

∣∣∣∣ , and f−
i (x) :=

∣∣∣∣x(i)−
1

2

∣∣∣∣ . (28)

Given thatS = B∞(12 ), we see that the minimizers ofgα are
contained inS. Also, both the functions are 1-Lipschitz in the
`1-norm. By the construction (16), we are guaranteed that for
any subgradient ofgα, we have

‖ẑα,A(x)‖p ≤ 2c for all p ≥ 1.

Therefore, in order to ensure thatgα is L-Lipschitz in the dual
`q-norm, it suffices to setc = L/2.

Let us now lower bound the discrepancy function (18). We
first observe that each functiongα is minimized over the set
B∞
(
1
2

)
at the vectorxα := −α/2, at which point it achieves

its minimum value

min
x∈B∞( 1

2
)
gα(x) =

c

2
− cδ.

Furthermore, we note that for anyα 6= β, we have

gα(x) + gβ(x) =
c

d

d∑

i=1

[(
1

2
+ αiδ +

1

2
+ βiδ

)
f+
i (x)

+

(
1

2
− αiδ +

1

2
− βiδ

)
f−
i (x)

]

=
c

d

d∑

i=1

[
(1 + αiδ + βiδ) f

+
i (x)

+ (1− αiδ − βiδ) f
−
i (x)

]

=
c

d

d∑

i=1

[(
f+
i (x) + f−

i (x)
)
I(αi 6= βi)

+
(
(1 + 2αiδ)f

+
i (x) + (1 − 2αiδ)f

−
i (x)

)
I(αi = βi)

]
.

When αi = βi then xα(i) = xβ(i) = −αi/2, so that this
co-ordinate does not make a contribution to the discrepancy
functionρ(gα, gβ). On the other hand, whenαi 6= βi, we have

f+
i (x) + f−

i (x) =

∣∣∣∣x(i) +
1

2

∣∣∣∣+
∣∣∣∣x(i)−

1

2

∣∣∣∣ ≥ 1

for all x ∈ R. Consequently, any such co-ordinate yields
a contribution of 2cδ/d to the discrepancy. Recalling our
packing set (15) withd/4 separation in Hamming norm, we
conclude that for any distinctα 6= β within our packing set,

ρ(gα, gβ) =
2cδ

d
∆H(α, β) ≥ cδ

2
,

so that by definition ofψ, we have established the lower bound
ψ(δ) ≥ cδ

2 .
Setting the target errorε := cδ

18 , we observe that this choice
ensures thatε < ψ(δ)

9 . Recalling the requirementδ < 1/4,
we haveε < c/72. In this regime, we may apply Lemma 2 to
obtain the upper boundPφ[α̂(MT ) 6= α] ≤ 1

3 . Combining this
upper bound with the lower bound (27) yields the inequality

1

3
≥ 1− 2

16Tδ2 + log 2

d log(2/
√
e)

.

Recalling thatc = L
2 , making the substitutionδ = 18ε

c = 36ε
L ,

and performing some algebra yields

T = Ω

(
L2d

ε2

)
for all d ≥ 11 and for all ε ≤ L

144
.

Combined with Theorem 5.3.1 of NY [5] (or by using the
lower bound of Lemma 4 instead of Lemma 3), we conclude
that this lower bound holds for all dimensionsd.

b) Proof forp > 2: The preceding proof based on Oracle
A is also valid forp > 2, but yields a relatively weak result.
Here we show how the use of Oracle B yields the stronger
claim stated in Theorem 1(b). When using this oracle, alld
coin tosses at each round are revealed, so that Lemma 3 with
` = d yields the lower bound

P[α̂(MT ) 6= α] ≥ 1− 2
16T d δ2 + log 2

d log(2/
√
e)

. (29)

We now seek an upper bound onP[α̂(MT ) 6= α]. As before,
we use the setS = B∞(12 ), and the previous definitions (28)
of f+

i (x) andf−
i (x). From our earlier analysis (in particular,

equation (23)), the quantity‖ẑα,B(x)‖p is at mostcd1/p−1, so
that settingc = Ld1−1/p yields functions that are Lipschitz
with parameterL.

As before, for any distinct pairα, β ∈ V , we have the lower
bound

ρ(gα, gβ) =
2cδ

d
∆H(α, β) ≥ cδ

2
,

so thatψ(δ) ≥ cδ
2 . Consequently, if we set the target error

ε := cδ
18 , then we are guaranteed thatε < ψ(δ)

9 , as is required
for applying Lemma 2. Application of this lemma yields the
upper boundPφ[α̂(MT ) 6= α] ≤ 1

3 . Combined with the lower
bound (29), we obtain the inequality

1

3
≥ 1− 2

16 d T δ2 + log 2

d log(2/
√
e)

.
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Substitutingδ = 18ε/c yields the scalingε = Ω( c√
T
) for all

d ≥ 11 andε ≤ c/72. Recalling thatc = Ld1−1/p, we obtain
the bound (10). Combining this bound with Theorem 5.3.1 of
NY [5], or alternatively, by using the lower bound of Lemma 4
instead of Lemma 3, we conclude that the claim holds for all
dimensions.

We have thus completed the proof of Theorem 1 in the
special caseS = B∞(12 ). In order to prove the general claims,
which scale withr when B∞(r) ⊆ S, we note that our
preceding proof required only thatS ⊇ B∞(12 ) so that the
minimizing pointsxα = −α/2 ∈ S for all α (in particular,
the Lipschitz constant ofgα does not depend onS for our
construction). In the general case, we define our base functions
to be

f+
i (x) =

∣∣∣x(i) + r

2

∣∣∣ , and f−
i (x) =

∣∣∣x(i)− r

2

∣∣∣ .

With this choice, the functionsgα(x) are minimized atxα =
−rα/2, and infx∈S gα(x) = cd/2 − crδ. Mimicking the
previous steps withr = 1/2, we obtain the lower bound

ρ(gα, gβ) ≥
crδ

2
∀α 6= β ∈ V .

The rest of the proof above did not depend onS, so that we
again obtain the lower boundT = Ω

(
d
δ2

)
or T = Ω

(
1
δ2

)

depending on the oracle used. In this case, the difference in
ρ computation means thatε = Lδr

36 ≤ Lr
144 , from which the

general claims follow.

C. Proof of Theorem 2

We now turn to the proof of lower bounds on the oracle
complexity of the class of strongly convex functions from
Definition 3. In this case, we work with the following family
of base functions, parametrized by a scalarθ ∈ [0, 1):

f+
i (x) := rθ|x(i) + r| + (1 − θ)

4
(x(i) + r)

2
, and

f−
i (x) := rθ|x(i) − r| + (1 − θ)

4
(x(i)− r)2 . (30)

A key ingredient of the proof is a uniform lower bound on the
discrepancyρ between pairs of these functions:

Lemma 5. Using an ensemble based on the base func-
tions (30), we have

ρ(gα, gβ) ≥
{

2cδ2r2

(1−θ)d ∆H(α, β) if 1− θ ≥ 4δ
1+2δ

cδr2

d ∆H(α, β) if 1− θ < 4δ
1+2δ .

(31)

The proof of this lemma is provided in Appendix A. Let us
now proceed to the proofs of the main theorem claims.

c) Proof for p = 1: We observe that both the functions
f+
i , f

−
i are r-Lipschitz with respect to the‖ · ‖1 norm by

construction. Hence,gα is cr-Lipschitz and furthermore, by
the definition of Oracle A, we haveE‖ẑα,A(x)‖21 ≤ c2r2. In
addition, the functiongα is (1 − θ)c/(4d)-strongly convex
with respect to the Euclidean norm. We now follow the same
steps as the proof of Theorem 1, but this time exploiting the
ensemble formed by the base functions (30), and the lower

bound on the discrepancyρ(gα, gβ) from Lemma 5. We split
our analysis into two sub-cases.

Case 1:First suppose that1−θ ≥ 4δ/(1+2δ), in which case
Lemma 5 yields the lower bound

ρ(gα, gβ) ≥ 2cδ2r2

(1− θ)d
∆H(α, β)

(i)

≥ cδ2r2

2(1− θ)
∀α 6= β ∈ V ,

where inequality (i) uses the fact that∆H(α, β) ≥ d/4 by
definition of V . Hence by definition ofψ, we have estab-
lished the lower boundψ(δ) ≥ cδ2r2

2(1−θ) . Setting the target
error ε := cδ2r2/(18(1 − θ)), we observe that this ensures
ε ≤ ψ(δ)/9. Recalling the requirementδ < 1/4, we note
that ε < cr2/(288(1− θ)). In this regime, we may apply
Lemma 2 to obtain the upper boundPφ[α̂(MT ) 6= α] ≤ 1

3 .
Combining this upper bound with the lower bound (24) yields
the inequality

1

3
≥ 1− 2

16Tδ2 + log 2

d log(2/
√
e)

≥ 1− 2
288Tε(1−θ)

cr2 + log 2

d log(2/
√
e)

.

Simplifying the above expression yields that ford ≥ 11, we
have the lower bound

T ≥ cr2

(
d
3 log(2/

√
e)− log 2

288ε(1− θ)

)

≥ cr2
d log(2/

√
e)

28800ε(1− θ)
. (32)

Finally, we observe thatL = cr andγ2 = (1−θ)c/(4d) which
gives1−θ = 4drγ2/L. Substituting the above relations in the
lower bound (32) gives the first term in the stated result for
d ≥ 11.

To obtain lower bounds for dimensionsd < 11, we use an
argument based ond = 1. For this special case, we consider
f+ and f− to be the two functions of the single coordinate
coming out of definition (30). The packing setV consists of
only two elements now, corresponding toα = 1 andα = −1.
Specializing the result of Lemma 5 to this case, we see that
the two functions are2cδ2r2/(1 − θ) separated. Now we
again apply Lemma 2 to get an upper bound on the error
probability and Lemma 4 to get a lower bound, which gives
the result ford ≤ 11.

Case 2:On the other hand, suppose that1− θ ≤ 4δ/(1 + 2δ).
In this case, appealing to Lemma 5 gives us thatρ(gα, β) ≥
cδr2/4 for α 6= β ∈ V . Recalling thatL = cr, we set the
desired accuracyε := cδr2/36 = Lδr/36. From this point
onwards, we mimic the proof of Theorem 1; doing so yields
that for all δ ∈ (0, 1/4), we have

T = Ω

(
d

δ2

)
= Ω

(
L2dr2

ε2

)
,

corresponding to the second term in Theorem 1.
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Finally, the third and fourth terms are obtained just like
Theorem 1 by checking the conditionδ < 1/4 in the two
cases above. Overall, this completes the proof for the case
p = 1.

d) Proof for p > 2: As with the proof of Theo-
rem 1(b), we use Oracle B that returnsd-dimensional values
and gradients in this case, with the base functions defined in
equation 30. With this choice, we have the upper bound

E‖ẑα,B(x)‖2p ≤ c2d2/p−2r2,

so that setting the constantc = Ld1−1/p/r ensures that
E‖ẑα,B(x)‖2p ≤ L2. As before, we have the strong convexity
parameter

γ2 =
c(1− θ)

4d
=
Ld−1/p(1− θ)

4r
,

Also ρ(gα, gβ) is given by Lemma 5. In particular, let us
consider the case1− θ ≥ 4δ/(1+ 2δ) so thatψ(δ) ≥ cδ2r2

2(1−θ) ,

and we set the desired accuracyε := cδ2r2

18(1−θ) as before. With
this setting ofε, we invoke Lemma 2 as before to argue that
Pφ[α̂(MT ) 6= α] ≤ 1

3 . To lower bound the error probability,
we appeal to Lemma 3 with̀= d just like Theorem 1(b) and
obtain the inequality

1

3
≥ 1− 2

16 d T δ2 + log 2

d log(2/
√
e)

.

Rearranging terms and substitutingε = cδ2r2

18(1−θ) , we obtain
for d ≥ 11

T = Ω

(
1

δ2

)
= Ω

(
cr2

ε(1− θ)

)
.

The stated result can now be attained by recallingc =
Ld1−1/p/r andγ2 = Ld−1/p(1−θ)/r for 1−θ ≥ 4δ/(1+2δ)
and d ≥ 11. For d < 11, the cases ofp > 2 and p = 1 are
identical up to constant factors in the lower bounds we state.
This completes the proof for1− θ ≥ 4δ/(1 + 2δ).

Finally, the case for1 − θ < 4δ/(1 + 2δ) involves similar
modifications as part(a) by using the different expression for
ρ(gα, gβ). Thus we have completed the proof of this theorem.

D. Proof of Theorem 3

We begin by constructing an appropriate subset ofFsp(k)
over which the Fano method can be applied. LetV(k) :=
{α1, . . . , αM} be a set of vectors, such that eachαj ∈
{−1, 0,+1}d satisfies

‖αj‖0 = k ∀j = 1, . . . ,M and∆H(αj , α`) ≥ k

2

for all j 6= `. It can be shown that there exists such a packing
set with |V(k)| ≥ exp

(
k
2 log

d−k
k/2

)
elements (e.g., see Lemma

5 in Raskutti et al. [22]).
For anyα ∈ V(k), we define the functionx 7→ gα(x) via

c

[
d∑

i=1

{(1

2
+ αiδ

) ∣∣x(i) + r
∣∣ +
(
1

2
− αiδ

) ∣∣x(i)− r
∣∣
}

+ δ

d∑

i=1

|x(i)|
]
. (33)

In this definition, the quantityc > 0 is a pre-factor to be
chosen later, andδ ∈ (0, 14 ] is a given error tolerance. Observe
that each functiongα ∈ G(δ; k) is convex, and Lipschitz with
parameterc with respect to the‖ · ‖∞ norm.

Central to the remainder of the proof is the function class
G(δ; k) := {gα, α ∈ V(k)}. In particular, we need to control
the discrepancyψ(δ; k) := ψ(G(δ; k)) for this class. The
following result, proven in Appendix B, provides a suitable
lower bound:

Lemma 6. We have

ψ(δ; k) = inf
α6=β∈V(k)

ρ(gα, gβ) ≥
ckδr

4
. (34)

Using Lemma 6, we may complete the proof of Theorem 3.
Define the base functions

f+
i (x) := d (|x(i) + r|+ δ|x(i)|) , and

f−
i (x) := d (|x(i)− r| + δ|x(i)|) .

Consider Oracle B, which returnsd-dimensional gradients
based on the function

ĝα,B(x) =
c

d

d∑

i=1

[
bif

+
i (x) + (1 − bi)f

−
i (x)

]
,

where {bi} are Bernoulli variables. By construction, the
function ĝα,B is at most 3c-Lipschitz in `∞ norm (i.e.
‖ẑα,B(x)‖∞ ≤ 3c), so that settingc = L

3 yields an L-
Lipschitz function.

Our next step is to use Fano’s inequality [19] to lower
bound the probability of error in the multiway testing problem
associated with this stochastic oracle, following an argument
similar to (but somewhat simpler than) the proof of Lemma 3.
Fano’s inequality yields the lower bound

P[α̂ 6= α∗] ≥ 1−
1

(|V|
2 )

∑
α6=β D(Pα ‖Pβ) + log 2

log |V| . (35)

(As in the proof of Lemma 3, we have used convexity of
mutual information [19] to bound it by the average of the
pairwise KL divergences.) By construction, any two parame-
tersα, β ∈ V differ in at most2k places, and the remaining
entries are all zeroes in both vectors. The proof of Lemma 3
shows that forδ ∈ [0, 14 ], each of these2k places makes
a contribution of at most16δ2. Recalling that we haveT
samples, we conclude thatD(Pα ‖Pβ) ≤ 32kT δ2. Substituting
this upper bound into the Fano lower bound (35) and recalling
that the cardinality ofV is at leastexp

(
k
2 log

d−k
k/2

)
, we obtain

P[α̂(MT ) 6= α] ≥ 1− 2

(
32kT δ2 + log 2

k
2 log

d−k
k/2

)
(36)

By Lemma 6 and our choicec = L/3, we have

ψ(δ) ≥ ckδr

4
=

Lkδr

12
,

Therefore, if we aim for the target errorε = Lkδr
108 , then we

are guaranteed thatε ≤ ψ(δ)
9 , as is required for the application

of Lemma 2. Recalling the requirementδ ≤ 1/4 gives ε ≤
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Lkδr/432. Now Lemma 2 implies thatP[α̂(MT ) 6= α] ≤
1/3, which when combined with the earlier bound (36) yields

1

3
≥ 1− 2

(
32kT δ2 + log 2

k
2 log

d−k
k/2

)
.

Rearranging yields the lower bound

T = Ω

(
log d−k

k/2

δ2

)
= Ω

(
L2r2 k2

log d−k
k/2

ε2

)
,

where the second step uses the relationδ = 108ε
Lkr . As long as

k ≤ bd/2c, we havelog d−k
k/2 = Θ

(
log d

k

)
, which completes

the proof.

V. D ISCUSSION

In this paper, we have studied the complexity of convex
optimization within the stochastic first-order oracle model. We
derived lower bounds for various function classes, including
convex functions, strongly convex functions, and convex func-
tions with sparse optima. As we discussed, our lower bounds
are sharp in general, since there are matching upper bounds
achieved by known algorithms, among them stochastic gradi-
ent descent and stochastic mirror descent. Our bounds also
reveal various dimension-dependent and geometric aspects
of the stochastic oracle complexity of convex optimization.
An interesting aspect of our proof technique is the use of
tools common in statistical minimax theory. In particular,
our proofs are based on constructing packing sets, defined
with respect to a pre-metric that measures how the degree
of separation between the optima of different functions. We
then leveraged information-theoretic techniques, in particular
Fano’s inequality and its variants, in order to establish lower
bounds.

There are various directions for future research. It would be
interesting to consider the effect of memory constraints onthe
complexity of convex optimization, or to derive lower bounds
for problems of distributed optimization. We suspect that the
proof techniques developed in this paper may be useful for
studying these related problems.

APPENDIX

A. Proof of Lemma 5

Let gα and gβ be an arbitrary pair of functions in our
class, and recall that the constraint setS is given by the ball
B∞(r). From the definition (18) of the discrepancyρ, we need
to compute the single function infimuminfx∈B∞(r) gα(x), as
well as the quantityinfx∈B∞(r){gα(x) + gβ(x)}.

a) Evaluating the single function infimum:Beginning
with the former quantity, first observe that for anyx ∈ B∞(r),
we have

|x(i) + r| = x(i) + r and x(i)− |r| = r − x(i).

Consequently, using the definition (30) of the base functions,
some algebra yields the relations

f+
i (x) =

1− θ

4
x(i)2 +

1 + 3θ

4
r2 +

(1 + θ)

2
rx(i), and

f−
i (x) =

1− θ

4
x(i)2 +

1 + 3θ

4
r2 − (1 + θ)

2
rx(i).

Using these expressions forf+
i and f−

i , we obtain that the
quantity hi(x) :=

(
1
2 + αiδ

)
f+
i (x) +

(
1
2 − αiδ

)
f−
i (x) can

be written as

hi(x) =
1

2

(
f+
i (x) + f−

i (x)
)
+ αiδ

(
f+
i (x)− f−

i (x)
)

=
1− θ

4
x(i)2 +

1 + 3θ

4
r2 + (1 + θ)αiδrx(i).

A little calculation shows that constrained minimum of the
univariate functionhi over the interval[−r, r] is achieved at

x∗(i) :=

{
−2αiδr(1+θ)

1−θ if 1−θ
1+θ ≥ 2δ

−αir if 1−θ
1+θ < 2δ,

where we have recalled thatαi takes values in{−1,+1}.
Substituting the minimizing argumentx∗(i), we find that the
minimum value is given by

hi(x
∗(i)) =

{
1+3θ
4 r2 − δ2r2(1+θ)2

(1−θ) if 1−θ
1+θ ≥ 2δ

1+θ
2 r2 − (1 + θ)δr2 if 1−θ

1+θ < 2δ.

Summing over all co-ordinatesi ∈ {1, 2, . . . , d} yields that
infx∈B∞(r) gα(x) =

c
d

∑d
i=1 hi(x

∗(i)), and hence that

inf
x∈B∞(r)

gα(x) =

{
− δ2r2c(1+θ)2

(1−θ) + cr2(1+3θ)
4 if 1−θ

1+θ ≥ 2δ
1+θ
2 cr2 − (1 + θ)cδr2 if 1−θ

1+θ < 2δ.
(37)

b) Evaluating the joint infimum:Here we begin by
observing that for any twoα, β ∈ V , we have

gα(x) + gβ(x) =
c

d

d∑

i=1

[1− θ

2
x(i)2 +

1 + 3θ

2
r2

+ 2(1 + θ)αiδrx(i)I(αi = βi)
]
. (38)

As in our previous calculation, the only coordinates that
contribute toρ(gα, gβ) are the ones whereαi 6= βi, and
for such coordinates, the function above is minimized at
x∗(i) = 0. Furthermore, the minimum value for any such
coordinate is(1 + 3θ)cr2/(2d).

We split the remainder of our analysis into two cases: first,
if we suppose that1−θ1+θ ≥ 2δ, or equivalently that1 − θ ≥
4δ/(1 + 2δ), then equation (38) yields that

inf
x∈B∞(r)

{
gα(x) + gβ(x)} =

c

d

d∑

i=1

[
1 + 3θ

2
r2 − 2δ2r2(1 + θ)2

1− θ
I(αi = βi)

]
.
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Combined with our earlier expression (37) for the single
function infimum, we obtain that the discrepancy is given by

ρ(gα, gβ) =
2δ2r2c(1 + θ)2

d(1 − θ)
∆H(α, β)

≥ 2δ2r2c

d(1 − θ)
∆H(α, β).

On the other hand, if we assume that1−θ
1+θ < 2δ, or

equivalently that1− θ < 4δ/(1 + 2δ), then we obtain

inf
x∈B∞(r)

{
gα(x) + gβ(x)} =

c

d

d∑

i=1

[
1 + 3θ

2
r2 −

(
2(1 + θ)r2δ − 1− θ

2
r2
)
I(αi = βi)

]
.

Combined with our earlier expression (37) for the single
function infimum, we obtain

ρ(gα, gβ) =
c

d

(
2(1 + θ)r2δ − 1− θ

2
r2
)
∆H(α, β)

(i)

≥ c(1 + θ)r2δ

d
∆H(α, β),

where step (i) uses the bound1− θ < 2δ(1 + θ). Noting that
θ ≥ 0 completes the proof of the lemma.

B. Proof of Lemma 6

Recall that the constraint setS in this lemma is the ball
B∞(r). Thus, recalling the definition (18) of the discrep-
ancy ρ, we need to compute the single function infimum
infx∈B∞(r) gα(x), as well as the quantityinfx∈B∞(r){gα(x)+
gβ(x)}.

c) Evaluating the single function infimum:Beginning
with the former quantity, first observe that for anyx ∈ B∞(r),
we have
[
1

2
+ αiδ

]
|x(i) + r| +

[
1

2
− αiδ

]
|x(i)− r|

= r + 2αiδx(i). (39)

We now consider one of the individual terms arising in the
definition (16) of the functiongα. Using the relation (39), we
see that

1

d

[(
1

2
+ αiδ

)
f+
i (x) +

(
1

2
− αiδ

)
f−
i (x)

]
=

(
1

2
+ αiδ

)
|x(i) + r|+

(
1

2
− αiδ

)
|x(i)− r|+ δ|x(i)|,

which is equal to
{
r + (2αi + 1)δx(i) if x(i) ≥ 0

r + (2αi − 1)δx(i) if x(i) ≤ 0

From this representation, we see that wheneverαi 6= 0, then
theith term in the summation defininggα minimized atx(i) =
−rαi, at which point it takes on its minimum valuer(1− δ).
On the other hand, for any term withαi = 0, the function is
minimized atx(i) = 0 with associated minimum value ofr.
Combining these two facts shows that the vector−αr is an
element of the setargminx∈S gα(x), and moreover that

inf
x∈S

gα(x) = cr (d− kδ) . (40)

d) Evaluating the joint infimum:We now turn to the
computation ofinfx∈B∞(r){gα(x) + gβ(x)}. From the rela-
tion (39) and the definitions ofgα andgβ, some algebra yields

inf
x∈S

{gα(x) + gβ(x)} =

c inf
x∈S

d∑

i=1

{2r + 2δ [(αi + βi)x(i) + |x(i)|]} . (41)

Let us consider the minimizer of theith term in this
summation. First, suppose thatαi 6= βi, in which case there
are two possibilities.

• If αi 6= βi and neitherαi nor βi is zero, then we must
haveαi + βi = 0, so that the minimum value of2r is
achieved atx(i) = 0.

• Otherwise, suppose thatαi 6= 0 and βi = 0. In this
case, we see from equation (41) that it is equivalent to
minimizingαix(i) + |x(i)|. Settingx(i) = −αi achieves
the minimum value of2r.

In the remaining two cases, we haveαi = βi.

• If αi = βi 6= 0, then the component is minimized
at x(i) = −αir and the minimum value along the
component is2r(1 − δ).

• If αi = βi = 0, then the minimum value is2r, achieved
at x(i) = 0.

Consequently, accumulating all of these individual cases into
a single expression, we obtain

inf
x∈S

{gα(x) + gβ(x)} = 2cr

(
d− δ

d∑

i=1

I[αi = βi 6= 0]

)
.

(42)

Finally, combining equations (40) and (42) in the definition
of ρ, we find that

ρ(gα, gβ) = 2cr

[
d− δ

d∑

i=1

I[αi = βi 6= 0]− (d− kδ)

]

= 2cδr

[
k −

d∑

i=1

I[αi = βi 6= 0]

]

= crδ∆H(α, β),

where the second equality follows sinceα andβ have exactly
k non-zero elements each. Finally, sinceV is ank/2-packing
set in Hamming distance, we have∆H(α, β) ≥ k/2, which
completes the proof.

C. Upper bounds via mirror descent

This appendix is devoted to background on the family of
mirror descent methods. We first describe the basic form of the
algorithm and some known convergence results, before show-
ing that different forms of mirror descent provide matching
upper bounds for several of the lower bounds established in
this paper, as discussed in the main text.
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1) Background on mirror descent:Mirror descent is a
generalization of (projected) stochastic gradient descent, first
introduced by Nemirovski and Yudin [5]; here we follow a
more recent presentation of it due to Beck and Teboulle [23].
For a given norm‖ · ‖, let Φ : Rd → R ∪ {+∞} be a
differentiable function that is1-strongly convex with respect
to ‖ · ‖, meaning that

Φ(y) ≥ Φ(x) + 〈∇Φ(x), y − x〉+ 1

2
‖y − x‖2.

We assume thatΦ is a function of Legendre type [24], [25],
which implies that the conjugate dualΦ∗ is differentiable on its
domain with∇Φ∗ =

(
∇Φ
)−1

. For a given proximal function,
we let DΦ be the Bregman divergence induced byΦ, given
by

DΦ(x, y) := Φ(x) − Φ(y)− 〈∇Φ(y), x− y〉. (43)

With this set-up, we can now describe the mirror descent
algorithm based on the proximal functionΦ for minimizing
a convex functionf over a convex setS contained within
the domain ofΦ. Starting with an arbitrary initialx0 ∈ S,
it generates a sequence{xt}∞t=0 contained withinS via the
updates

xt+1 = argmin
x∈S

{
ηt〈x, ∇f(xt)〉+DΦ(x, xt)

}
, (44)

whereηt > 0 is a stepsize. In case of stochastic optimization,
∇f(xt) is simply replaced by the noisy version̂z(xt).

A special case of this algorithm is obtained by choosing the
proximal functionΦ(x) = 1

2‖x‖22, which is1-strongly convex
with respect to the Euclidean norm. The associated Bregman
divergenceDΦ(x, y) =

1
2‖x− y‖22 is simply (a scaled version

of) the Euclidean norm, so that the updates (44) correspond to
a standard projected gradient descent method. If one receives
only an unbiased estimate of the gradient∇f(xt), then this
algorithm corresponds to a form of projected stochastic gradi-
ent descent. Moreover, other choices of the proximal function
lead to different stochastic algorithms, as discussed below.

Explicit convergence rates for this algorithm can be obtained
under appropriate convexity and Lipschitz assumptions for
f . Following the set-up used in our lower bound analysis,
we assume thatE‖∇ẑ(xt)‖2∗ ≤ L2 for all x ∈ S, where
‖v‖∗ := sup‖x‖≤1〈x, v〉 is the dual norm defined by‖ · ‖.
Given stochastic mirror descent based on unbiased estimates
of the gradient, it can be showed that (see e.g., Chapter 5.1
of NY [5] or Beck and Teboulle [23]) with the initialization
x0 = argminx∈S Φ(x) and stepsizesηt = 1/

√
t, the opti-

mization error of the sequence{xt} is bounded as

1

T

T∑

t=1

E
[
f(xt)− f(x∗)

]
≤ L

√
DΦ(x∗, x1)

T

≤ L

√
Φ(x∗)

T
(45)

Note that this averaged convergence is a little different from
the convergence ofxT discussed in our lower bounds. In order
to relate the two quantities, observe that by Jensen’s inequality

E

[
f

(∑T
t=1 xt
T

)]
≤ 1

T
E
[
f(xt)

]
.

Consequently, based on mirror descent forT − 1 rounds,
we may setxT = 1

T−1

∑T−1
t=1 xt so as to obtain the same

convergence bounds up to constant factors. In the following
discussion, we assume this choice ofxT for comparing the
mirror descent upper bounds to our lower bounds.

2) Matching upper bounds:Now consider the form of
mirror descent obtained by choosing the proximal function

Φa(x) :=
1

2(a− 1)
‖x‖2a for 1 < a ≤ 2. (46)

Note that this proximal function is1-strongly convex with
respect to the`a-norm for 1 < a ≤ 2, meaning that

1
2(a−1)‖x‖2a is lower bounded by

1

2(a− 1)
‖y‖2a +

(
∇ 1

2(a− 1)
‖x‖2a

)T
(x− y) +

1

2
‖x− y‖2a.

a) Upper bounds for dual setting:Let us start from the
case1 ≤ p ≤ 2. In this case we use stochastic gradient
descent with , and the choice ofp ensures thatE‖ẑ(x)‖22 ≤
E‖ẑ(x)‖2p ≤ L2 (the second inequality is true by assumption
of Theorem 1). Also a straightforward calculation shows that
‖x∗‖2 ≤ ‖x∗‖q d1/2−1/q, which leads to

E [f(xT )− f(x∗)] = O
(
Ld1/2−1/q

√
T

)
.

This upper bound matches the lower bound from equation (11)
in this case. Forp ≥ 2, we use mirror descent witha = q =
p/(p − 1). In this case,E‖ẑ(x)‖2p ≤ L2 and ‖x∗‖q ≤ 1 for
the convex setBq(1) and the function classFcv(Bq(1), L, p).
Hence in this case, the upper bound from equation 45 is
O(L/

√
T ) as long asp = o(log d), which again matches our

lower bound from Equation 11. Finally, forp = Ω(log d),
we use mirror descent witha = 2 log d/(2 log d − 1), which
gives an upper bound ofO(L

√
log d/T ), since1/(a− 1) =

O(log d) in this regime.
b) Upper bounds for̀ ∞ ball: For this case, we use

mirror descent based on the proximal functionΦa with a = q.
Under the condition‖x∗‖∞ ≤ 1, a condition which holds in
our lower bounds, we obtain

‖x∗‖q ≤ ‖x∗‖∞ d1/q = d1/q,

which implies thatΦq(x∗) = O(d2/q). Under the conditions
of Theorem 1, we haveE‖ẑ(xt)‖2p ≤ L2 wherep = q/(q−1)
defines the dual norm. Note that the condition1 < q ≤ 2
implies thatp ≥ 2. Substituting this in the upper bound (45)
yields

E
[
f(xT )− f(x∗)

]
= O

(
L
√
d2/q/T

)

= O
(
Ld1−1/p

√
1

T

)
,

which matches the lower bound from Theorem 1(b). (Note that
there is an additional log factor, as in the previous discussion,
which we ignore.)

For 1 ≤ p ≤ 2, we use stochastic gradient descent withq =
2, in which case‖x∗‖2 ≤

√
d andE‖ẑ(xt)‖22 ≤ E‖ẑ(xt)‖2p ≤

L2 by assumption. Substituting these in the upper bound for
mirror descent yields an upper bound to match the lower bound
of Theorem 1(a).
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c) Upper bounds for Theorem 3:In order to recover
matching upper bounds in this case, we use the function
Φa from equation (46) witha = 2 log d

2 log d−1 . In this case, the
resulting upper bound (45) on the convergence rate takes the
form

E [f(xT )− f(x∗)] = O
(
L

√
‖x∗‖2a

2(a− 1)T

)

= O
(
L

√
‖x∗‖2a log d

T

)
, (47)

since 1
a−1 = 2 log d−1. Based on the conditions of Theorem 3,

we are guaranteed thatx∗ is k-sparse, with every component
bounded by1 in absolute value, so that‖x∗‖2a ≤ k2/a ≤ k2,
where the final inequality follows sincea > 1. Substituting
this upper bound back into equation (47) yields

E [f(xT )− f(x∗)] = O
(
L

√
k2 log d

T

)
.

Note that wheneverk = O(d1−δ) for some δ > 0, then
we havelog d = Θ(log d

k ), in which case this upper bound
matches the lower bound from Theorem 3 up to constant
factors, as claimed.

REFERENCES

[1] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in
NIPS, 2008.

[2] S. Boyd and L. Vandenberghe,Convex optimization. Cambridge, UK:
Cambridge University Press, 2004.

[3] D. Bertsekas,Nonlinear programming. Belmont, MA: Athena Scien-
tific, 1995.

[4] Y. Nesterov,Introductory lectures on convex optimization: Basic course.
Kluwer Academic Publishers, 2004.

[5] A. S. Nemirovski and D. B. Yudin,Problem Complexity and Method
Efficiency in Optimization. John Wiley UK/USA, 1983.

[6] A. S. Nemirovski, “Efficient methods in convex programming,”
Georgia Tech, Lecture notes, Tech. Rep., 2010. [Online]. Available:
http://www2.isye.gatech.edu/∼nemirovs/OPTILectureNotes.pdf

[7] A. Agarwal, P. Bartlett, P. Ravikumar, and M. J. Wainwright,
“Information-theoretic lower bounds on the oracle complexity of convex
optimization,” in Advances in Neural Information Processing Systems
22, 2009, pp. 1–9.

[8] M. Raginsky and A. Rakhlin, “Information-based complexity, feedback
and dynamics in convex programming,”IEEE Transactions on Informa-
tion Theory, 2011, to appear.

[9] R. Z. Has’minskii, “A lower bound on the risks of nonparametric
estimates of densities in the uniform metric,”Theory Prob. Appl., vol. 23,
pp. 794–798, 1978.
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