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Abstract
We consider the problem of structurally con-
strained high-dimensional linear regression. This
has attracted considerable attention over the last
decade, with state of the art statistical estimators
based on solving regularized convex programs.
While these typically non-smooth convex pro-
grams can be solved by the state of the art op-
timization methods in polynomial time, scaling
them to very large-scale problems is an ongoing
and rich area of research. In this paper, we at-
tempt to address this scaling issue at the source,
by asking whether one can build simpler possibly
closed-form estimators, that yet come with statis-
tical guarantees that are nonetheless comparable
to regularized likelihood estimators. We answer
this question in the affirmative, with variants
of the classical ridge and OLS (ordinary least
squares estimators) for linear regression. We an-
alyze our estimators in the high-dimensional set-
ting, and moreover provide empirical corrobora-
tion of its performance on simulated as well as
real world microarray data.

1. Introduction
We consider the problem of high-dimensional linear regres-
sion, where the number of variables p could potentially be
even larger than the number of observations n. Under such
high-dimensional regimes, it is now well understood that
consistent estimation is typically not possible unless one
imposes low-dimensional structural constraints upon the
regression parameter vector. Popular structural constraints
include that of sparsity, where very few entries of the high-
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dimensional regression parameter are assumed to be non-
zero, group-sparse constraints, and low-rank structure with
matrix-structured parameters, among others.

The development of consistent estimators for such struc-
turally constrained high-dimensional linear regression has
attracted considerable recent attention. A key class of esti-
mators are based on regularized maximum likelihood es-
timators; in the case of linear regression with Gaussian
noise, these take the form of regularized least squares esti-
mators. For the case of sparsity, a popular instance is con-
strained basis pursuit or LASSO (Tibshirani, 1996), which
solves an `1 regularized (or equivalently `1-constrained)
least squares problem, and has been shown to have strong
statistical guarantees, including prediction error consis-
tency (van de Geer & Buhlmann, 2009), consistency of the
parameter estimates in `2 or some other norm (van de Geer
& Buhlmann, 2009; Meinshausen & Yu, 2009; Candes &
Tao, 2006), as well as variable selection consistency (Mein-
shausen & Bühlmann, 2006; Wainwright, 2009; Zhao &
Yu, 2006). For the case of group-sparse structured linear
regression, `1/`q regularized least squares (with q ≥ 2)
has been proposed (Tropp et al., 2006; Zhao et al., 2009;
Yuan & Lin, 2006; Jacob et al., 2009), and shown to have
strong statistical guarantees, including convergence rates
in `2-norm (Lounici et al., 2009; Baraniuk et al., 2008))
as well as model selection consistency (Obozinski et al.,
2008; Negahban & Wainwright, 2009). For the matrix-
structured least squares problem, nuclear norm regularized
estimators have been studied for instance in (Recht et al.,
2010; Bach, 2008). For other structurally constrained least
squares problems, see (Huang et al., 2011; Bach et al.,
2012; Negahban et al., 2012) and references therein. All
of these estimators solve convex programs, though with
non-smooth components due to the respective regulariza-
tion functions. The state of the art optimization methods for
solving these programs are iterative, and can approach the
optimal solution within any finite accuracy with computa-
tional complexity that scales polynomially with the number
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of variables and number of samples, rendering these very
expensive for very large-scale problems.

In another line of work, the Dantzig estimator (Candes &
Tao, 2007) solves a linear program to estimate the sparse
linear regression parameter with stronger statistical guar-
antees when compared to the LASSO (Bickel et al., 2009).
But here again, the linear program while convex, is compu-
tationally expensive for very large-scale problems. Other
class of estimators for structured linear regression include
greedy methods. These include forward-backward selec-
tion (Zhang et al., 2008b), matching pursuit (Mallat &
Zhang, 1993), and orthogonal matching pursuit (Zhang,
2010), among others. The caveat with such greedy meth-
ods however is that some of these require considerably
more stringent conditions to hold when compared to regu-
larized convex programs noted above, and either require the
knowledge of the exact structural complexity such as spar-
sity level, or are otherwise unstable i.e. sensitive to tuning
parameters such as their stopping thresholds. Thus overall,
the class of regularized convex programs have proved more
popular for large-scale structured linear regression, and ac-
cordingly there has been a strong line of recent research on
large-scale optimization methods for such programs (see
e.g. Friedman et al. (2007); Hsieh et al. (2011) and refer-
ences therein), including parallel and distributed variants.

In this paper, we consider the following simple question:

“If we restrict ourselves to estimators with closed-form so-
lutions; can we nonetheless obtain consistent estimators
that have the sharp convergence rates of the regularized
convex programs and other estimators noted above?”

A natural closed-form estimator for the high-dimensional
linear regression problem is the ordinary least squares
(OLS) estimator. This is the maximum likelihood solu-
tion under a Gaussian noise assumption, and is thus con-
sistent with optimal convergence rates under classical sta-
tistical settings where the number of variables p is fixed
as a function of the number of samples n. However un-
der high-dimensional regimes, it is not only inconsistent
but the least squares estimation problem does not even
have a unique minimum. Another classical estimator is the
ridge, or `2-regularized least squares estimator, which is
also available in closed form; but unlike the OLS estimator,
the ridge-regularized estimation problem has a unique so-
lution. While simple, it is however not known to be for in-
stance `2-norm consistent under high-dimensional settings.
Another prominent closed-form estimator and an OLS vari-
ant is marginal regression: this regresses each covariate
separately on the response to get the corresponding regres-
sion parameter. Correlation or sure screening (Fan & Lv,
2008) (also termed simple thresholding (Donoho, 2006)) is
a closely related method for the high-dimensional sparse
linear regression setting, where the regression parameters

are set to soft-thresholded values of the correlation of the
covariates with the response. However, as (Genovese et al.,
2012) showed, as a flip side of the simplicity of marginal
regression, this method requires very stringent conditions
(loosely, extremely weak correlations between the covari-
ates) in order to select a relevant subset of covariates.

In this paper, we are surprisingly able to answer our ques-
tion in the affirmative, by building on the OLS and ridge es-
timators: we provide close variants that are not only avail-
able in closed form, but also come with strong statistical
guarantees similar to those of the regularized convex pro-
gram based estimators. The estimators are reminiscent of
the Dantzig estimator, but in contrast are actually available
in closed form, are thus much more scalable. As we show,
for the sparse structure case the ridge-variant comes with
slightly worse guarantees when compared to the LASSO,
but the OLS variant actually has comparable guarantees to
that of the LASSO. We also provide a unified statistical
analysis for general structures beyond sparsity. We cor-
roborate these results via simulations as well as on a real-
world microarray dataset. Overall, the estimators and anal-
yses in the paper thus motivate a new line of research on
simpler and possibly closed form estimators for very high-
dimensional statistical estimation.

2. Setup
We consider the linear regression model,

yi = x>i θ
∗ + wi, i = 1, . . . , n, (1)

where θ∗ ∈ Rp is the fixed unknown regression parameter
of interest, yi ∈ R is a real-valued response, xi ∈ Rp is
a known observation vector, and wi ∈ R is an unknown
noise term. For technical simplicity, we assume that these
noise terms are independent zero-mean Gaussian random
variables, wi ∈ N (0, σ2), for some σ > 0. Suppose we
collate the n observations from the linear regression model
in (1) in vector and matrix form. Let y ∈ Rn denote the
vector of n responses, X ∈ Rn×p denote the design matrix
consisting of the linear regression observation vectors, and
w ∈ Rn the vector of n noise terms. The linear regression
model thus entails: y = Xθ∗ + w.

We are interested in the high-dimensional setting, where
the number of variables p may be of the same order as,
or even substantially larger than the sample size n, so that
p � n. Under such high-dimensional settings, it is now
well understood that it is typically necessary to impose
structural constraints on the model parameters θ∗.

2.1. Unified Framework of Negahban et al. (2012)

We follow the unified statistical framework of Negahban
et al. (2012) to formalize the notion of structural con-
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straints. There, they use subspace pairs (M,M⊥) such
that M ⊆ M where M is the model subspace in which
the model parameter θ∗ and similarly structured parame-
ters lie, and which is typically low-dimensional, whileM⊥

is the perturbation subspace of parameters that represents
perturbations away from the model subspace.

They also define the property of decomposability of a regu-
larization function, which captures the suitablity of a regu-
larization function R to particular structure. Specifically,
a regularization function R is said to be decomposable
with respect to a subspace pair (M,M⊥), if R(u + v) =

R(u) +R(v), for all u ∈ M, v ∈ M⊥. Note that when
R(·) is a norm, by the triangle inequality, the LHS is always
less than or equal to the RHS, so that the equality indicates
the largest possible value for the LHS. In other words, the
decomposable regularization function R(·) heavily penal-
izes perturbations v from structured parameters u.

For any structure such as sparsity, low-rank, etc., we
can define the corresponding low-dimensional model sub-
spaces, as well as regularization functions that are decom-
posable with respect to the corresponding subspace pairs.
Example 1. Given any subset S ⊆ {1, . . . , p} of the co-
ordinates, letM(S) be the subspace of vectors in Rp that
have support contained in S. It can be seen that any param-
eter θ ∈ M(S) would be atmost |S|-sparse. For this case,
we useM(S) = M(S), so thatM⊥(S) = M⊥(S). Ne-
gahban et al. (2012) show that the `1 norm R(θ) = ‖θ‖1,
commonly used as a sparsity-encouraging regularization
function, is decomposable with respect to subspace pairs
(M(S),M⊥(S)).

Also of note is the subspace compatibility constant that
captures the relationship between the regularization func-
tionR(·) and the error norm ‖ · ‖, over vectors in subspace
M: Ψ(M, ‖ · ‖) := supu∈M\{0}

R(u)
‖u‖ . We also define the

projection operator ΠM̄(u) := argminv∈M̄ ‖u− v‖2.

2.2. Regularized Convex Program Estimators

We now briefly review key regularized convex program
based estimators for high-dimensional linear regression fo-
cused on the sparse structure case, where the underlying
true parameter θ∗ is sparse, so that denoting the non-zero
indices by S(θ∗) :=

{
i ∈ {1, . . . , p} | θ∗i 6= 0

}
, the spar-

sity assumption constrains the cardinality k = |S(θ∗)| as a
function of the problem size p.

The LASSO estimator (Tibshirani, 1996) solves the follow-
ing `1 regularized least squares problem:

minimize
θ

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
.

The Dantzig estimator (Candes & Tao, 2007) solves the fol-

lowing linear program:

minimize
θ

‖θ‖1

s. t.
1

n
‖X>(Xθ − y)‖∞ ≤ λn. (2)

This seeks a parameter θ̂ with minimum `1 norm, and that
yet satisfies a key component of the stationary conditions
of the LASSO optimization problem.

2.3. Classical Closed-Form Estimators

When n > p, and (X>X) is full-rank (and hence in-
vertible), the OLS estimator is then given as follows:
θ̂ =

(
X>X

)−1 (
X>y

)
. However, since the p × p ma-

trix (X>X) can have rank atmost n, the requirement that
it is full-rank cannot be satisfied when p > n, hence the
OLS estimator is no longer well-defined.

Ridge regularized least squares estimator solves the follow-
ing problem:

θ̂ = arg min
θ

{
‖y −Xθ‖22 + ε‖θ‖22

}
. (3)

It can be seen that this has a unique minimum and is well-
defined even in high-dimensional regimes when p > n.
The unique solution moreover is available in closed-form
as: θ̂ = (X>X + εI)−1X>y.

2.4. Outline

In the next two sections, we derive variants of the ridge and
OLS estimators for general structurally constrained high-
dimensional linear regression models. We also provide a
unified statistical analysis of these two estimators for gen-
eral structural constraints, deriving corollaries for specific
structures. Finally in the last section, we experimentally
corroborate the performance of our estimators.

3. The Elem-Ridge Estimator
We will now propose a variant of the standard ridge-
regularized least squares estimator (3), where we incor-
porate the ridge estimator within a structural constraint.
Our estimator is specified by any regularization function
R : Rp 7→ R. We assume that for the regularization func-
tion R(·), the following “dual” function R∗ : Rp 7→ R is
well-defined: R∗(u) = supθ:R(θ)6=0

u>θ
R(θ) . When R(·) is a

norm for instance, it can be seen that R∗(·) would be the
corresponding dual norm. Armed with this notation, we
consider the following general class of what we call Elem-
Ridge estimators:

minimize
θ

R(θ)

s. t.R∗
(
θ − (X>X + εI)−1X>y

)
≤ λn. (4)
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The estimator bears similarities to the Dantzig estimator (2)
since both of these minimize some structural complexity
of the parameter subject to certain constraints. However,
unlike the Dantzig estimator, the estimator above is avail-
able in closed form for typical settings of the regularization
function R(·). For instance, when R(·) is set to the `1
norm, the estimator (4) is given by

minimize
θ

‖θ‖1

s. t.
∥∥θ − (X>X + εI)−1X>y

∥∥
∞ ≤ λn. (5)

This can be seen to have a unique solution available
in closed form as: θ̂ = Sλn

(
(X>X + εI)−1X>y

)
,

where [Sλ(u)]i = sign(ui) max(|ui| − λ, 0) is the soft-
thresholding function.

Another interesting instantiation of R(·) would be the
group structured `1/`α norm defined as ‖θ‖G,α :=∑L
g=1 ‖θGg‖α, where G := {G1, G2, . . . , GL} is a set of

disjoint subsets/groups of the index-set {1, . . . , p} and α is
a constant between 2 and ∞. With respect to this group
norm, the estimator (4) will have the form of

minimize
θ

‖θ‖G,α

s. t.
∥∥θ − (X>X + εI)−1X>y

∥∥∗
G,α ≤ λn

where ‖θ‖∗G,α := maxg ‖θGg‖α∗ for a constant α∗ sat-
isfying 1

α + 1
α∗ = 1. At the time same time, the

soft-thresholding operator for the group, SG,λ can be ex-
tended as follows: for any group g in G, [SG,λ(u)]g =
max(‖ug‖α − λ, 0)

ug
‖ug‖α , and hence the optimal solu-

tion will have a closed-form as previous `1 case: θ̂ =

SG,λn

(
(X>X + εI)−1X>y

)
.

3.1. Error Bounds

We now provide a unified statistical analysis of the class
of estimators in (4), for general structures, and general reg-
ularization functions R(·). We follow the structural con-
straint notation of Negahban et al. (2012) detailed in the
background section and assume the following:

(C1) The norm in the objectiveR(·) is decomposable with
respect to the subspace-pair (M,M⊥).

(C2) There exists a structured subspace-pair (M,M⊥)
such that the regression parameter satisfies ΠM⊥(θ∗) = 0.

In (C2), we consider the case where θ∗ is exactly sparse
with respect to the subspace pair for technical simplicity.

Theorem 1. Consider the linear regression model (1)
where the conditions (C1) and (C2) hold. Suppose we solve

the estimation problem (4) setting the constraint bound λn
such that λn ≥ R∗(θ∗ − (X>X + εI)−1X>y). Then the
optimal solution θ̂ satisfies the following error bounds:

R∗
(
θ̂ − θ∗

)
≤ 2λn ,

‖θ̂ − θ∗‖2 ≤ 4Ψ(M)λn ,

R
(
θ̂ − θ∗

)
≤ 8[Ψ(M)]2λn .

We note that Theorem 1 is a non-probabilistic result, and
holds deterministically for any selection of λn or any distri-
butional setting of the covariatesX . It is also worthwhile to
note that the conditions of the theorem entail that the “ini-
tial estimator” consisting of the standard ridge-regularized
least squares estimator is in turn consistent with respect to
theR∗(·) norm. However, embedding this initial estimator
within a structural constraint as in our Elem-Ridge estima-
tor (4) allows us to guarantee additional error bounds in
terms ofR(·) and `2 norms, which do not hold for the ini-
tial ridge-regularized estimator. While the statement of the
theorem is a bit abstract, we derive its consequences under
specific structural settings as corollaries.

3.2. Sparse Linear Models

We now derive a corollary of Theorem 1 for the specific
case where θ∗ is sparse with k non-zero entries. The con-
dition described in (C2) can be written in this case as:

(C3) The regression parameter θ∗ is exactly sparse with k
non-zero entries. As discussed in Example 1, it is natural
to selectM(S) equal to the support set of θ∗.

We analyze the variant (5) which sets the regularization
function R(·) in (4) to the `1 norm. Note that the con-
dition (C1) is automatically satisfied with this selection of
regularization function since `1 norm is decomposable with
respect to M(S) and its orthogonal complement, as dis-
cussed in Example 1. The only remaining issue to appeal
to Theorem 1, is to set λn satisfying the condition in the
statement: λn ≥ ‖θ∗− (X>X + εI)−1X>y‖∞. To do so,
we leverage the analysis of the classical ridge-regression
estimator from Zhang et al. (2008a), where they impose
the following assumption:

(C-Ridge) Let e1, . . . , eq, eq+1, . . . , ep be the singular
vectors of 1

nX
>X corresponding to the singular values

d1 ≥ . . . ≥ dq > dq+1 = . . . = dp = 0 where
q is the rank of 1

nX
>X . Let θ∗ =

∑p
i=1 θiei. Then,

‖
∑p
i=q+1 θiei‖∞ = O(ξ) with some sequence ξ → 0.

Note that this assumption is trivially satisfied if n ≥ p and
X>X has full rank. When p � n, however, this assump-
tion plays a role as an identifiable condition for `∞ consis-
tency so that the penalty term favors true parameter over
any others (see Zhang et al. (2008a) for details).
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Appealing to Theorem 3.1 in Zhang et al. (2008a), under
Condition (C-Ridge), the classical ridge-estimator satisfies
the following error bound:

‖θ∗ − (X>X + εI)−1X>y‖∞ ≤ O
((√k log p

ndq

)1/3
)

where k is the sparsity level of θ∗ in (C3). Note that this
does not entail that the classical ridge-estimator would also
be `2 or `1 norm consistent. But we can provide such
bounds for the estimator in (4) by deriving the following
corollary of Theorem 1.
Corollary 1. Consider the optimization problem in (5),
and suppose that all the conditions in (C3) and (C-Ridge)
are satisfied. Furthermore, suppose also that we select

λn := O

((√k log p

ndq

)1/3
)
.

Then, there are universal positive constants (c1, c2) such
that any optimal solution θ̂ of (5) satisfies

‖θ̂ − θ∗‖∞ ≤ O
((√k log p

ndq

)1/3
)
,

‖θ̂ − θ∗‖2 ≤ O
((k2 log p

ndq

)1/3
)
,

‖θ̂ − θ∗‖1 ≤ O
((k3

√
k log p

ndq

)1/3
)

with probability at least 1− c1 exp(−c2p).

Even though our estimator in (5) is consistent in `2 and
`1 norms, its convergences rate can be seen to be inferior
when compared with those of the LASSO; if we compare
`2 error bounds for instance, the LASSO estimator satis-

fies ‖θ̂LASSO−θ∗‖2 ≤ O
(√

k log p
n

)
under some standard

conditions such as restricted eigenvalue condition (Negah-
ban et al., 2012). For reasons of space, we thus defer de-
riving corollaries of Theorem 1 for other structures such as
group-sparsity, and focus on a variant of the OLS estimator
with faster convergence rates in the next section.

4. The Elem-OLS Estimator
As noted in our discussion of the classical OLS estimator in
Section 2.3, in the high-dimensional regime p > n, the ma-
trix X>X is rank-deficient, and the classical OLS estima-
tor (X>X)−1X>y is no longer well-defined since X>X
is not invertible. In this section, we thus consider the fol-
lowing simple variant of the OLS estimator.

For any matrix A, we first define the following element-
wise operator Tν :[
Tν(A)

]
ij

=

{
Aii + ν if i = j
sign(Aij)(|Aij | − ν) otherwise, i 6= j

Suppose we apply this element-wise operator Tν to the
sample covariance matrix X>X

n , to obtain Tν
(
X>X
n

)
. We

will now show that Tν
(
X>X
n

)
will be invertible with high

probability, even under high-dimensional settings, pro-
vided the following conditions hold:

(C-OLS1) (Σ-Gaussian ensemble) Each row of the design
matrix X ∈ Rn×p is i.i.d. sampled from N(0,Σ).
(C-OLS2) The design matrix X is column normalized.

Lastly, we impose the following condition on the popula-
tion matrix Σ:

(C-OLS3) The covariance Σ of Σ-Gaussian ensemble is
strictly diagonally dominant: for all row i, δi := Σii −∑
j 6=i |Σij | ≥ δmin > 0 where δmin is a large enough con-

stant so that |||Σ|||∞ ≤ 1
δmin

.

Condition (C-OLS3) that Σ be strictly diagonally dominant
is different from (and possibly stronger) than the conven-
tional restricted eigenvalue assumption for the LASSO. As
we will show in the sequel, this assumption guarantees that
(a) the matrix Tν [(XTX)/n] is invertible, and (b) its in-
duced `∞ norm is well bounded. We note that there could
be more general cases under which Tν [(XTX)/n] satisfies
these two conditions, and defer relaxing the assumption to
future work.

We then have the following proposition.
Proposition 1. Suppose conditions (C-OLS1) and (C-

OLS3) hold. Then for any ν ≥ 8(maxi Σii)
√

10τ log p′

n ,

the matrix Tν
(
X>X
n

)
is invertible with probability at least

1− 4/p′τ−2 for p′ := max{n, p} and any constant τ > 2.

Our key idea is to then use this invertible matrix Tν
(
X>X
n

)
to modify the OLS estimator, and embed this within a struc-
tural constraint, so as to obtain the following class of what
we call “Elem-OLS” estimators:

minimize
θ

R(θ) (6)

s. t.R∗
(
θ −

[
Tν

(X>X
n

)]−1X>y

n

)
≤ λn.

As in Elem-Ridge estimators discussed in the beginning of
Section (4), the estimators from (6) are also available in
closed form for typical settings of the regularization func-
tionR(·).

4.1. Error Bounds

As for our earlier Elem-Ridge estimators, here too we pro-
vide a unified statistical analysis of Elem-OLS estimators
in (6), for general structures, and general regularization
functionsR(·). Specifically, we obtain the following coun-
terpart of Theorem 1:
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Theorem 2. Consider the linear regression model (1)
where the conditions (C1) and (C2) hold. Suppose we solve
the estimation problem (6) setting the constraint bound λn
such that λn ≥ R∗

(
θ∗ −

[
Tν
(
X>X
n

)]−1X>y
n

)
. Then the

optimal solution θ̂ satisfies the following error bounds:

R∗
(
θ̂ − θ∗

)
≤ 2λn ,

‖θ̂ − θ∗‖2 ≤ 4Ψ(M)λn ,

R
(
θ̂ − θ∗

)
≤ 8[Ψ(M)]2λn .

As in the class of Elem-Ridge estimators, here we have an
“initial estimator” consisting of a (novel) OLS-esque esti-

mator
[
Tν

(
X>X
n

)]−1
X>y
n . The conditions of our theo-

rem guarantee that even this initial estimator is consistent
with respect to R∗(·) norm. However, embedding this ini-
tial estimator within a structural constraint as in our Elem-
OLS estimator (6) allows us to guarantee additional error
bounds in terms of R(·) and `2 norms, which do not hold
for our initial OLS-esque estimator.

We now derive the consequences of our abstract theorem
under specific structural settings.

4.2. Sparse Linear Models

Consider the case when the true parameter θ∗ is sparse with
k non-zero elements. We then consider the variant of (6)
with the regularization functionR(·) set to the `1 norm:

minimize
θ

‖θ‖1 (7)

s. t.

∥∥∥∥θ − [Tν(X>Xn )]−1X>y

n

∥∥∥∥
∞
≤ λn.

We can then derive the convergence rate of this estima-
tor (7) as a corollary of Theorem 2:
Corollary 2. Under the condition (C3), consider the
optimization problem (7), setting ν := 8(maxi Σii)√

10τ log p′

n := a
√

log p′

n , and p′ := max{n, p}. Suppose
that all the conditions in (C-OLS1)-(C-OLS3) are satisfied.
Furthermore, suppose also that we select

λn :=
1

δmin

(
2σ

√
log p′

n
+ a

√
log p′

n
‖θ∗‖1

)
.

Then, there are universal positive constants (c1, c2) such
that any optimal solution θ̂ of (7) satisfies

‖θ̂ − θ∗‖∞ ≤
2

δmin

(
2σ

√
log p′

n
+ a

√
log p′

n
‖θ∗‖1

)
,

‖θ̂ − θ∗‖2 ≤
4

δmin

(
2σ

√
k log p′

n
+ a

√
k log p′

n
‖θ∗‖1

)
,

‖θ̂ − θ∗‖1 ≤
8

δmin

(
2σk

√
log p′

n
+ ak

√
log p′

n
‖θ∗‖1

)

with probability at least 1− c1 exp(−c2p′).

The rates in Corollary 2 are the almost same as those
by standard LASSO; for instance, ‖θ̂LASSO − θ∗‖2 ≤
O
(√

k log p
n

)
analyzed in Negahban et al. (2012) even

though the rates here have an additional ‖θ∗‖1 term, which
are negligible if k and ‖θ∗‖∞ are bounded by constants.

4.3. Group-sparse Linear Models

Another interesting structural constraint arises when θ∗ is
group-sparse. Consider a set of disjoint subsets/groups
G := {G1, G2, . . . , GL} of the index-set {1, . . . , p}, each
of size at most |Gj | ≤ m. For any vector u ∈ Rp, let uGj
denote the subvector with indices restricted to the set Gj .
We assume that the model parameter θ∗ is group-sparse
with respect to these groups G so that the condition de-
scribed in (C2) can be written in this case as:

(C4) The linear regression parameter θ∗ has group-
support of size atmost k, so that |{j ∈ {1, . . . , L} : θ∗Gj 6=
0}| ≤ k.

A natural regularization function for such a setting is
the following group-structured `1/`α norm defined as
‖θ‖G,α :=

∑L
g=1 ‖θGg‖α, where α is a constant between 2

and∞.

In this case, the assumption of column normalization in
(C-OLS2) can be naturally generalized (Negahban et al.,
2012):

(C-OLS4) Define the operator norm |||XG|||α→2 :=

max‖w‖α=1 ‖XGw‖2. Then,
|||XGj |||α→2√

n
≤ 1 for all j =

1, . . . , L.

We then consider the following variant of (6), with the reg-
ularization function R(·) set to the above group-structured
norm:

minimize
θ

‖θ‖G,α (8)

s. t.

∥∥∥∥θ − [Tν(X>Xn )]−1X>y

n

∥∥∥∥∗
G,α
≤ λn.

where ‖θ‖∗G,α := maxg ‖θGg‖α∗ for a constant α∗ satisfy-
ing 1

α + 1
α∗ = 1.

Now we can derive the convergence rates of this estimator
(8) as a corollary of Theorem 2:

Corollary 3. Under the condition (C4), consider the
optimization problem (8), setting ν := 8(maxi Σii)√

10τ log p′

n := a
√

log p′

n , and p′ := max{n, p}. Sup-
pose that all the conditions in (C-OLS1), (C-OLS3) and
(C-OLS4) are satisfied. Furthermore, suppose also that we
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Table 1. Average performance measure and standard deviation in parenthesis for `1-penalized comparison methods on simulated data
for sparse linear models.

Method TP FP `2 `∞

n=1000,p=1000
Elem-OLS 100.00 (0.00) 2.05 (1.15) 0.551 (0.071) 0.255 (0.041)
Elem-Ridge 100.00 (0.00) 2.44 (2.12) 0.741 (0.411) 0.435 (0.064)

LASSO 100.00 (0.00) 9.84 (2.45) 0.563 (0.067) 0.270 (0.039)
Thr-LASSO 100.00 (0.00) 8.33 (1.14) 0.560 (0.066) 0.274 (0.071)

OMP 98.24 (0.64) 3.20 (1.38) 0.559 (0.113) 0.282 (0.055)

n=1000,p=2000
Elem-OLS 100.00 (0.00) 2.22 (2.02) 0.656 (0.111) 0.314( 0.071)
Elem-Ridge 100.00 (0.00) 11.94 (4.48) 3.8834 (0.411) 1.678 (0.349)

LASSO 100.00 (0.00) 18.88 (6.93) 0.657(0.110) 0.316(0.075)
Thr-LASSO 99.59(0.36) 14.35(2.66) 0.656 (0.099) 0.315(0.052)

OMP 96.36(1.00) 10.25 (4.24) 0.735(0.222) 0.536(0.136)

select

λn :=
m1/α∗

δmin

(
2σ

√
log p′

n
+ a

√
m log p′

n
‖θ∗‖1

)
.

Then, there are universal positive constants (c1, c2) such
that any optimal solution θ̂ of (8) satisfies

‖θ̂ − θ∗‖∗G,α ≤
2m1/α∗

δmin

(
2σ

√
log p′

n
+ a

√
m log p′

n
‖θ∗‖1

)
,

‖θ̂ − θ∗‖2 ≤
4
√
km1/α∗

δmin

(
2σ

√
log p′

n
+ a

√
m log p′

n
‖θ∗‖1

)
,

‖θ̂ − θ∗‖G,α ≤
8km1/α∗

δmin

(
2σ

√
log p′

n
+ a

√
m log p′

n
‖θ∗‖1

)
with probability at least 1− c1 exp(−c2p′).

5. Experiments
We demonstrate the performance of our elementary estima-
tors on simulated as well as real-world datasets.

5.1. Simulation study

We first provide simulation studies that corroborate our the-
oretical results, and furthermore compares the finite sample
performance of various methods.

Sparse linear models For our first set of simulations, we
generate data according to the linear model y = Xθ∗ + w.
We construct the n × p design matrices X by sampling
the rows independently from a multivariate Gaussian dis-
tribution N(0,Σ) where Σi,j = 0.5|i−j|. We then set
the error term as w ∼ N(0, 1). For each simulation, the
entries of the true model coefficient vector θ∗ are set to
be 0 everywhere, except for a randomly chosen subset of
10 coefficients, which are chosen independently and uni-
formly in the interval (1, 3). We set the number of sam-
ples to n = 1000, and the number of covariates among
p ∈ {1000, 2000}. We compare the performance of Elem-
OLS: our OLS-variant elementary estimator in (7), with the

operator Tν and the regularization function R(·) set to the
`1 norm; Elem-Ridge: our ridge-variant elementary estima-
tor in (5) with the regularization functionR(·) set to the `1
norm, LASSO: the standard LASSO estimator, Thr-LASSO:
the LASSO estimator followed by post hard-thresholding
and OLS refitting (van de Geer et al., 2011), and OMP:
the Orthogonal Matching Pursuit estimator (Zhang, 2010).
As performance measures, we used the True Positive Rate
(TP), False Positive Rate (FP), `∞ and `2 error between the
estimated and true parameter vectors. While our theorem
specified an optimal setting of the regularization parameter
λ, this optimal setting depended on unknown model param-
eters. Thus, as is standard with high-dimensional regular-
ized convex programs, we set the tuning parameters in a
holdout-validated fashion, as those that minimize the aver-
age squared error on an independent validation set of sam-
ple size n. For each setting, we present the average of the
performance measures based on 100 simulations in Table 1.
As can be seen from the table, the performance of Elem-
OLS in term of `2 and `∞ errors is competitive with that
of LASSO, which corroborates our statistical analyses of
Section 4.2. In addition, the simulation results confirm the
suboptimal performance of Elem-Ridge – especially as p
becomes larger than n. Elem-OLS even achieves superior
variable selection accuracy when compared to the LASSO.
This is further illustrated in Figure 1, which depicts ROC
curves for the various methods, i.e., how TP and FP evolve
as the amount of regularization (stopping point for OMP)
is varied. We find this remarkable, given that Elem-OLS is
available in closed-form, whereas LASSO, OMP and vari-
ants require an iterative optimization procedure.

Group-sparse linear models The data is generated fol-
lowing the lines of the third model of Yuan & Lin
(2006). We compare Group-LASSO, Thr-Group-LASSO
(Group-LASSO followed by hard-thresholding), Group-
OMP (Lozano et al., 2009), with our Elem-OLS estimator
in (8) for group sparsity, which we refer to as Group-Elem-
OLS. We present the average of the performance measures
based on 100 simulations in Table 2. As can be seen from
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Table 2. Average performance measure and standard deviation in parenthesis for `1-penalized comparison methods on simulated data
for group-sparse linear models.

Method TP FP `2 `∞
Group-Elem-OLS 100 (0.00) 0.9 (0.10) 1.300 (0.045) 0.613 (0.027)

Group-LASSO 100 (0.00) 1.8 (0.18) 1.269 (0.095) 0.642 (0.031)
Thr-Group-LASSO 99 (0.14) 1.2 (0.16) 1.296 (0.075) 0.628 (0.029)

Group-OMP 99 (0.16) 1.9 (0.15) 1.984(0.080) 0.642(0.030)
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Figure 1. ROC curves for the Elem-OLS, Elem-Ridge, LASSO,
Thresholded-LASSO and OMP estimators under sparse linear
model.

the table, the performance of Group-Elem-OLS is compa-
rable to the other methods in term of `2 and `∞ errors are
comparable. Group-Elem-OLS achieves superior variable
selection accuracy.

5.2. Real Data Analysis

We employed our estimators toward the analysis of gene
expression data. We used microarray data pertaining to iso-
prenoid biosynthesis in Arabidopsis thaliana (A. thaliana)
provided by Wille et al. (2004). A. thaliana is a plant
widely used as model organism in genetics. Isoprenoids
play key roles in major plant processes including photo-
synthesis, respiration and defense against pathogens. Here
we focus on identifying the genes that exhibit significant
association with the specific isoprenoid gene GGPPS11
(AGI code AT4G36810), which is known as a precur-
sor to chlorophils, carotenoids, tocopherols and abscisic
acids. Thus, the response is the expression level of the
isoprenoid gene GGPPS11, while as covariates, we have
the expression levels from 833 genes, coming from 58 dif-
ferent metabolic pathways. There are 131 samples. All
variables are log transformed. Due to space limitations, we
only report results for our OLS-variant elementary estima-
tor with `1 regularization (Elem-OLS) and for the LASSO
estimator. We evaluate the predictive accuracy of the meth-
ods by randomly partitioning the data into training and test
sets, using 90 observations for training and the remainder

Table 3. Average test MSE on microarray dataset. (Smaller values
indicate higher predictive accuracy).

Elem-OLS LASSO
10.52± 0.39 11.59± 0.39

Table 4. Top 20 selected genes for the microarray study, along
with their associated pathways.

Elem-OLS LASSO
Pathway Gene (AGI) Pathway Gene (AGI)
Carote AT1G57770 Carote AT1G57770
Cytoki AT3G63110 Citrate AT1G54340
Flavon AT2G38240 Ethyl AT1G01480
Flavon AT5G08640 Ethyl AT4G11280
Folate AT1G78670 Flavon AT5G08640
Glycer AT2G44810 Folate AT1G78670
Glycol AT5G50850 Inosit AT3G56960
Inosit AT2G31830 Inosit AT2G41210
Inosit AT3G56960 Phenyl AT2G27820
Non-Mev AT1G17050 Porphy AT3G51820
Phenyl AT2G27820 Pyrimi AT5G23300
Phytos AT1G58440 Ribofl AT4G13700
Porphy AT1G09940 SGC AT5G28030
Ribofl AT4G13700 Starch AT2G45880
Starch AT2G45880 Starch AT2G25540
Starch AT5G03650 Starch AT5G29958
Threo AT1G72810 Toco AT2G18950
Toco AT2G18950 Trypto AT5G17980
Trypto AT5G48220 Trypto AT3G03680

for testing. The tuning parameters were selected using 5
fold cross-validation. We computed the prediction MSE
for the testing set. The results for 20 random train/test par-
titions are presented in Table 3. Overall, our elementary
estimator achieves superior prediction accuracy. We now
look into the genes selected by the comparison methods
on the full dataset. Out of 833 candidate genes, Elem-OLS
and LASSO selected selected 79 and 73 genes respectively.
For each method we ranked the selected genes according to
the amplitude of their regression coefficients. The top 20
genes for each method are listed in Table 4 along with their
associated pathways (the pathway names are abbreviated).
From table 4 we can see Elem-OLS and LASSO have 7
genes in common among their respective top 20 genes. In-
terestingly, the gene AT1G17050 (a.k.a. PPDS1), which
is known to belong to the same pathway as target gene
GGPPS11 (isoprenoid non-mevalonate), is included in the
top-20 genes of Elem-OLS, but not of LASSO.
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Appendix

A. Proof of Theorem 1 and Theorem 2
The proofs of two theorems are almost identical with
a single difference selecting initial parameter on which
the soft-thresholding is performed. In the proof, we de-
note this initial parameter, i.e., (X>X + εI)−1X>y or[
Tν
(
X>X
n

)]−1X>y
n by θ̄.

Let ∆ be the error vector, θ̂ − θ∗. Since we choose λn
greater thanR∗(|θ∗ − θ̄),

R∗(∆) = R∗(θ̂ − θ̄ + θ̄ − θ∗)

≤ R∗(θ̂ − θ̄) +R∗(θ∗ − θ̄) ≤ 2λn (9)

where we utilize the fact that θ̂ is feasible.

For notational simplicity, we use (S, Sc) instead of an ar-
bitrary subspace pair (M,M⊥). Additionally, we use the
notion ∆S to represent the `2 projection onto the model
space M. Then, by the assumption of the statement that
θ∗Sc = 0, and the decomposability of R(·) with respect to
(S, Sc),

R(θ∗) =R(θ∗) +R(∆Sc)−R(∆Sc)

=R(θ∗ + ∆Sc)−R(∆Sc)

(i)

≤ R(θ∗ + ∆Sc + ∆S) +R(∆S)−R(∆Sc)

=R(θ∗ + ∆) +R(∆S)−R(∆Sc) (10)

where the equality (i) holds by the triangle inequality,
which is the basic property of norms. Since we minimize
the objectiveR(θ) in (4) or (6), we obtain the inequality of
R(θ∗ + ∆) = R(θ̂) ≤ R(θ∗). Combining this inequality
with (10), we have

0 ≤ R(∆S)−R(∆Sc) (11)

Armed with inequalities (9) and (11), we utilize the
Hölder’s inequality and the decomposability of our regu-
larizer R(·) in order to derive the error bounds in terms of
`2 norm:

‖∆‖22 = 〈∆,∆〉 ≤ R∗(∆)R(∆)

≤ R∗(∆)
(
R(∆S) +R(∆Sc)

)
.

Since the error vector ∆ satisfies the inequality (11),

‖∆‖22 ≤ 2R∗(∆)R(∆S).

Combining all the pieces together yields

‖∆‖22 ≤ 4Ψ(S)λn‖∆S‖2 (12)

where Ψ(M) is the abbreviation for Ψ(S, ‖ · ‖2).

Notice that the projection operator is non-expansive,
‖∆S‖22 ≤ ‖∆‖22. Hence, we obtain ‖∆S‖2 ≤ 4Ψ(S)λn,
and plugging it back into (12) yields the `2 error bounds.

Finally, the error bounds in terms of the regularizer itself
are straightforward from the following reasoning:

R(∆) = R(∆S) +R(∆Sc) ≤ 2R(∆S)

≤ 2Ψ(S)‖∆S‖2 ≤ 8[Ψ(S)]2λn.

B. Useful lemma(s)
Lemma 1 (Lemma 1 of (Ravikumar et al., 2011)). Let A
be the event that∥∥∥∥X>Xn − Σ

∥∥∥∥
∞
≤ 8(max

i
Σii)

√
10τ log p′

n

where p′ := max{n, p} and τ is any constant greater than
2. Suppose that the design matrix X is i.i.d. sampled from
Σ-Gaussian ensemble with n ≥ 40 maxi Σii. Then, the
probability of event A occurring is at least 1− 4/p′τ−2.

Lemma 2 (In the proof of Corollary 2 (Negahban et al.,
2012)). By the conditions of (C-OLS2), and the sub-
Gaussian property of noise w,

P

(
‖X>w‖∞

n
≥ t
)
≤ 2 exp(− nt

2

2σ2
+ log p)

C. Proof of Proposition 1
By Lemma 1, we have the event A:∥∥∥∥X>Xn − Σ

∥∥∥∥
∞
≤ 8(max

i
Σii)

√
10τ log p′

n

with high probability specified in the statement of lemma.
Conditioned on A, Tν

(
X>X
n

)
with the specific choice of ν

in the statement, has larger diagonal entries and smaller off-
diagonal entries than Σ. Therefore, on the A, Tν

(
X>X
n

)
is

diagonally dominant, and hence invertible.

D. Proof of Corollary 2
In order to utilize Theorem 2, we need to derive the upper
bound of

∥∥θ∗ − [Tν(X>Xn )]−1X>y
n

∥∥
∞:

‖θ∗ − θ̄‖∞

=
∥∥∥[Tν(X>X

n

)]−1

Tν
(X>X

n

)
θ∗ −

[
Tν
(X>X

n

)]−1X>y

n

∥∥∥
∞

≤
∣∣∣∣∣∣∣∣∣[Tν(X>X

n

)]−1∣∣∣∣∣∣∣∣∣
∞

∥∥∥Tν(X>X
n

)
θ∗ − X>y

n

∥∥∥
∞

We first control |||
[
Tν
(
X>X
n

)]−1|||∞ term. We are going

to show that Tν
(
X>X
n

)
is diagonally dominant with high
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probability hence the term we care about will be bound.
By Lemma 1, if n > 40 maxi Σii, the event A occurs with
probability at least 1 − 4/p′τ−2 for p′ := max{n, p} and
any constant τ > 2. Conditioned on A, for all row index i,[

Tν

(X>X
n

)]
ii

−
∑
j 6=i

∣∣∣∣∣
[
Tν

(X>X
n

)]
ij

∣∣∣∣∣
≥
(

Σii − a
√

log p′

n
+ ν

)
−
∑
j 6=i

(
|Σij |+ a

√
log p′

n
− ν
)
.

where a := 8(maxi Σii)
√

10τ .

Therefore, provided ν := a
√

log p′

n ,

[
Tν

(X>X
n

)]
ii

−
∑
j 6=i

∣∣∣∣∣
[
Tν

(X>X
n

)]
ij

∣∣∣∣∣
≥ Σii −

∑
j 6=i

|Σij | ≥ δi ≥ δmin.

Note that conditioned on A, the matrix Tν
(
X>X
n

)
is in-

vertible since it is strictly diagonally dominant matrix, and∣∣∣∣∣∣[Tν(X>Xn )]−1∣∣∣∣∣∣
∞ ≤

1
δmin

by Varah (1975).

Now consider the second term
∥∥∥Tν(X>Xn )

θ∗ − X>y
n

∥∥∥
∞

in the equality:∥∥∥Tν(X>X
n

)
θ∗ − X>y

n

∥∥∥
∞

=
∥∥∥Tν(X>X

n

)
θ∗ − X>X

n
θ∗ +

X>X

n
θ∗ − X>y

n

∥∥∥
∞

≤
∥∥∥Tν(X>X

n

)
θ∗ − X>X

n
θ∗ − X>w

n

∥∥∥
∞

≤
∥∥∥Tν(X>X

n

)
θ∗ − X>X

n
θ∗
∥∥∥
∞

+
∥∥∥X>w

n

∥∥∥
∞
.

Since ‖X
>w‖∞
n can be upper-bounded by 2σ

√
log p
n as

stated in Lemma 2, the only remaining term to con-
trol is

∥∥∥(Tν(X>Xn )
− X>X

n

)
θ∗
∥∥∥
∞

. Each element of

Tν
(
X>X
n

)
− X>X

n is upper-bounded by ν by construc-

tion, which is set a
√

log p′

n . Therefore, for every entry of(
Tν
(
X>X
n

)
− X>X

n

)
θ∗, we can apply Hölder inequality

so that it is bound by a
√

log p
n ‖θ

∗‖1.

Therefore, if we select λn as

1

δmin

(
2σ

√
log p′

n
+ a

√
log p′

n
‖θ∗‖1

)
,

the constraint ‖θ∗−θ̄‖∞ ≤ λn with high probability, which
completes the proof.

E. Proof of Corollary 3
For any v ∈ Rp, the maximum absolute element of[
Tν

(
X>X
n

)]−1

v is bounded by

∥∥∥[Tν(X>X
n

)]−1

v
∥∥∥
∞
≤
∣∣∣∣∣∣∣∣∣[Tν(X>X

n

)]−1∣∣∣∣∣∣∣∣∣
∞
‖v‖∞.

Moreover, since the maximum group cardinality is m, we
have∥∥∥[Tν(X>X

n

)]−1

v
∥∥∥∗
G,α
≤
∥∥∥[Tν(X>X

n

)]−1

v
∥∥∥
∞
m1/α∗

≤
∣∣∣∣∣∣∣∣∣[Tν(X>X

n

)]−1∣∣∣∣∣∣∣∣∣
∞
‖v‖∞m1/α∗

Now, we can derive the upper bound of ‖θ∗ − θ̄‖∗G,α:

‖θ∗ − θ̄‖∗G,α

=
∥∥∥[Tν(X>X

n

)]−1

Tν
(X>X

n

)
θ∗ −

[
Tν
(X>X

n

)]−1X>y

n

∥∥∥∗
G,α

≤
∣∣∣∣∣∣∣∣∣[Tν(X>X

n

)]−1∣∣∣∣∣∣∣∣∣
∞

∥∥∥Tν(X>X
n

)
θ∗ − X>y

n

∥∥∥
∞
m1/α∗ .

Finally, by the same reasoning and conditions as in Sec-
tion D, we have, conditioned on the event A,

‖θ∗ − θ̄‖∗G,α ≤
m1/α∗

δmin

(
2σ

√
log p′

n
+ a

√
m log p′

n
‖θ∗‖1

)
.

Therefore, given the choice of λn as in the statement, we
have ‖θ∗ − θ̄‖∗G,α ≤ λn with high probability, and we can
directly apply Theorem 2.
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