
7 Appendix

7.1 Proof of Theorem 1

Proof. There are two main difficulties in proving the convergence of our algorithm, and none of
them is addressed in previous works. First, the Hessian matrix H is a block-structured matrix as
shown in (7), and unfortunately it is low-rank. Second, we have to show the convergence with the
active set selection technique.

Let H(θ) ∈ Rn×n be the Hessian ∇2L(θ̄) when L(·) is strongly convex. When it is not, as
discussed in Section 3, we set H = ∇2L(θ̄) + εI for a small constant ε > 0. Let d ∈ Rn2k

denotes the minimizer of the quadratic subproblem (8). By definition, we can easily observe that∑k
r=1 d

(r) = y where

y? := argmin
y

yTH(θ)y + 〈y,∇L(θ̄)〉+W(y), (19)

whereW(y) = miny(1),...,y(k):
Pk

r=1 y
(r)=y λr‖y(r)‖Ar

. Now (19) has a strongly convex Hessian,
and thus ifW(y) is convex then Theorem 3.1 in [16] can be used to show that the algorithm con-
verges, and thus F (

∑r
i=1 θ

(r)) converges (without active subspace selection).

To showW is convex, assume we have a, b and a(1), . . . ,a(k) are decomposition of a that attains
the minimizer ofW(a). By definition we have

W(αa+ (1− α)b) ≤
k∑
r=1

λr‖a(r) + b(r)‖Ar

≤
k∑
r=1

λr(α‖a(r)‖Ar + (1− α)‖b(r)‖Ar)

= αW(a) + (1− α)W(b).
Thus W is convex, and if we solve each quadratic approximation exactly without active subspace
selection, our algorithm converges to the global optimum.

Next we discuss the convergence of our algorithm with active subspace selection. [12] has shown
the convergence of active set selection under `1 regularization, but here the situation is different – we
can have infinite many atoms, as in group lasso or nuclear norm cases, so the original proof cannot
be applied. To analyze the active subspace selection technique, we will use the convergence proof
for Block Coordinate Gradient Descent (BCGD) in [23]. To begin, we give a quick review of the
Block Coordinate Gradient Descent (BCGD) algorithm discussed in [23].

BCGD is proposed to solve the composite functions with the following form:
argmin

x
F (x) := f(x) + P (x),

where P (x) is a convex and separable function. Here we consider x to be a p dimensional vector,
but in general x can be in any space. At the t-th iteration, BCGD chooses a subset Jt and compute
the descent direction by

dt = dJt

Ht
(x) = argmin

d

{
〈∇f(x),d〉+

1
2
dTHtd+ P (x+ d) | di = 0,∀i /∈ J

}
≡ argmin

d
QJt

Ht
(d).

(20)
After computing the descent direction dJt

H , a line search procedure is used to find the descent direc-
tion, where the largest αt is chosed by searching over 1, 1/2, 1/4, ... satisfying

F (xt + αdt) ≤ F (xt) + αtσ∆t, where ∆t = 〈∇f(xt),dt〉+ P (xt + dt)− P (xt),
and σ ∈ (0, 1) is any constant. The line search condition is exactly the same with ours in (10).

It is shown in Theorem 3.1 of [23] that when Jt is selected in a cyclic order covering all the indexes,
than BCGD converges to the global optimum for any convex function f(X).

To proof this theorem, we want to show the equivalence between our algorithm and BCGD with
one block (BCGD-1block). We first prove the convergence for the case where we only have one
regularizer, thus the problem is

argmin
x
L(x) + λ‖x‖A.

10

The key idea is to carefully define the matrix Ht at each iteration, according the our subspace
selection trick. Note that in (20) the matrixHt can be any positive definite matrix instead of Hessian.
At each iteration of Algorithm 1, assume the fixed and free subspace defined in (13) are Sfixed and
Sfree. Assume dim(Sfree) = q and dim(Sfixed) = n − q, R = [r1, . . . , rq] are the orthogonal basis
for Sfree, then we can construct H̃t by

H̃t = R(RTHtR)RT +R⊥(R⊥)T . (21)

It is easy to see that H̃t is positive definite if the real Hessian∇2f(x) is positive definite. Using H̃t

as the Hessian in (20), we first consider dfree to be the minimizer of the following problem:

dfree = argmin
∆free∈Sfree

{
〈∇f(x),∆free〉+

1
2

∆free
T H̃t∆free + P (x+ ∆free)

}
,

which is the quadratic subproblem (20) within the subspace Sfree. Next we show that dfree is indeed
the optimizer of the whole quadratic subproblem (20) with the original Hessian Ht. To show this,
taking derivative of (20) with respect to a a ∈ Sfixed, the subgradient will be

∂aQH̃t
(dfree) = 〈∇L(x),a〉+ aT H̃tdfree + ∂aP (x+ dfree).

By the definition of H̃t in (21), since a ∈ span(R⊥) and dfree ∈ span)(R), we have aT H̃tdfree = 0.
Also, since a ∈ Sfixed, 〈x + dfree,a〉 = 0, thus ∂aP (x + dfree) = [−λ, λ]. Also, since a ∈ Sfixed,
|〈∇f(x),a〉| < λ. Therefore, we have

0 ∈ ∂aQH̃t
(dfree), ∀a ∈ Sfixed,

also, since dfree is the optimal solution in Sfree, the projection of subgradient to a ∈ Sfree is 0.
Therefore dfree is the minimizer of QH̃t

.

Based on the above discussion, our algorithm that computing the generalized Newton direction in
free subspace Sfree is equivalent to another BCGD-1block algorithm with H̃t as the approximated
Hessian matrix. Therefore based on Theorem 3.1 of [23], our algorithm converges to the global
optimum.

When there are more than one set of parameters, i.e., we want to solve (1) with parameter sets
θ(1), ...,θ(k). In this case, the Hessian matrix is a kn by kn matrix. For each parameter set, we
will select Sfree

(i) and Sfixed
(i), and only update on Sfree

(i). To prove the convergence, similar to the
above arguments, we can construct the approximate Hessian H̃t and show the equivalence between
BCGD-block1 with H̃t and our algorithm. H̃t can be divided into k2 blocks, each one is a n by n
matrix H̃(i,j)

t , where

H̃
(i,j)
t = R(i)(R(i))THR(j)(R(j))T + (R(i))⊥((R(j))⊥)T ,

where H = ∇2L(
∑k
i=1 θ

(r)), R(i) is the basis of Sfree
(i), and (R(i))⊥ is the basis of Sfixed

(i).
Assume dfree ∈ Rnk is the solution of (20) with the constraint that projection to Sfixed

(i) is 0 for all
i, then it is the solution for both BCGD-1block with H̃t and also the update direction produced by
Algorithm 1. Also,

aH̃tdfree = 0 ∀a ∈ {Sfixed
(1), . . . ,Sfixed

(k)},
therefore similar to the previous arguments we can show that

0 ∈ ∂aQH̃t
(dfree), ∀a ∈ {Sfixed

(1), . . . ,Sfixed
(k)},

which indicates dfree is the minimizer ofQH̃t
(d). Then we can see that the BCGD-1block algorithm

with H̃t as the Hessian matrix is equivalent to Algorithm 1 when each quadratic subproblem is
solved exactly, therefore our algorithm converges to the global optimum of (1)

7.2 Proof of Lemma 2

Proof. First, since L(·) is strongly convex,

〈∇L(x̄)−∇L(ȳ), x̄− ȳ〉 ≥ η‖x̄− ȳ‖2. (22)

11

Next, by the optimal condition we know

−∇L(x̄) ∈ ∂‖x(r)‖Ar
, ∀r = 1, . . . , k

−∇L(ȳ) ∈ ∂‖y(r)‖Ar
, ∀r = 1, . . . , k.

By the convexity for each ‖ · ‖Ar ,

〈−∇L(x̄) +∇L(ȳ),x(r) − y(r)〉 ≥ 0, ∀r = 1, .., k.

Summing r from 1 to k we get 〈−∇L(x̄) +∇L(ȳ), x̄− ȳ〉 ≥ 0, and combined with (22) we have
‖x̄− ȳ‖ = 0.

7.3 Proof of Theorem 2

Proof. Since assumption (16) holds, there exists a positive constant ε such that

‖Π(T̄ (r))⊥
(
∇L(θ̄?)

)
‖∗Ar

< λr − ε ∀r = 1, . . . , k. (23)

We first focus on showing that that Sfixed will be eventually equal to (T (r))⊥. Focus on one of the
(T (r))⊥, for any unit vector (in terms of the ‖ · ‖Ar norm) a ∈ (T (r))⊥, we have

|〈a,∇L(θ̄?)〉| < λr − ε. (24)

Since the sequence generated by our algorithm converges to the global optimum (as proved in The-
orem 1), there exists a T such that

‖∇L(θ̄t)−∇L(θ̄?)‖∗Ar
< ε,

combining with (24) we have

|〈a,∇L(θ̄t)〉| ≤ |〈a,∇L(θ̄∗)〉|+ |〈a,∇L(θ̄t)−∇L(θ̄∗)〉|
< λr − ε+ ‖∇L(θ̄t)−∇L(θ̄∗)‖∗Ar

< λr (25)

for all t > T . Now we consider two cases:

1. If 〈a,θt−1〉 6= 0, then a /∈ Sfree
(r) at the t-th iteration. Since we assume subproblems are

exactly solved, and a ∈ Sfree
(r), by the optimality condition |〈∇L(θ̄t)| < λ implies that

〈θt,a〉 = 0.

2. If 〈a,θt−1〉 = 0, combined with (25) we have 〈θt,a〉 = 0.

Therefore, for all a ∈ (T (r))⊥, we have 〈θt,a〉 = 0, which implies (T (r))⊥ ⊂ Sfixed. On the other
hand, by definition (T (r)) ∩ Sfixed = φ, thus T (r) = Sfree and (T(r))⊥ = Sfixed.

7.4 Proof of Theorem 3

Proof. As shown in Theorem 2, there exists a T such that Sfree = span({a | 〈a,Θ?〉}) after t > T .

Next we show that after finite iterations the line search step size will be 1. For simplicity, let
L̄(θ) = L(

∑k
r=1 θ

(r)) and R̄(θ) =
∑k
r=1 ‖θr‖Ar

, and F (θ) = L̄(θ) + R̄(θ). Since ∇2L(θ̄)
is Lipschitz continuous, we have

L̄(θ + d) ≤ L̄(θ) + 〈∇L̄(θ),d〉+
1
2
dT∇2L̄(θ)d+

1
6
η‖d‖3.

Plug in into the objective function we have

F (θ + d) ≤ L̄(θ) + R̄(θ) + 〈∇L̄(θ),d〉+
1
2
dT∇2L̄(θ)d+

1
6
η‖d‖3 + R̄(θ + d)− R̄(θ)

≤ F (θ) + δ +
1
2
dT∇2L̄(θ)d+

1
6
η‖d‖3 (26)

To further bound (26), we first show the following Lemma:

12

Lemma 3. Let d? be the optimal solution of (20), then

δ = 〈∇L̄(θ),d?〉+ R̄(θ + d?)− R̄(θ) ≤ −(d?)T∇2L̄(θ)d?.

Proof. Since d? is the optimal solution of (20), for any α < 1 we have

〈∇L̄(θ) + d?〉+
1
2

(d?)THd? + R̄(θ + dstar) ≤ 〈∇L̄(θ), αd?〉+
1
2
α2(d?)THd? + R̄(θ + αd?)

≤ α〈∇L̄(θ),d?〉+
1
2
α2(d?)THd? + αR̄(θ + d) + (1− α)R̄(θ),

where we use H to denote the exact Hessian ∇2L̄(θ) and the second inequality is by the convexity
of R̄ since we consider all the atomic norm ‖ · ‖A to be convex. Therefore

(1− α)
(
〈∇L̄(θ),d?〉+ R̄(θ + d?)− R̄(θ)

)
+

1
2

(1− α2)(d?)THd? ≤ 0.

Dividing both sides by (1− α) we get

δ +
1
2

(1− α)(d?)THd? ≤ 0,

therefore δ ≤ −(d?)THd?.

Combining Lemma 3 and (26) we get

F (θ + d?) ≤ F (θ) +
δ

2
+

1
6
η‖d?‖3.

Furthermore, considering θ in the level set, we can defineM to be the largest eigenvalue of Hessians,
and thus

F (θ + d?) ≤ F (θ) + (
1
2
− 1

6
ηM2‖d?‖)δ.

Since d → 0 as θ → θ?, we can find an ε-ball around x? such that 1
2 −

1
6ηM

2‖d?‖) > σ, and
δ < 0, thus line search will be satisfied with step size equals to 1.

Based on the above proofs, when θ is closed enough to θ?, Sfree = span({a | 〈a,θ?〉}) and the step
size α = 1. Finally we have to explore the structure of dirty model. Since we have k parameter
sets θ(1),θ(2), . . . ,θ(k), the Hessian has a block structure presented in (7). Even when ∇2L(θ) is
strongly convex, the rank of the Hessian matrix is at most O(n), while there are totally nk variables
or rows. However, our main observation is that when ∇2L(θ) is positive definite, the Hessian
H ∈ Rpk×pk has a fixed null space:

L(θ) = L([I, I, . . . , I][θ(1),θ(2), . . . ,θ(k)]T) = L(Eθ),

where E = [I, I, . . . , I]. The null space of H is always the null space of E when L is strongly
convex itself. The following theorem (Theorem 2 in [28] can then be applied:

Lemma 4. Let F (θ) = g(θ) + h(θ) where g(θ) has a constant null space T ⊥ and is strongly
convex in the subspace T , and has Lipschitz continuous second order derivative ∇2g(θ). If we
apply a proximal Newton method (BCGD-block1 with exact Hessian and step size 1) to minimize
F (θ), then

‖zt+1 − z?‖ ≤
LH
2m
‖zt − z?‖2,

where z? = projT (θ?, zt = projT (zt), and LH is the Lipschitz constant for∇2g(θ).

In our case, projT ([θ(1), . . . ,θ(k)]T) =
∑k
i=1 θ

(i), therefore we have

‖
k∑
i=1

θ
(i)
t+1 − θ

?‖ ≤ C‖
k∑
i=1

θ
(i)
t − θ

?‖2,

therefore θ̄ =
∑k
i=1 θ

(i) has an asymptotic convergence rate.

13

7.5 Dual of latent GMRF

The problem (4) can be rewritten by

min
S,L:L�0,S−L�0

− log det(S − L) + 〈S − L,Σ〉+ max
Z:‖Z‖∞≤α

trace(ZS) + max
P :‖P‖2≤β

trace(LP),

where ‖Z‖∞ = maxi,j |Zij | and ‖P‖2 = σ1(P) is the induced two norm. We then interchange
min and max to get

max
Z,P :‖Z‖∞≤α,‖P‖2≤β

min
L,S,S−L�0,L�0

− log det(S − L) + 〈S − L,Σ〉+ trace(ZS) + trace(LP)

≡ g(Z,P, L, S). (27)

Assume we do not have the constraint L � 0, then the minimizer will satisfy

∇Lg(Z,P, L, S) = −(S − L)−1 + Σ + Z = 0

∇Sg(Z,P, L, S) = −(S − L)−1 − Σ + P = 0.

Therefore we have
Z = −P and S − L = (Σ + Z)−1. (28)

Combining (28) and (27) we get the dual problem

min
Σ+Z≥0

log det(Σ + Z) + p s.t. ‖Z‖∞ ≤ α, ‖Z‖2 ≤ β.

7.6 Alternating Minimization approach for latent GMRF

Another way to solve the latent GMRF problem is to directly applying an alternating minimization
scheme to solve (4). The algorithm iteratively fix one of the S,L and update the other. We can
still conduct the same active subspace selection technique mentioned in Section 3 in this algorithm.
However, this alternating minimization approach can achieve at most linear convergence rate, while
our algorithm can achieve super-linear convergence. In this section, we show the detail implemen-
tation for this algorithm — ALM(active), and show the comparison results with the Quic & Dirty
algorithm (Algorithm 1). The results in Figure 2 shows that our proximal Newton method is faster
in terms of the convergence rate.

(a) ER dataset, log scale (b) Leukemia dataset, log scale

Figure 2: Comparison between QUIC and Alternating Minimization (AM) on gene expression
datasets. Note that we implement the active subspace selection approach on both algorithm, so
two algorithms have similar speed per iteration. However, we observe that QUIC is much more
efficient in terms of final convergence rate.

7.7 Details on the implementation of our multi-task solver

We consider the multi-task learning problem. Assume we have k tasks, each with samples X(r) ∈
Rd,nr and labels y(r) ∈ Rnr . The goal of multi-task learning is to estimate the model W ∈ Rd×k,

14

where each column of W , denoted by w(r), is the model for the r-th task. A dirty model has been
proposed in [15] to estimate W by S +B, where

(S,B) = argmin
S,B∈Rd×k

‖y(k) −X(k)(s(k) + b(k))‖2 + λS‖S‖1 + λB‖B‖1,2, (29)

where s(k), b(k) are the k-th column of S,B. It was shown in [15] that the combination of sparse
and group sparse regularization yields better performance both in theory and in practice.

Instead of considering the squared-loss problem in (29), we further consider optimization problem
minimizing the logistic loss:

(S,B) = argmin
S,B∈Rd×k

k∑
r=1

(
nr∑
i=1

`logistic(y
(k)
i , (s(k) + b(k))Tx(k)

i)

)
+ λS‖S‖1 + λB‖B‖1,2, (30)

where `logistic(y, a) = log(1 + e−ya). This loss function is more suitable for the classification case,
as shown in the later experiments.

Let W = S + B, and we define w(r) to be the r-th column of W , then the Hessian and gradient of
L(·) can be computed by

∇w(r)

nr∑
i=1

(σ(y(r)
i 〈w

(r),x
(r)
i 〉)− 1)y(r)

i x
(r)
i , ∇2

w(r),w(r)L(W) = (X(r))TD(r)X(r),

where σ(a) = 1/(1+e−a) andD(r) is a diagonal matrix withD(r)
ii = σ(y(r)

i 〈w(r),x
(r)
i 〉) for all i =

1, . . . , nr. Note that the Hessian ofL(W) is a block-diagonal matrix, so∇2
w(r),w(t)L(W) = 0. Note

also that to form the quadratic approximation at W , we only need to compute σ(y(r)
i 〈w(r),x

(r)
i 〉)

for all i, r.

For the sparse-structured parameter component, we select a subset of variables in S to update as in
the previous example. For the group-sparse structured componentB, we select a subset of “rows” in
B to update, following (15). To solve the quadratic approximation subproblem, we again use coor-
dinate descent to minimize with respect to the sparse S component. For the group-sparse component
B, we use block coordinate descent, where each time we update variables in one group (one row)
using the trust region approach described in [20]. Since Sfree contains only a small subset of blocks,
the block coordinate descent can focus on this subset and becomes very efficient.

Algorithm. We first derive the quadratic approximation for the logistic loss function (30). Let
W = S +B, the gradient for the loss function L(W) can be written as

∇w(r)

nr∑
i=1

(σ(y(r)
i (w(r))Tx(r)

i)− 1)y(r)
i x

(r)
i ,

where σ(a) = 1/(1 + e−a). The Hessian of L(W) is a block-diagonal matrix, where each d × d
block corresponds to variables in one task, i.e., w(r). Let H ∈ Rkd×kd Hessian matrix, each d× d
block can be written as

∇2
w(r),w(r)L(W) = (X(r))TD(r)X(r),

where D(r) is a diagonal matrix with D(r)
ii = σ(y(r)

i 〈w(r),x
(r)
i 〉) for all i = 1, . . . , nr.

Therefore, to form the quadratic approximation of the current solution, the only computation re-
quired is to compute σ(y(r)

i 〈w(r),x
(r)
i 〉) for all i, r.

For the lasso part, we select a subset of variables in S to update, according to the subspace selection
criterion described 3.2. For the group lasso, we select a subset of “rows” inB to update, as described
in 3.2.

For the lasso part, we apply a coordinate descent solver for solving the subproblem. Notice that for
the Lasso part each column of S forms a subproblems:

min
δ∈Rd

1
2
δTH(r)δ + g(r)δ + ‖s(r) + δ‖,

where H(r) = (X(r))TD(r)X(r) and g(r) = ∇s(r)L(W). The k subproblems are independent to
each other, so we can solve them independently. For each subproblem, we apply the coordinate

15

descent approach described in [29] to solve it. When update the coordinate δi, the key computation
is to compute the current gradient H(r)δ + g(r). Directly computing this is expensive, however, we
can maintain p = D(r)X(r)δ during the updates, and then compute H(r)δ = (X(r)

:,i)Tp, which only

takes O(‖X(r)
:,i ‖0) flops.

For solving the group lasso problem, we cannot solve each column independently because the regu-
larization is grouping each row of B. We apply a block coordinate descent method, where each time
only one row of B is updated. Let δ ∈ Rk denote the update on the i-th row of B, the subproblem
with respect to δ can be written as

1
2

k∑
r=1

γr(δj)2 + gT δ + λ‖δ + w̄‖, (31)

where w̄ is the i-th row of W ; γr = H
(r)
ii and gr = ∇Wir

L(W) can be precomputed and will not
change during the update.

By taking the gradient of the subproblem (31), we can see that

δ = −w̄ +

{
0 if ‖g −

∑k
r=1 γrw̄

2
r‖ ≤ λ

−(Γ + λ
‖w̄+δ‖I)−1g if ‖g −

∑k
r=1 γrw̄

2
r‖ > λ.

(32)

For the second case, the closed form solution exists when Γ = I . However, this is no true in general.
Instead, we use the iterative trust-region solver proposed in [20] to solve the subproblem, where each
iteration of the Newton root finding algorithm only takes O(k) time. Therefore, the computational
bottleneck is to compute g in (31). In our case, similar to the Lasso subproblem, we can maintain
p(r) = D(r)X(r)δ(r) for each r = 1, . . . , k in memory, where δ(r) is the r-th column of change in
W . The gradient can then be computed by g = H(r)δ(r) = X(r)δ(r), therefore the time complexity
is O(n̄) for each coordinate update, where n̄ is number of nonzero for each column of X(r).

7.8 Proof of Proposition 1

To prove (a), first we expand the sub-differential

〈a, ∂θ(r)F (θ)〉 = 〈a, ∂θ(r)L(θ̄)+λr∂θ(r)‖θ(r)‖Ar
〉 = 〈a, G〉+λr〈a, ρ〉 for ρ ∈ ∂θ(r)‖θ(r)‖Ar

and now using the properties of decomposable norms, we calculate

|〈a, ρ〉| = |〈a,ΠT ⊥r ρ〉|
≤ ‖a‖Ar

‖ΠT ⊥r ρ‖
∗
Ar

≤ 1

hence 〈a, G〉+ λr〈a, ρ〉 ∈ 〈a, G〉 − λr, [〈a, G〉+ λr] and the result is shown. In fact, it is not hard
to see that every element of the set can be written as 〈a, ρ〉 for some ρ ∈ ∂θ(r)‖θ(r)‖Ar

.

To prove (b), note that the optimality condition on σ is that σ? will satisfy 0 ∈ ∂σF (θ + σ?a) and
by the chain rule, ∂σF (θ+σa) = 〈a, ∂θ(r)F (θ+σa)〉. If 〈a, G〉 ≤ λr, then by part (a) we see that
0 is in the sub-differential of ∂σF (θ) and hence σ = 0 is an optimal point. If F is strongly convex,
σ = 0 is the unique optimal point.

7.9 Proof of Proposition 2

By the definition of proximal operator, in the optimal solution −G ∈ ∂θ(r)‖proxλr
(G)‖Ar . For any

a ∈ S(r)
fixed, a ∈ T (prox(r)

λr
(G))⊥, thus |〈G,a〉| < λr. Next we consider the projection of gradient

to S(r)
fixed: let ρ = Π

S
(r)
fixed

(G), then by the previous statement we know ‖ρ‖∗ ≤ λr. Then since

ρ ∈ T (θ(r))⊥, we have ρ ∈ λr∂‖θ(r)‖Ar , therefore constrained to the subspace S(r)
fixed, 0 belongs

to the sub-gradient, which proves Proposition 2.

7.10 Active Subspace Selection for Group Lasso Regularization

16

0 50 100 150 200 250
10

−4

10
−2

10
0

10
2

10
4

time (sec)

O
b
je

c
ti
v
e
 v

a
lu

e

QUIC & Dirty (with Active) .
QUIC & Dirty (no Active)

Figure 3: Comparing with/without active subspace selection technique on the RCV1 dataset on the
multi-task learning problem with group-lasso regularization and logistic loss. We choose λ = 10−3

and the final solution only has 1678 nonzero rows, while there are 22283 rows in total.

17

