
Large Scale Distributed Sparse Precision Estimation

Huahua Wang, Arindam Banerjee
Dept. of Computer Science & Engg, University of Minnesota, Twin Cities

{huwang,banerjee}@cs.umn.edu

Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon
Dept. of Computer Science, University of Texas, Austin
{cjhsieh,pradeepr,inderjit}@cs.utexas.edu

Abstract

We consider the problem of sparse precision matrix estimation in high dimensions
using the CLIME estimator, which has several desirable theoretical properties. We
present an inexact alternating direction method of multiplier (ADMM) algorithm
for CLIME, and establish rates of convergence for both the objective and opti-
mality conditions. Further, we develop a large scale distributed framework for the
computations, which scales to millions of dimensions and trillions of parameters,
using hundreds of cores. The proposed framework solves CLIME in column-
blocks and only involves elementwise operations and parallel matrix multiplica-
tions. We evaluate our algorithm on both shared-memory and distributed-memory
architectures, which can use block cyclic distribution of data and parameters to
achieve load balance and improve the efficiency in the use of memory hierarchies.
Experimental results show that our algorithm is substantially more scalable than
state-of-the-art methods and scales almost linearly with the number of cores.

1 Introduction
Consider a p-dimensional probability distribution with true covariance matrix Σ0 ∈ Sp++ and true
precision (or inverse covariance) matrix Ω0 = Σ−10 ∈ Sp++. Let [R1 · · · Rn] ∈ <p×n be n indepen-
dent and identically distributed random samples drawn from this p-dimensional distribution. The
centered normalized sample matrix A = [a1 · · ·an] ∈ <p×n can be obtained as ai = 1√

n
(Ri− R̄),

where R̄ = 1
n

∑
iRi, so that the sample covariance matrix can be computed as C = AAT . In

recent years, considerable effort has been invested in obtaining an accurate estimate of the precision
matrix Ω̂ based on the sample covariance matrix C in the ‘low sample, high dimensions’ setting,
i.e., n � p, especially when the true precision Ω0 is assumed to be sparse [28]. Suitable estima-
tors and corresponding statistical convergence rates have been established for a variety of settings,
including distributions with sub-Gaussian tails, polynomial tails [25, 4, 19]. Recent advances have
also established parameter-free methods which achieve minimax rates of convergence [3, 19].

Spurred by these advances in the statistical theory of precision matrix estimation, there has been
considerable recent work on developing computationally efficient optimization methods for solving
the corresponding statistical estimation problems: see [1, 8, 14, 21, 13], and references therein.
While these methods are able to efficiently solve problems up to a few thousand variables, ultra-
large-scale problems with millions of variables remain a challenge. Note further that in precision
matrix estimation, the number of parameters scales quadratically with the number of variables; so
that with a million dimensions p = 106, the total number of parameters to be estimated is a trillion,
p2 = 1012. The focus of this paper is on designing an efficient distributed algorithm for precision
matrix estimation under such ultra-large-scale dimensional settings.

We focus on the CLIME statistical estimator [4], which solves the following linear program (LP):

min ‖Ω̂‖1 s.t. ‖CΩ̂− I‖∞ ≤ λ , (1)

1

where λ > 0 is a tuning parameter. The CLIME estimator not only has strong statistical guar-
antees [4], but also comes with inherent computational advantages. First, the LP in (1) does not
explicitly enforce positive definiteness of Ω̂, which can be a challenge to handle efficiently in high-
dimensions. Secondly, it can be seen that (1) can be decomposed into p independent LPs, one
for each column of Ω̂. This separable structure has motivated solvers for (1) which solve the LP
column-by-column using interior point methods [4, 28] or the alternating direction method of multi-
pliers (ADMM) [18]. However, these solvers do not scale well to ultra-high-dimensional problems:
they are not designed to run on hundreds to thousands of cores, and in particular require the entire
sample covariance matrix C to be loaded into the memory of a single machine, which is impractical
even for moderate sized problems.

In this paper, we present an efficient CLIME-ADMM variant along with a scalable distributed frame-
work for the computations [2, 26]. The proposed CLIME-ADMM algorithm can scale up to millions
of dimensions, and can use up to thousands of cores in a shared-memory or distributed-memory ar-
chitecture. The scalability of our method relies on the following key innovations. First, we propose
an inexact ADMM [27, 12] algorithm targeted to CLIME, where each step is either elementwise
parallel or involves suitable matrix multiplications. We show that the rates of convergence of the
objective to the optimum as well as residuals of constraint violation are both O(1/T). Second, we
solve (1) in column-blocks of the precision matrix at a time, rather than one column at a time. Since
(1) already decomposes columnwise, solving multiple columns together in blocks might not seem
worthwhile. However, as we show our CLIME-ADMM working with column-blocks uses matrix-
matrix multiplications which, building on existing literature [15, 5, 11] and the underlying low rank
and sparse structure inherent in the precision matrix estimation problem, can be made substantially
more efficient than repeated matrix-vector multiplications. Moreover, matrix multiplication can be
further simplified as block-by-block operations, which allows choosing optimal block sizes to min-
imize cache misses, leading to high scalability and performance [16, 5, 15]. Lastly, since the core
computations can be parallelized, CLIME-ADMM scales almost linearly with the number of cores.
We experiment with shared-memory and distributed-memory architectures to illustrate this point.
Empirically, CLIME-ADMM is shown to be much faster than existing methods for precision esti-
mation, and scales well to high-dimensional problems, e.g., we estimate a precision matrix of one
million dimension and one trillion parameters in 11 hours by running the algorithm on 400 cores.

Our framework can be positioned as a part of the recent surge of effort in scaling up machine learn-
ing algorithms [29, 22, 6, 7, 20, 2, 23, 9] to “Big Data”. Scaling up machine learning algorithms
through parallelization and distribution has been heavily explored on various architectures, includ-
ing shared-memory architectures [22], distributed memory architectures [23, 6, 9] and GPUs [24].
Since MapReduce [7] is not efficient for optimization algorithms, [6] proposed a parameter server
that can be used to parallelize gradient descent algorithms for unconstrained optimization problems.
However, this framework is ill-suited for the constrained optimization problems we consider here,
because gradient descent methods require the projection at each iteration which involves all vari-
ables and thus ruins the parallelism. In other recent related work based on ADMM, [23] introduce
graph projection block splitting (GPBS) to split data into blocks so that examples and features can
be distributed among multiple cores. Our framework uses a more general blocking scheme (block
cyclic distribution), which provides more options in choosing the optimal block size to improve the
efficiency in the use of memory hierarchies and minimize cache misses [16, 15, 5]. ADMM has
also been used to solve constrained optimization in a distributed framework [9] for graphical model
inference, but they consider local constraints, in contrast to the global constraints in our framework.

Notation: A matrix is denoted by a bold face upper case letter, e.g., A. An element of a matrix
is denoted by a upper case letter with row index i and column index j, e.g., Aij is the ij-th el-
ement of A. A block of matrix is denoted by a bold face lower case letter indexed by ij, e.g.,
Aij . ~Aij represents a collection of blocks of matrix A on the ij-th core (see block cyclic distri-
bution in Section 4). A′ refers the transpose of A. Matrix norms used are all elementwise norms,
e.g., ‖A‖1 =

∑p
i=1

∑n
j=1 |Aij |, ‖A‖22 =

∑p
i=1

∑n
j=1A

2
ij , ‖A‖∞ = max1≤i≤p,1≤j≤n |Aij |. The

matrix inner product is defined in elementwise, e.g., 〈A,B〉 =
∑p
i=1

∑n
j=1AijBij . X ∈ <p×k de-

notes k(1 ≤ k ≤ p) columns of the precision matrix Ω̂, and E ∈ <p×k denotes the same k columns
of the identity matrix I ∈ <p×p. Let λmax(C) be the largest eigenvalue of covariance matrix C.

2

Algorithm 1 Column Block ADMM for CLIME
1: Input: C, λ, ρ, η
2: Output: X
3: Initialization: X0,Z0,Y0,V0, V̂0 = 0
4: for t = 0 to T − 1 do
5: X-update: Xt+1 = soft(Xt −Vt, 1η), where

6: Mat-Mul:
{

sparse : Ut+1 = CXt+1

low rank : Ut+1 = A(A′Xt+1)

7: Z-update: Zt+1 = box(Ut+1 + Yt, λ), where
8: Y-update: Yt+1 = Yt + Ut+1 − Zt+1

9: Mat-Mul:
{

sparse : V̂t+1 = CYt+1

low rank : V̂t+1 = A(A′Yt+1)

10: V-update: Vt+1 = ρ
η (2V̂t+1 − V̂t)

11: end for

soft(X, γ) =

{
Xij − γ , if Xij > γ ,
Xij + γ , if Xij < −γ ,
0 , otherwise

box(X,E, λ) =

{
Eij + λ, if Xij − Eij > λ,
Xij , if |Xij − Eij | ≤ λ,
Eij − λ, if Xij − Eij < −λ,

2 Column Block ADMM for CLIME
In this section, we propose an algorithm to estimate the precision matrix in terms of column blocks
instead of column-by-column. Assuming a column block contains k(1 ≤ k ≤ p) columns, the
sparse precision matrix estimation amounts to solving dp/ke independent linear programs. Denoting
X ∈ <p×k be k columns of Ω̂, (1) can be written as

min ‖X‖1 s.t. ‖CX−E‖∞ ≤ λ , (2)

which can be rewritten in the following equality-constrained form:

min ‖X‖1 s.t. ‖Z−E‖∞ ≤ λ,CX = Z . (3)

Through the splitting variable Z ∈ <p×k, the infinity norm constraint becomes a box constraint and
is separated from the `1 norm objective. We use ADMM to solve (3). The augmented Lagrangian
of (3) is

Lρ = ‖X‖1 + ρ〈Y,CX− Z〉+
ρ

2
‖CX− Z‖22 , (4)

where Y ∈ <p×k is a scaled dual variable and ρ > 0. ADMM yields the following iterates [2]:

Xt+1 = argminX ‖X‖1 +
ρ

2
‖CX− Zt + Yt‖22 , (5)

Zt+1 = argmin
‖Z−E‖∞≤λ

ρ

2
‖CXt+1 − Z + Yt‖22 , (6)

Yt+1 = Yt + CXt+1 − Zt+1 . (7)

As a Lasso problem, (5) can be solved using exisiting Lasso algorithms, but that will lead to a
double-loop algorithm. (5) does not have a closed-form solution since C in the quadratic penalty
term makes X coupled. We decouple X by linearizing the quadratic penalty term and adding a
proximal term as follows:

Xt+1 = argminX ‖X‖1 + η〈Vt,X〉+
η

2
‖X−Xt‖22 , (8)

where Vt = ρ
ηC(Yt + CXt − Zt) and η > 0. (8) is usually called an inexact ADMM update.

Using (7), Vt = ρ
ηC(2Yt −Yt−1). Let V̂t = CYt, we have Vt = ρ

η (2V̂t − V̂t−1) . (8) has the
following closed-form solution:

Xt+1 = soft(Xt −Vt,
1

η
) , (9)

where soft denotes the soft-thresholding and is defined in Step 5 of Algorithm 1.

Let Ut+1 = CXt+1. (6) is a box constrained quadratic programming which has the following
closed-form solution:

Zt+1 = box(Ut+1 + Yt,E, λ) , (10)

3

where box denotes the projection onto the infinity norm constraint ‖Z − E‖∞ ≤ λ and is defined
in Step 7 of Algorithm 1. In particular, if ‖Ut+1 + Yt − E‖∞ ≤ λ, Zt+1 = Ut+1 + Yt and thus
Yt+1 = Yt + Ut+1 − Zt+1 = 0.

The ADMM algorithm for CLIME is summarized in Algorithm 1. In Algorithm 1, while step 5, 7, 8
and 10 amount to elementwise operations which costO(pk) operations, steps 6 and 9 involve matrix
multiplication which is the most computationally intensive part and costs O(p2k) operations. The
memory requirement includes O(pn) for A and O(pk) for the other six variables.

As the following results show, Algorithm 1 has a O(1/T) convergence rate for both the objective
function and the residuals of optimality conditions. The proof technique is similar to [26]. [12]
shows a similar result as Theorem 2 but uses a different proof technique. For proofs, please see
Appendix A in the supplement.

Theorem 1 Let {Xt,Zt,Yt} be generated by Algorithm 1 and X̄T = 1
T

∑T
t=1 X

t. Assume X0 =

Z0 = Y0 = 0 and η ≥ ρλ2max(C). For any CX = Z, we have

‖X̄T ‖1 − ‖X‖1 ≤
η‖X‖22

2T
. (11)

Theorem 2 Let {Xt,Zt,Yt} be generated by Algorithm 1 and {X∗,Z∗,Y∗} be a KKT point for
the Lagrangian of (3). Assume X0 = Z0 = Y0 = 0 and η ≥ ρλ2max(C). We have

‖CXT − ZT ‖22 + ‖ZT − ZT−1‖22 + ‖XT −XT−1‖2η
ρ I−C2 ≤

‖Y∗‖22 + η
ρ‖X

∗‖22
T

. (12)

3 Leveraging Sparse, Low-Rank Structure
In this section, we consider a few possible directions that can further leverage the underlying struc-
ture of the problem; specifically sparse and low-rank structure.

3.1 Sparse Structure

As we detail here, there could be sparsity in the intermediate iterates, or the sample covariance
matrix itself (or a perturbed version thereof); which can be exploited to make our CLIME-ADMM
variant more efficient.

Iterate Sparsity: As the iterations progress, the soft-thresholding operation will yield a sparse
Xt+1, which can help speed up step 6: Ut+1 = CXt+1, via sparse matrix multiplication. Further,
the box-thresholding operation will yield a sparse Yt+1. In the ideal case, if ‖Ut+1+Yt−E‖∞ ≤ λ
in step 7, then Zt+1 = Ut+1 + Yt. Thus, Ŷt+1 = Yt + Ut+1 −Zt+1 = 0. More generally, Yt+1

will become sparse as the iterations proceed, which can help speed up step 9: V̂t+1 = CYt+1.

Sample Covariance Sparsity: We show that one can “perturb” the sample covariance to obtain a
sparse and coarsened matrix, solve CLIME with this pertubed matrix, and yet have strong statistical
guarantees. The statistical guarantees for CLIME [4], including convergence in spectral, matrix
L1, and Frobenius norms, only require from the sample covariance matrix C a deviation bound of
the form ‖C − Σ0‖∞ ≤ c

√
log p/n, for some constant c. Accordingly, if we perturb the matrix

C with a perturbation matrix ∆ so that the perturbed matrix (C + ∆) continues to satisfy the
deviation bound, the statistical guarantees for CLIME would hold even if we used the perturbed
matrix (C + ∆). The following theorem (for details, please see Appendix B in the supplement)
illustrates some perturbations ∆ that satisfy this property:

Theorem 3 Let the original random variables Ri be sub-Gaussian, with sample covariance C. Let
∆ be a random perturbation matrix, where ∆ij are independent sub-exponential random variables.

Then, for positive constants c1, c2, c3, P (‖C + ∆− Σ0‖∞ ≥ c1
√

log p
n) ≤ c2p−c3 .

As a special case, one can thus perturb elements of Cij with suitable constants ∆ij with |∆ij | ≤
c
√

log p/n, so that the perturbed matrix is sparse, i.e., if |Cij | ≤ c
√

log p/n, then it can be safely

4

truncated to 0. Thus, in practice, even if sample covariance matrix is only close to a sparse ma-
trix [21, 13], or if it is close to being block diagonal [21, 13], the complexity of matrix multiplication
in steps 6 and 9 can be significantly reduced via the above perturbations.

3.2 Low Rank Structure

Although one can use sparse structures of matrices participating in the matrix multiplication to
accelerate the algorithm, the implementation requires substantial work since dynamic sparsity of
X and Y is unknown upfront and static sparsity of the sample covariance matrix may not exist.
Since the method will operate in a low-sample setting, we can alternatively use the low rank of the
sample covariance matrix to reduce the complexity of matrix multiplication. Since C = AAT and
p � n, CX = A(ATX), and thus the computational complexity of matrix multiplication reduces
from O(p2k) to O(npk), which can achieve significant speedup for small n. We use such low-rank
multiplications for the experiments in Section 5.

4 Scalable Parallel Computation Framework

In this section, we elaborate on scalable frameworks for CLIME-ADMM in both shared-memory
and distributed-memory achitectures.

In a shared-memory architecture (e.g., a single machine), data A is loaded to the memory and shared
by q cores, as shown in Figure 1(a). Assume the p × p precision matrix Ω̂ is evenly divided into
l = p/k (≥ q) column blocks, e.g., X1, · · · ,Xq, · · · ,Xl, and thus each column block contains k
columns. The column blocks are assigned to q cores cyclically, which means the j-th column block
is assigned to the mod(j, q)-th core. The q cores can solve q column blocks in parallel without com-
munication and synchronization, which can be simply implemented via multithreading. Meanwhile,
another q column blocks are waiting in their respective queues. Figure 1(a) gives an example of how
to solve 8 column blocks on 4 cores in a shared-memory environment. While the 4 cores are solving
the first 4 column blocks, the next 4 column blocks are waiting in queues (red arrows).

Although the shared-memory framework is free from communication and synchronization, the lim-
ited resources prevent it from scaling up to datasets with millions of dimensions, which can not be
loaded to the memory of a single machine or solved by tens of cores in a reasonble time. As more
memory and computing power are needed for high dimensional datasets, we implement a frame-
work for CLIME-ADMM in a distributed-memory architecture, which automatically distributes
data among machines, parallelizes computation, and manages communication and synchronization
among machines, as shown in Figure 1(b). Assume q processes are formed as a r × c process
grid and the p × p precision matrix Ω̂ is evenly divided into l = p/k (≥ q) column blocks, e.g.,
Xj , 1 ≤ j ≤ l. We solve a column block Xj at a time in the process grid. Assume the data matrix
A has been evenly distributed into the process grid and ~Aij is the data on the ij-th core, i.e., A is
colletion of ~Aij under a mapping scheme, which we will discuss later. Figure 1(b) illustrates that
the 2 × 2 process grid is computing the first column block X1 while the second column block X2

is waiting in queues (red lines), assuming X1,X2 are distributed into the process grid in the same
way as A and ~X1

ij is the block of X1 assigned to the ij-th core.

A typical issue in parallel computation is load imbalance, which is mainly caused by the compu-
tational disparity among cores and leads to unsatisfactory speedups. Since each step in CLIME-
ADMM are basic operations like matrix multiplication, the distribution of sub-matrices over pro-
cesses has a major impact on the load balance and scalability. The following discussion focuses on
the matrix multiplication in the step 6 in Algorithm 1. Other steps can be easily incorporated into
the framework. The matrix multiplication U = A(A′X1) can be decomposed into two steps, i.e.,
W = A′X1 and U = AW, where A ∈ <n×p, X1 ∈ <p×k, W ∈ <n×k and U ∈ <n×k. Divid-
ing matrices A,X evenly into r × c large consecutive blocks like [23] will lead to load imbalance.
First, since the sparse structure of X changes over time (Section 3.1), large consecutive blocks may
assign dense blocks to some processes and sparse blocks to the other processes. Second, there will
be no blocks in some processes after the multiplication using large blocks since W is a small matrix
compared to A,X, e.g., p could be millions and n, k are hundreds. Third, large blocks may not be
fit in the cache, leading to cache misses. Therefore, we use block cyclic data distribution which uses
a small nonconsecutive blocks and thus can largely achieve load balance and scalability. A matrix
is first divided into consecutive blocks of size pb × nb. Then blocks are distributed into the process

5

2X1X

6X5X

4X3X

8X7X

A
(a) Shared-Memory

21A

1
21X

11A

1
11X

1
22X

22A

1
12X

12A

2
11X

2
21X

 2
22X

2
22X

Parallel IO
(b) Distributed-Memory

13A12A 14A11A
23A22A 24A21A
33A32A 34A31A

43A42A 44A41A

53A52A 54A51A

63A62A 64A61A
(c) Block Cyclic

Figure 1: CLIME-ADMM on shared-memory and distribtued-memory architectures.

grid cyclically. Figure 1(c) illustrates how to distribute the matrix to a 2 × 2 process grid. A is
divided into 3× 2 consecutive blocks, where each block is of size pb×nb. Blocks of the same color
will be assigned to the same process. Green blocks will be assigned to the upper left process, i.e.,
~A11 = {a11,a13,a31,a33,a51,a53} in Figure 1(b). The distribution of X1 can be done in a similar
way except the block size should be pb × kb, where pb is to guarantee that matrix multiplication
A′X1 works. In particular, we denote pb × nb × kb as the block size for matrix multiplication.
To distribute the data in a block cyclic manner, we use a parallel I/O scheme, where processes can
access the data in parallel and only read/write the assigned blocks.

5 Experimental Results
In this section, we present experimental results to compare CLIME-ADMM with existing al-
gorithms and show its scalability. In all experiments, we use the low rank property of the
sample covariance matrix and do not assume any other special structures. Our algorithm is
implemented in a shared-memory architecture using OpenMP (http://openmp.org/wp/) and a
distributed-memory architecture using OpenMPI (http://www.open-mpi.org) and ScaLAPACK [15]
(http://www.netlib.org/scalapack/).

5.1 Comparision with Existing Algorithms

We compare CLIME-ADMM with three other methods for estimating the inverse covariance matrix,
including CLIME, Tiger in package flare1 and divide and conquer QUIC (DC-QUIC) [13]. The
comparisons are run on an Intel Zeon E5540 2.83GHz CPU with 32GB main memory.

We test the efficiency of the above methods on both synthetic and real datasets. For synthetic
datasets, we generate the underlying graphs with random nonzero pattern by the same way as in [14].
We control the sparsity of the underlying graph to be 0.05, and generate random graphs with var-
ious dimension. Since each estimator has different parameters to control the sparsity, we set them
individually to recover the graph with sparsity 0.05, and compare the time to get the solution. The
column block size k for CLIME-ADMM is 100. Figure 2(a) shows that CLIME-ADMM is the most
scalable estimator for large graphs. We compare the precision and recall for different methods on
recovering the groud truth graph structure. We run each method using different parameters (which
controls the sparsity of the solution), and plot the precision and recall for each solution in Figure
2(b). As Tiger is parameter tuning free and achieves the minimax optimal rate [19], it achieves the
best performance in terms of recall. The other three methods have the similar performance. CLIME
can also be free of parameter tuning and achieve the optimal minimax rate by solving an additional
linear program which is similar to (1) [3]. We refer the readers to [4, 3, 19] for detailed comparisons
between the two models CLIME and Tiger, which is not the focus of this paper.

We further test the efficiency of the above algorithms on two real datasets, Leukemia and Climate
(see Table 1). Leukemia is gene expression data provided by [10], and the pre-processing was done
by [17]. Climate dataset is the temperature data in year 2001 recorded by NCEP/NCAR Reanalysis
data2and preprocessed by [13]. Since the ground truth for real datasets are unknown, we test the
time taken for each method to recover graphs with 0.1 and 0.01 sparsity. The results are presented
in Table 1. Although Tiger is faster than CLIME-ADMM on small dimensional dataset Leukemia,

1The interior point method in [4] is written in R and extremely slow. Therefore, we use flare which is
implemented in C with R interface. http://cran.r-project.org/web/packages/flare/index.html

2www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html

6

(a) Runtime

(b) Precision and recall

Figure 2: Synthetic datasets

(a) Speedup Scol
k

(b) Speedup Score
q

Figure 3: Shared-Memory.

(a) Speedup Scol
k

(b) Speedup Score
q

Figure 4: Distributed-Memory.

it does not scale well on the high dimensional dataset as CLIME-ADMM, which is mainly due
to the fact that ADMM is not competitive with other methods on small problems but has superior
scalability on big datasets [2]. DC-QUIC runs faster than other methods for small sparsity but
dramatically slows down when sparsity increases. DC-QUIC essentially works on a block-diagonal
matrix by thresholding the off-diagonal elements of the sample covariance matrix. A small sparsity
generally leads to small diagonal blocks, which helps DC-QUIC to make a giant leap forward in the
computation. A block-diagonal structure in the sample covariance matrix can be easily incorporated
into the matrix multiplication in CLIME-ADMM to achieve a sharp computational gain. On a single
core, CLIME-ADMM is faster than flare ADMM. We also show the results of CLIME-ADMM on 8
cores, showing CLIME-ADMM achieves a linear speedup (more results will be seen in Section 5.2).
Note Tiger can estimate the spase precision matrix column-by-column in parallel, while CLIME-
ADMM solves CLIME in column-blocks in parallel.

5.2 Scalability of CLIME ADMM

We evaluate the scalability of CLIME-ADMM in a shared memory and a distributed memory ar-
chitecture in terms of two kinds of speedups. The first speedup is defined as the time on 1 core
T core
1 over q cores T core

q , i.e., Score
q = T core

1 /T core
q . The second speedup is caused by the use of col-

umn blocks. Assume the total time for solving CLIME column-by-column (k = 1) is T col
1 , which

is considered as the baseline. The speedup of solving CLIME in column block with size k over a
single column is defined as Scol

k = T col
1 /T col

k . The experiments are done on synthetic data which is
generated in the same way as in Section 5.1. The number of samples is fixed to be n = 200.

Shared-memory We estimate a precision matrix with p = 104 dimensions on a server with 20
cores and 64G memory. We use OpenMP to parallelize column blocks. We run the algorithm on
different number of cores q = 1, 5, 10, 20, and with different column block size k. The speedup
Scol
k is plotted in Figure 3(a), which shows the results on three different number of cores. When
k ≤ 20, the speedups keep increasing with increasing number of columns k in each block. For
k ≥ 20, the speedups are maintained on 1 core and 5 cores, but decreases on 10 and 20 cores. The
total number of columns in the shared-memory is k× q. For a fixed k, more columns are involved in
the computation when more cores are used, leading to more memory consumption and competition
for the usage of shared cache. The speedup Score

q is plotted in Figure 3(b), where T core
1 is the time

on a single core. The ideal linear speedups are archived on 5 cores for all block sizes k. On 10
cores, while small and medium column block sizes can maintain the ideal linear speedups, the large
column block sizes fail to scale linearly. The failure to achieve a linear speedup propagate to small
and medium column block sizes on 20 cores, although their speedups are larger than large column
block size. As more and more column blocks are participating in the computation, the speed-ups
decrease possibly because of the competition for resources (e.g., L2 cache) in the shared-memory
environment.

7

Table 1: Comparison of runtime (sec) on real datasets.

Dataset sparsity CLIME-ADMM DC-QUIC Tiger flare CLIME1 core 8 cores
Leukemia 0.1 48.64 6.27 93.88 34.56 142.5

(1255× 72) 0.01 44.98 5.83 21.59 17.10 87.60
Climate 0.1 4.76 hours 0.6 hours 10.51 hours > 1 day > 1 day

(10512× 1464) 0.01 4.46 hours 0.56 hours 2.12 hours > 1 day > 1 day

Table 2: Effect (runtime (sec)) of using different number of cores in a node with p = 106.
Using one core per node is the most efficient as there is no resource sharing with other cores.

node ×core k = 1 k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000
100×1 0.56 1.26 2.59 6.98 13.97 62.35 136.96
25× 4 1.02 2.40 3.42 8.25 16.44 84.08 180.89
200×1 0.37 0.68 1.12 3.48 6.76 33.95 70.59
50×4 0.74 1.44 2.33 4.49 8.33 48.20 103.87

Distributed-memory We estimate a precision matrix with one million dimensions (p = 106), which
contains one trillion parameters (p2 = 1012). The experiments are run on a cluster with 400 com-
puting nodes. We use 1 core per node to avoid the competition for the resources as we observed in
the shared-memory case. For q cores, we use the process grid q

2 × 2 since p � n. The block size
pb×nb×kb for matrix multiplication is 10×10×1 for k ≤ 10 and 10×10×10 for k > 10. Since the
column block CLIME problems are totally independent, we report the speedups on solving a single
column block. The speedup Scol

k is plotted in Figure 4(a), where the speedups are larger and more
stable than that in the shared-memory environment. The speedup keeps increasing before arriving
at a certain number as column block size increases. For any column block size, the speedup also
increases as the number of cores increases. The speedup Score

q is plotted in Figure 4(b), where T core
1

is the time on 50 cores. A single column (k = 1) fails to achieve linear speedups when hundreds of
cores are used. However, if using a column block k > 1, the ideal linear speedups are achieved with
increasing number of cores. Note that due to distributed memory, the larger column block sizes also
scale linearly, unlike in the shared memory setting, where the speedups were limited due to resource
sharing. As we have seen, k depends on the size of process grid, block size in matrix multiplication,
cache size and probably the sparsity pattern of matrices. In Table 2, we compare the performance
of 1 core per node to that of using 4 cores per node, which mixes the effects of shared-memory and
distributed-memory architectures. For small column block size (k = 1, 5), the use of multiple cores
in a node is almost two times slower than the use of a single core in a node. For other column block
sizes, it is still 30% slower. Finally, we ran CLIME-ADMM on 400 cores with one node per core
and block size k = 500, and the entire computation took about 11 hours.

6 Conclusions
In this paper, we presented a large scale distributed framework for the estimation of sparse precision
matrix using CLIME. Our framework can scale to millions of dimensions and run on hundreds of
machines. The framework is based on inexact ADMM, which decomposes the constrained optimiza-
tion problem into elementary matrix multiplications and elementwise operations. Convergence rates
for both the objective and optimality conditions are established. The proposed framework solves the
CLIME in column-blocks and uses block cyclic distribution to achieve load balancing. We evaluate
our algorithm on both shared-memory and distributed-memory architectures. Experimental results
show that our algorithm is substantially more scalable than state-of-the-art methods and scales al-
most linearly with the number of cores. The framework presented can be useful for a variety of other
large scale constrained optimization problems and will be explored in future work.

Acknowledgment
H. W. and A. B. acknowledge the support of NSF via IIS-0953274, IIS-1029711, IIS- 0916750,
IIS-0812183, and the technical support from the University of Minnesota Supercomputing Institute.
H. W. acknowledges the support of DDF (2013-2014) from the University of Minnesota. C.-J.H.
and I.S.D was supported by NSF grants CCF-1320746 and CCF-1117055. C.-J.H also acknowledge
the support of IBM PhD fellowship. P.R. acknowledges the support of NSF via IIS-1149803, DMS-
1264033 and ARO via W911NF-12-1-0390.

8

References
[1] O. Banerjee, L. E. Ghaoui, and A. dAspremont. Model selection through sparse maximum likelihood

estimation for multivariate Gaussian or binary data. JMLR, 9:2261–2286, 2008.
[2] S. Boyd, E. Chu N. Parikh, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning

via the alternating direction method of multipliers. Foundation and Trends Machine Learning, 3(1), 2011.
[3] T. Cai, W. Liu, and H. Zhou. Estimating sparse precision matrix: Optimal rates of convergence and

adaptive estimation. Preprint, 2012.
[4] T. Cai, C.H. Zhang, and H. Zhou. A constrained `1 minimization approach to sparse precision matrix

estimation. American Statistical Association, 106:594–607, 2011.
[5] J. Choi. A new parallel matrix multiplication algorithm on distributed-memory concurrent computers. In

High Performance Computing on the Information Superhighway, 1997.
[6] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker,

K. Yang, and A. Y. Ng. Large scale distributed deep networks. In NIPS, 2012.
[7] J. Dean and S. Ghemawat. Map-Reduce: simplified data processing on large clusters. In CACM, 2008.
[8] J. Friedman, T. Hastie, and R. Tibshirani. Model selection through sparse maximum likelihood estimation

for multivariate gaussian or binary data. Biostatistics, 9:432–441, 2008.
[9] Q. Fu, H. Wang, and A. Banerjee. Bethe-ADMM for tree decomposition based parallel MAP inference.

In UAI, 2013.
[10] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh,

J. R. Downing, M. A. Caligiuri, and C. D. Bloomfield. Molecular classication of cancer: class discovery
and class prediction by gene expression monitoring. Science, pages 531–537, 1999.

[11] K. Goto and R. Van De Geijn. Highperformance implementation of the level-3 BLAS. ACM Transactions
on Mathematical Software, 35:1–14, 2008.

[12] B. He and X. Yuan. On non-ergodic convergence rate of Douglas-Rachford alternating direction method
of multipliers. Preprint, 2012.

[13] C. Hsieh, I. Dhillon, P. Ravikumar, and A. Banerjee. A divide-and-conquer method for sparse inverse
covariance estimation. In NIPS, 2012.

[14] C. Hsieh, M. Sustik, I. Dhillon, and P. Ravikumar. Sparse inverse covariance matrix estimation using
quadratic approximation. In NIPS, 2011.

[15] A. Cleary J. Demmel I. S. Dhillon J. Dongarra S. Hammarling G. Henry A. Petitet K. Stanley D. Walker
L. Blackford, J. Choi and R.C. Whaley. ScaLAPACK Users’ Guide. SIAM, 1997.

[16] M. Lam, E. Rothberg, and M. Wolf. The cache performance and optimization of blocked algorithms. In
Architectural Support for Programming Languages and Operating Systems, 1991.

[17] L. Li and K.-C. Toh. An inexact interior point method for L1-reguarlized sparse covariance selection.
Mathematical Programming Computation, 2:291–315, 2010.

[18] X. Li, T. Zhao, X. Yuan, and H. Liu. An R package flare for high dimensional linear regression and
precision matrix estimation. http://cran.r-project.org/web/packages/flare, 2013.

[19] H. Liu and L. Wang. Tiger: A tuning-insensitive approach for optimally estimating Gaussian graphical
models. Preprint, 2012.

[20] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. Distributed graphlab: A
framework for machine learning in the cloud. In VLDB, 2012.

[21] R. Mazumder and T. Hastie. Exact covariance thresholding into connected components for large-scale
graphical lasso. JMLR, 13:723–736, 2012.

[22] F. Niu, B. Retcht, C. Re, and S. J. Wright. Hogwild! a lock-free approach to parallelizing stochastic
gradient descent. In NIPS, 2011.

[23] N. Parikh and S. Boyd. Graph projection block splitting for distributed optimization. Preprint, 2012.
[24] R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep unsupervised learning using graphics processors.

In ICML, 2009.
[25] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance estimation by

minimizing l1-penalized log-determinant divergence. Electronic Journal of Statistics, 5:935–980, 2011.
[26] H. Wang and A. Banerjee. Online alternating direction method. In ICML, 2012.
[27] J. Yang and Y. Zhang. Alternating direction algorithms for L1-problems in compressive sensing. ArXiv,

2009.
[28] M. Yuan. Sparse inverse covariance matrix estimation via linear programming. JMLR, 11, 2010.
[29] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent. In NIPS, 2010.

9

Supplement:
Large Scale Distributed Sparse Precision Estimation

Huahua Wang, Arindam Banerjee
Dept. of Computer Science & Engg, University of Minnesota, Twin Cities

{huwang,banerjee}@cs.umn.edu

Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon
Dept. of Computer Science, University of Texas, Austin
{cjhsieh,pradeepr,inderjit}@cs.utexas.edu

A Optimization Convergence Rate for CLIME ADMM

All norms in this section are defined elementwise. To recap, we solve the following problem:

min ‖X‖1 s.t. ‖Z−E‖∞ ≤ λ,CX = Z . (1)

The Lagrangian of (1) is

L(X,Z,Y) = ‖X‖1 + ρ〈Y,CX− Z〉 , (2)

where ‖Z−E‖∞ ≤ λ. Assume that {X∗,Z∗,Y∗} satisfies the KKT conditions of (2), i.e.,

−ρCTY∗ ∈ ∂‖X∗‖1 , (3)
〈Y∗,Z∗ − Z〉 ≥ 0 , (4)

CX∗ = Z∗ . (5)

where (4) holds for any Z satisfying ‖Z − E‖∞ ≤ λ. {X∗,Z∗,Y∗} is an optimal solution, which
has the following property.

Lemma 1 Let {Xt,Zt,Yt} be generated by ADMM and {X∗,Z∗,Y∗} be a KKT point. We have

‖X∗‖1 − ‖Xt+1‖1 ≤ ρ〈Y∗,CXt+1 − Zt+1〉 . (6)

Proof: Assume {X∗,Z∗,Y∗} is a KKT point. Using the convexity of `1 norm and (3), we have

‖X∗‖1 − ‖Xt+1‖1 ≤ −ρ〈CY∗,X∗ −Xt+1〉 = −ρ〈Y∗,C(X∗ −Xt+1)〉 . (7)

Setting Z = Zt+1 in (4) yields

0 ≤ 〈Y∗,Z∗ − Zt+1〉 . (8)

Multiplying by ρ and adding to (7) complete the proof.

In CLIME ADMM, we have the following iterates:

Xt+1 = argminX ‖X‖1 + η〈Vt,X〉+
η

2
‖X−Xt‖22 , (9)

Zt+1 = argmin
‖Z−E‖∞≤λ

ρ

2
‖CXt+1 − Z + Yt‖22 , (10)

Yt+1 = Yt + CXt+1 − Zt+1 . (11)

where Vt = ρ
ηC(Yt + CXt − Zt).

Throughout the proof of convergence rate, we need the following lemma.

1

Lemma 2 Let A,B,C,D be matrices of the same size. The following equalities hold:

〈A−B,B−C〉 =
1

2
(‖A−C‖22 − ‖A−B‖22 − ‖B−C‖22) . (12)

〈A−B,C−D〉 =
1

2
(‖D−A‖22 − ‖D−B‖22 + ‖C−B‖22 − ‖C−A‖22) . (13)

A.0.1 O(1/T) Convergence Rate for Objective Function

In this section, we establish the iteration complexity for inexact ADMM (9)-(11). We begin with the
following lemma for the X update (9).

Lemma 3 Let {Xt,Zt,Yt} be generated by (9)-(11). For any X, we have

‖Xt+1‖1 − ‖X‖1 ≤ −ρ〈Yt+1,C(Xt+1 −X)〉+
ρ

2
(‖CX− Zt‖22 − ‖CX− Zt+1‖22 + ‖CXt+1 − Zt+1‖22

− ‖CXt+1 − Zt‖22) +
1

2
(‖X−Xt‖2ηI−ρC2 − ‖X−Xt+1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) .

(14)

Proof: Let ∂‖Xt+1‖1 be the subgradient of ‖Xt+1‖1. Since Xt+1 is a minimizer of (9), we have

0 ∈ ∂‖Xt+1‖1 + η(Vt + Xt+1 −Xt) . (15)

Rearranging the terms gives −η(Vt + Xt+1 −Xt) ∈ ∂‖Xt+1‖1. Using the convexity of `1 norm,
we have
‖Xt+1‖1 − ‖X‖1 ≤ −η〈Vt + Xt+1 −Xt,Xt+1 −X〉
≤ −ρ〈C(Yt + CXt − Zt),Xt+1 −X〉 − η〈Xt+1 −Xt,Xt+1 −X〉 (16)

≤ −ρ〈Yt + CXt − Zt,C(Xt+1 −X)〉 − η〈Xt+1 −Xt,Xt+1 −X〉
= −ρ〈Yt+1,C(Xt+1 −X)〉 − ρ〈C(Xt −Xt+1),C(Xt+1 −X)〉+ ρ〈Zt − Zt+1,C(Xt+1 −X)〉
− η〈Xt+1 −Xt,Xt+1 −X〉 . (17)
where the last equality uses (11). Using (12), the second term can be written as

−〈C(Xt −Xt+1),C(Xt+1 −X)〉 = −1

2
(‖C(X−Xt)‖22 − ‖C(X−Xt+1)‖22 − ‖C(Xt −Xt+1)‖22) .

(18)

Note ‖C(X−Xt)‖22 = ‖X−Xt‖2C2 . Using (13), the third term of (17) can be written as

〈Zt − Zt+1,C(Xt+1 −X)〉 =
1

2
(‖CX− Zt‖22 − ‖CX− Zt+1‖22 + ‖CXt+1 − Zt+1‖22 − ‖CXt+1 − Zt‖22) .

(19)
Applying (12) on the last term of (17) gives

−〈Xt+1 −Xt,Xt+1 −X〉 =
1

2
(‖X−Xt‖22 − ‖X−Xt+1‖22 − ‖Xt+1 −Xt‖22) . (20)

Substituting (18)-(20) into (17) and rearraning the terms complete the proof.

The Z update (10) has the following lemma.

Lemma 4 Let {Xt,Zt,Yt} be generated by (9)-(11). For any Z satisfying ‖Z−E‖∞ ≤ λ,

0 ≤ −〈Yt+1,Z− Zt+1〉 . (21)

Proof: Since Zt+1 is a minimizer of (10), for any Z satisfying the infinity norm constraint, then
−〈CXt+1 − Zt+1 + Yt,Z− Zt+1〉 ≥ 0 . (22)

Using (11) completes the proof.

Combining the results in Lemma 3 and 4 yields the O(1/T) convergence rate for the objective of
inexact ADMM (9)-(11).

2

Theorem 1 Let {Xt,Zt,Yt} be generated by (10)-(11) and X̄T = 1
T

∑T
t=1 X

t. Assume X0 =

Z0 = Y0 = 0 and η ≥ λ2max(C). For any CX = Z, we have

‖X̄T ‖1 − ‖X‖1 ≤
η‖X‖22

2T
. (23)

Proof: Assume CX = Z. Multiplying (21) by ρ and adding (14) yields

‖Xt+1‖1 − ‖X‖1 ≤ −ρ〈Yt+1,CXt+1 − Zt+1〉+
1

2
(‖Z− Zt‖22 − ‖Z− Zt+1‖22 + ‖CXt+1 − Zt+1‖22

− ‖CXt+1 − Zt‖22) +
1

2
(‖X−Xt‖2ηI−ρC2 − ‖X−Xt+1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) .

(24)

Using (11), the first term can be written as

− 〈Yt+1,CXt+1 − Zt+1〉 = −〈Yt+1,Yt+1 −Yt〉

=
1

2
(‖Yt‖22 − ‖Yt+1‖22 − ‖Yt+1 −Yt‖22)

=
1

2
(‖Yt‖22 − ‖Yt+1‖22 − ‖CXt+1 − Zt+1‖22) . (25)

Substituting back into (24) gives

‖Xt+1‖1 − ‖X‖1 ≤
ρ

2
(‖Yt‖22 − ‖Yt+1‖22) +

ρ

2
(‖Z− Zt‖22 − ‖Z− Zt+1‖22 − ‖CXt+1 − Zt‖22)

+
1

2
(‖X−Xt‖2ηI−ρC2 − ‖X−Xt+1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) . (26)

Assuming η ≥ λ2max(C), ηI − ρC2 is positive semidefinite. Summing over t from 0 to T − 1 and
ignoring some negative terms, we have the following telescoping sum

T−1∑
t=0

‖Xt+1‖1 − ‖X‖1 ≤
ρ

2
‖Y0‖22 +

ρ

2
‖Z− Z0‖22 +

1

2
‖X−X0‖2ηI−ρC2

=
ρ

2
‖Z‖22 +

1

2
‖X‖2ηI−ρC2

=
η

2
‖X‖22 . (27)

where the first equality is due to X0 = Z0 = Y0 = 0 and the second equality uses CX = Z.
Applying the Jensen’s inequality on the left hand side completes the proof.

A.0.2 O(1/T) Convergence Rate for the Optimality Conditions

For the X update (9), we have the following lemma.

Lemma 5 Let {Xt,Zt,Yt} be generated by (9)-(11). We have

‖CXt+1 − Zt‖22 + ‖Xt+1 −Xt‖2η
ρ I−C2 ≤ ‖CXt − Zt‖22 + ‖Zt−1 − Zt‖22 + ‖Xt −Xt−1‖2η

ρ I−C2 .

(28)

Proof: Setting X = Xt in (16) gives

‖Xt+1‖1 − ‖Xt‖1 ≤ −ρ〈Yt + CXt − Zt,C(Xt+1 −Xt)〉 − η〈Xt+1 −Xt,Xt+1 −Xt〉

≤ −ρ〈Yt,C(Xt+1 −Xt)〉+
ρ

2
(‖CXt − Zt‖22 + ‖C(Xt+1 −Xt)‖22 − ‖CXt+1 − Zt‖22)− η‖Xt+1 −Xt‖22 .

(29)

At t, (17) becomes

‖Xt‖1 − ‖X‖1 ≤ −ρ〈Yt,C(Xt −X)〉 − ρ〈C(Xt−1 −Xt),C(Xt −X)〉
+ ρ〈Zt−1 − Zt,C(Xt −X)〉 − η〈Xt −Xt−1,Xt −X〉 . (30)

3

Setting X = Xt+1 gives

‖Xt‖1 − ‖Xt+1‖1 ≤ −ρ〈Yt,C(Xt −Xt+1)〉 − ρ〈C(Xt−1 −Xt),C(Xt −Xt+1)〉
+ ρ〈Zt−1 − Zt,C(Xt −Xt+1)〉 − η〈Xt −Xt−1,Xt −Xt+1〉 . (31)

Using (12), the second term becomes

− ρ〈C(Xt−1 −Xt),C(Xt −Xt+1)〉

= −ρ
2

(‖C(Xt−1 −Xt+1)‖22 − ‖C(Xt−1 −Xt)‖22 − ‖C(Xt −Xt+1)‖22) . (32)

Similarly, applying (12) on the fourth term of (31) gives

−η〈Xt −Xt−1,Xt −Xt+1〉 =
η

2
(‖Xt−1 −Xt+1‖22 − ‖Xt −Xt−1‖22 − ‖Xt −Xt+1‖22) .

(33)

Adding (32) and (33) together yields

− ρ〈C(Xt−1 −Xt),C(Xt −Xt+1)〉 − η〈Xt −Xt−1,Xt −Xt+1〉

=
1

2
(‖Xt−1 −Xt+1‖2ηI−ρC2 − ‖Xt −Xt−1‖2ηI−ρC2 − ‖Xt −Xt+1‖2ηI−ρC2)

≤ 1

2
(‖Xt −Xt−1‖2ηI−ρC2 + ‖Xt −Xt+1‖2ηI−ρC2) , (34)

where the last inequality uses ‖A − B‖22 ≤ 2(‖A − C‖22 + ‖B − C‖22). Using the inequality
〈A,B〉 ≤ 1

2 (‖A‖22 + ‖B‖22), the third term of (31) can be written as

ρ〈Zt−1 − Zt,C(Xt −Xt+1)〉 ≤ ρ

2
(‖Zt−1 − Zt‖22 + ‖C(Xt −Xt+1)‖22) . (35)

Substituting (34) and (35) back to (31), we have

‖Xt‖1 − ‖Xt+1‖1 ≤ −ρ〈Yt,C(Xt −Xt+1)〉+
ρ

2
‖Zt−1 − Zt‖22

+
1

2
(‖Xt −Xt−1‖2ηI−ρC2 + η‖Xt −Xt+1‖22) (36)

Adding (29) and (36) together yields

0 ≤ ρ

2
(‖CXt − Zt‖22 + ‖C(Xt+1 −Xt)‖22 − ‖CXt+1 − Zt‖22)− η‖Xt+1 −Xt‖22

+
ρ

2
‖Zt−1 − Zt‖22 +

1

2
(‖Xt −Xt−1‖2ηI−ρC2 + η‖Xt −Xt+1‖22)

=
ρ

2
(‖CXt − Zt‖22 + ‖Zt−1 − Zt‖22 − ‖CXt+1 − Zt‖22)

+
1

2
(‖Xt −Xt−1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) . (37)

Dividing both sides by ρ
2 and rearranging the terms complete the proof.

For the Z update (10), we have the following lemma.

Lemma 6 Let {Xt,Zt,Yt} be generated by (9)-(11). We have

‖CXt+1 − Zt+1‖22 + ‖Zt+1 − Zt‖22 ≤ ‖CXt+1 − Zt‖22 . (38)

Proof: Setting Z = Zt in (21) gives

0 ≤ −〈Yt+1,Zt − Zt+1〉 . (39)

At t, (21) becomes

0 ≤ −〈Yt,Z− Zt〉 . (40)

4

Setting Z = Zt+1 yields

0 ≤ −〈Yt,Zt+1 − Zt〉 . (41)

Adding (39) and (41) yields

0 ≤ 〈Yt+1 −Yt,Zt+1 − Zt〉 = 〈CXt+1 − Zt+1,Zt+1 − Zt〉

=
1

2
(‖CXt+1 − Zt‖22 − ‖CXt+1 − Zt+1‖22 − ‖Zt+1 − Zt‖22) . (42)

Rearranging the terms complete the proof.

Define R1(t+ 1) as follows:

R1(t+ 1) = ‖CXt+1 − Zt+1‖22 + ‖Zt+1 − Zt‖22 + ‖Xt+1 −Xt‖2η
ρ I−C2 . (43)

We now show that R1(t) is non-increasing by combining the results in Lemma 5 and 6 .

Lemma 7 Let R1(t) be defined in (43). We have

R1(t+ 1) ≤ R1(t) . (44)

Proof: Adding (28) and (38) yields

‖CXt+1 − Zt+1‖22 + ‖Zt+1 − Zt‖22 + ‖Xt+1 −Xt‖2η
ρ I−C2

≤ ‖CXt − Zt‖22 + ‖Zt−1 − Zt‖22 + ‖Xt −Xt−1‖2η
ρ I−C2 . (45)

(44) follows from the definition of R1 in (43).

Lemma 8 Let {Xt,Zt,Yt} be generated by (9)-(11) and {X∗,Z∗,Y∗} be a KKT point. We have

R1(t+ 1) ≤ ‖Y∗ −Yt‖22 − ‖Y∗ −Yt+1‖22 + ‖Z∗ − Zt‖22 − ‖Z∗ − Zt+1‖22
+ ‖X∗ −Xt‖2η

ρ I−C2 − ‖X∗ −Xt+1‖2η
ρ I−C2 . (46)

where R1(t+ 1) is defined in (43).

Proof: Adding (24) and (6) yields

0 ≤ ρ〈Y∗ −Yt+1,CXt+1 − Zt+1〉+
ρ

2
(‖Z∗ − Zt‖22 − ‖Z∗ − Zt+1‖22 + ‖CXt+1 − Zt+1‖22

− ‖CXt+1 − Zt‖22) +
1

2
(‖X∗ −Xt‖2ηI−ρC2 − ‖X∗ −Xt+1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) .

(47)

Using (11) and applying (12) on the first term, we have

〈Y∗ −Yt+1,CXt+1 − Zt+1〉 = 〈Y∗ −Yt+1,Yt+1 −Yt〉

=
1

2
(‖Y∗ −Yt‖22 − ‖Y∗ −Yt+1‖22 − ‖Yt+1 −Yt‖22)

=
1

2
(‖Y∗ −Yt‖22 − ‖Y∗ −Yt+1‖22 − ‖CXt+1 − Zt+1‖22) . (48)

Plugging into (47) yields

0 ≤ ρ

2
(‖Y∗ −Yt‖22 − ‖Y∗ −Yt+1‖22) +

ρ

2
(‖Z∗ − Zt‖22 − ‖Z∗ − Zt+1‖22 − ‖CXt+1 − Zt‖22)

+
1

2
(‖X∗ −Xt‖2ηI−ρC2 − ‖X∗ −Xt+1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) . (49)

Dividing both sides by ρ
2 and rearraning the terms, we have (46) by using (38) and the definition of

R1(t) in (43).

5

Theorem 2 Let {Xt,Zt,Yt} be generated by (9)-(11) and {X∗,Z∗,Y∗} be a KKT point. Assume
X0 = Z0 = Y0 = 0 and η ≥ λ2max(C). We have

R1(T) ≤
‖Y∗‖22 + η

ρ‖X
∗‖22

T
, (50)

where R1(T) is defined in (43).

Proof: Summing (46) over t from 0 to T − 1 and igonoring some negative terms yield
T−1∑
t=0

R1(t+ 1) ≤ ‖Y∗ −Y0‖22 + ‖Z∗ − Z0‖22 + ‖X∗ −X0‖2η
ρ I−C2

= ‖Y∗‖22 + ‖Z∗‖22 + ‖X∗‖2η
ρ I−C2

= ‖Y∗‖22 +
η

ρ
‖X∗‖22 , (51)

where the first equality is due to X0 = Z0 = Y0 = 0 and the second equality uses CX∗ = Z∗.
According to Lemma 7, R1(t) is non-increasing. Therefore,

TR1(T) ≤
T∑
t=0

R1(t+ 1) . (52)

Dividing both sides by T completes the proof.

The optimality condition for (10) is given in Lemma 4, showing that KKT condition (4) is alway
satisfied. The optimality conditions for (9) is

−η(Vt + Xt+1 −Xt) ∈ ∂‖Xt+1‖1 . (53)

Expanding C and using (11), it can be rewritten as

−ρC(Yt+1 + Xt −Xt+1 − Zt + Zt+1)− η(Xt+1 −Xt) ∈ ∂‖Xt+1‖1 . (54)

If Xt+1 = Xt and Zt+1 = Zt, the KKT condition (3) will be satisfied. Therefore, R1(T) defines
the residuals of optimality conditions for (9)-(11). As R1(T) → 0, CXT = ZT ,ZT = ZT−1 and
XT = XT−1 and thus the KKT conditions (3)-(5) are satisfied.

B Statistical Convergence Rates with Covariance Perturbation

In this section, we analyze the statistical convergence of the CLIME estimator [1] under perturba-
tions of the sample covariance matrix. For the ease of reading, we first define some notations. Let
R1, · · · , Rk, · · · , Rn ∈ <p be n samples generated from a distribution with covariance matrix Σ0

and true precision matrix Ω0. The estimated covariance matrix is denoted as Σ̂ and the correspond-
ing estimated precision matrix is Ω̂. The pertubed covariance matrix is denoted as Ŝ. The covariance
matrix C in the main text can be either Σ̂ or Ŝ. The i-th element ofRk is denoted asRik. For matrix,
we use ij to index the ij-th element, e.g., Ω̂ij . ‖ ·‖∞ and ‖ ·‖2 denote the elementwise norm. ‖ ·‖L1

and ‖ · ‖L2 denote the matrix L1 norm and L2 norm. For the sake of completeness, we start with a
brief review of some of the main results for CLIME.

B.1 CLIME Estimator: Bounds in terms of λ

For n samples R1, . . . , Rn ∈ <p, the sample covariance matrix Σ̂, is computed as:

Σ̂ =
1

n

n∑
k=1

(Rk − R̄)(Rk − R̄)T =
1

n

n∑
k=1

RkR
T
k −

1

n
R̄R̄T , where R̄ =

1

n

n∑
k=1

Rk . (55)

As a result, an entry of the sample covariance matrix is given by:

Σ̂ij =
1

n

n∑
k=1

RikRjk −
1

n

(
1

n

n∑
k=1

Rik

)(
1

n

n∑
k=1

Rjk

)
. (56)

6

The analysis for CLIME [1] considers the following family of precision matrices:

U = U(M, q, s0(p)) =

Ω : Ω � 0, ‖Ω‖L1
≤M, max

1≤i≤p

p∑
j=1

|Ωij |q ≤ s0(p)

 , (57)

for 0 ≤ q < 1. Then, the CLIME estimator has the following guarantees:

Theorem 3 Let Ω0 ∈ U(M, q, s0(p)). If λ ≥ ‖Ω0‖L1
maxij |Σ̂ij − Σ0,ij |, then we have

‖Ω̂− Ω0‖∞ ≤ 4‖Ω0‖L1λ , (58)

‖Ω̂− Ω0‖L2
≤ cs0(p)(4‖Ω0‖L1

)1−qλ1−q , (59)
1

p
‖Ω̂− Ω0‖22 ≤ cs0(p)(4‖Ω0‖L1

)2−qλ2−q , (60)

where c ≤ 2(1 + 21−q + 31−q) is a constant.

Note that the deterministic bounds in Theorem 3 for precision estimation relies on ‖Σ̂ − Σ0‖∞ =

maxi,j |Σ̂ij − Σ0,ij |. In the next subsection, we establish tail bounds for the scenario where we
(intentionally) perturb each entry of the sample covariance matrix, i.e., we work with Ŝij = Σ̂ij +
∆ij where ∆ij has a sub-exponential tail.

B.2 Bounds for λ

The following two norms will play a role in our analysis: For a scalar random variable v, let

‖v‖ψ2 = sup
p≥1

p−1/2(E|v|p)1/p , and ‖v‖ψ1 = sup
p≥1

p−1(E|v|p)1/p . (61)

Then, v is called a sub-Gaussian random variable if ‖v‖ψ2
≤ K2 for a constant K2, and v is called

a sub-exponential random variable if ‖v‖ψ1
≤ K1 for a constant K1. In the literature, ‖v‖ψ2

is
referred to as the sub-Gaussian norm and ‖v‖ψ1

is referred to as the sub-exponential norm. Note
that, ignoring constants, sub-exponential tails decay at exp(−t) whereas sub-Gaussian tails decay
as exp(−t2/2) so that sub-exponential tails are heavier than sub-Gaussian tails.

The following result will be used in our analysis:

Lemma 9 Let vi, vj be sub-Gaussian random variables with max{‖vi‖ψ2
, ‖vj‖ψ2

} ≤ K2. Then
vivj − E[vivj] is a sub-exponential random variable with ‖vivj − E[vivj]‖ψ1

≤ 4K2
2 .

Proof: By definition,

‖E[vivj]‖ψ1
= |E[vivj]| ≤ E|vivj | ≤ ‖vivj‖ψ1

. (62)

Using triangle inequality, we have

‖vivj − E[vivj]‖ψ1
≤ ‖vivj‖ψ1

+ ‖E[vivj]‖ψ1
≤ 2‖vivj‖ψ1

. (63)

Since vi, vj are sub-Gaussian random variables, for any p ≥ 1,

E|vi|p ≤ (K2
√
p)p and E|vj |p ≤ (K2

√
p)p . (64)

Then, using Cauchy-Schwartz inequality

E|vivj |p = E|vi|p|vj |p ≤
(
E|vi|2pE|vj |2p

)1/2 ≤ ((K2

√
2p)2p(K2

√
2p)2p

)1/2
= K2p

2 2ppp .

Hence,

‖vivj‖ψ1 = sup
p≥1

p−1(E|vivj |p)1/p ≤ 2K2
2 .

The result then follows from (63).

We also need the following Bernstein-type inequality for sums of independent sub-exponential ran-
dom variables [2]:

7

Theorem 4 Let v1, . . . , vn be independent centered sub-exponential random variables, and K1 =
maxi ‖vi‖ψ1

. Then, for every b = (b1, . . . , bn) ∈ Rn and every t ≥ 0, we have

P

{∣∣∣∣∣
n∑
k=1

bkvk

∣∣∣∣∣ ≥ t
}
≤ 2 exp

{
−c0 min

(
t2

K2
1‖b‖22

,
t

K1‖b‖∞

)}
, (65)

where c0 > 0 is an absolute constant.

We will be also using the following form of the above result:

Corollary 1 Let v1, . . . , vn be independent centered sub-exponential random variables, and K1 =
maxi ‖vi‖ψ1

. Then, for every ε ≥ 0, we have

P

{∣∣∣∣∣ 1n
n∑
k=1

vk

∣∣∣∣∣ ≥ ε
}
≤ 2 exp

{
−c0 min

(
ε2

K2
1

,
ε

K1

)
n

}
, (66)

where c0 > 0 is an absolute constant.

Next, we consider perturbing the covariance matrix Σ̂ using independent zero-mean sub-exponential
random variables. First, we illustrate that the nature of the tail bounds stay unchanged under such
perturbations. Then, we show that one can do deterministic perturbations to get coarser and/or
truncated representations of the sample covariance matrix, saving on the memory foot-print of the
covariance matrix without affecting the statistical guarantees.

Let ∆ij be independent zero mean sub-exponential random variables, and we consider the modified
covariance matrix with entries:

Ŝij =
1

n

n∑
k=1

RikRjk −
1

n

(
1

n

n∑
k=1

Rik

)(
1

n

n∑
k=1

Rjk

)
+ ∆ij . (67)

Then, we have the following result:

Theorem 5 Let K2 = maxi ‖Ri·‖ψ2
and K1 = maxij ‖∆ij‖ψ1

. Assuming K1 ≤ 4K2
2 , we have

P
{

max
ij
|Ŝij − Σ0,ij | ≥ ε

}
≤ 6 exp

{
−c0 min

(
ε2

36c21K
4
2

,
ε

12c1K2
2

)
n

}
, (68)

for suitable positive constant c0, c1.

Proof: By definition, for any i, j,

P
{
|Ŝij − Σ0,ij | ≥ ε

}
= P

{∣∣∣∣∣
(

1

n

n∑
k=1

RikRjk − Σ0,ij

)
+ ∆ij −

1

n

(
1

n

n∑
k=1

Rik

)(
1

n

n∑
k=1

Rjk

)∣∣∣∣∣ ≥ ε
}

≤ P

{∣∣∣∣∣ 1n
n∑
k=1

RikRjk − Σ0,ij

∣∣∣∣∣ ≥ ε/3
}

+ P {|∆ij | ≥ ε/2}

+ P

{∣∣∣∣∣ 1n
(

1

n

n∑
k=1

Rik

)(
1

n

n∑
k=1

Rjk

)∣∣∣∣∣ ≥ ε/3
}

(69)

where the last inequality follows from the union bound. Each term in the summation considers a
large deviation bound for a sub-exponential random variable. For the first term, from Lemma 9,
K1,1 = ‖RiRj − E[RiRj]‖ψ1 ≤ 4K2

2 . For the second term, from the assumption regarding ∆ij ,
K1,2 = ‖∆ij‖ψ1

≤ 4K2
2 . Now, we focus on the third term. Recall that the sub-Gaussian norm of

the sum of sub-Gaussian random variables satisfy the following inequality [2]:∥∥∥∥∥
n∑
k=1

Rik

∥∥∥∥∥
2

ψ2

≤ c1
n∑
k=1

‖Rik‖2ψ2
, (70)

8

for an absolute constant c1. In our context, since ‖Rik‖ψ2
≤ K2, we have∥∥∥∥∥

n∑
k=1

Rik

∥∥∥∥∥
ψ2

≤
√
c1nK2 ⇒

∥∥∥∥∥ 1

n

n∑
k=1

Rik

∥∥∥∥∥
ψ2

≤
√
c1
n
K2 ≤

√
c1K2 . (71)

From Lemma 9, we have

K1,3 =

∥∥∥∥∥
(

1

n

n∑
k=1

Rik

)(
1

n

n∑
k=1

Rjk

)∥∥∥∥∥
ψ1

≤ 4c1K
2
2 . (72)

Then, considering all three terms, using Corollary 1 for the first two terms and Theorem 4 for the
third term, we have

P
{
|Ŝij − Σ0,ij | ≥ ε

}
≤ 2 exp

{
−c0 min

(
ε2

9K2
1,1

,
ε

3K1,1

)
n

}
+ 2 exp

{
−c0 min

(
ε2

9K2
1,2

,
ε

3K1,2

)
n

}

+ 2 exp

{
−c0 min

(
ε2n2

9K2
1,3

,
εn

3K1,3

)}

≤ 4 exp

{
−c0 min

(
ε2

36K4
2

,
ε

12K2
2

)
n

}
+ 2 exp

{
−c0 min

(
ε2n

36c21K
4
2

,
ε

12c1K2
2

)
n

}
≤ 6 exp

{
−c0 min

(
ε2

36c21K
4
2

,
ε

12c1K2
2

)
n

}
.

That completes the proof.

In particular, for sufficient number of samples such that c
√

log p/n ≤ 3c1K
4
2 , we have

P
{

max
ij
|Ŝij − Σ0,ij | ≥ c

√
log p/n

}
≤ 6 exp

{
− c2c0

36c21K
4
2

log p

}
≤ 6p−c3 , (73)

where c3 is a suitable constant. Note that the above corresponds to the result discussed in the main
text.

A special case of such perturbations arise by choosing constant ∆ij for each (i, j) with |∆ij | ≤
c
√

log p
n in order to truncate or coarsen entries in the sample covariance matrix. In particular,

(i) if |Σ̂ij | ≤ c
√

log p
n , then it can be safely truncated to 0; and

(ii) numeric representation of any Σ̂ij can be coarsened to the level c
√

log p
n , e.g., one can rewrite

Σ̂ij = 1.29 317542365︸ ︷︷ ︸
≤c
√

log p
n

as Ŝij = 1.29

without affecting the statistical properties of the estimated precision matrix Ω̂. Such truncation and
coarsening can lead to significant savings in the memory foot-print of the sample covariance matrix.

References
[1] T. Cai, C.H. Zhang, and H. Zhou. A constrained `1 minimization approach to sparse precision matrix

estimation. American Statistical Association, 106:594–607, 2011.

[2] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar and G. Kutyniok,
editors, Compressed Sensing, chapter 5, pages 210–268. Cambridge University Press, 2012.

9

	clime
	supplement

