
A Prior Work on Listwise Ranking

The exchangeability assumption as defined in this paper on ranking functions seems intuitively natu-
ral, and indeed, specific ranking functions previously proposed in the literature are all exchangeable.
While pointwise ranking functions are vacuously exchangeable, we now discuss two specifically
listwise ranking functions previously proposed by [22] and [26] in light of our representation theory.
These papers do not maintain a clear distinction between the ranking function and the loss, though
their results do result in particular ranking functions.

Qin et al. [22] propose a Continuous Conditional Random Field model for “global ranking”, which
we call listwise ranking functions in this paper. They consider two ranking tasks: Pseudo Relevance
Feedback and Topic Distillation. For Pseudo Relevance Feedback, inference on their continuous
CRF boils down to the following linear-algebraic computation:

ŷ = F (x) = (αᵀeI + βD − βS)−1Xα (15)

whereX represents the feature vectors for documents collated as a matrix, S is the similarity matrix,
e is the all ones vector,D =

∑
j Si,j , α and β are learned parameters. β = 0 gives the linear ranking

case. Then, for a permutation matrix P , the transformation X → PX , S → PSP−1 implies that
F (Px) = PF (x), i.e. this function is exchangeable. For Topic Distillation, inference on their
continuous CRF corresponds to:

F (x) =
1

αᵀe
(2Xα+ β(Dr −Dc)e) (16)

where X and e are as above, Dr and Dc are derived from the link matrix indicating parent-child
relationships between documents, α, β are learned parameters. Similar to the above, this can also
be seen to be exchangeable.

Weston and Blitzer [26] propose Latent Structured Ranking for collaborative filtering, where they
use document and query features explicitly and learn latent low rank representations for the query
and document space. Letting d denote the set of all documents, {wi} the positional weights (to place
more importance towards the top of the list), and U, V, S being parameters to be learned, consider
the scoring function:

flsr(q,d) =

|d|∑
i=1

wiq
ᵀUᵀV di +

|d|∑
i,j=1

wiwj(d
ᵀ
i S

ᵀSdj) (17)

The ranking function is defined as:

Flsr(q) = argmaxd′flsr(q,d
′) (18)

Since the ranking function is found by directly optimizing a listwise loss, it is listwise. While we
don’t have an explicit analytic form for this ranking function, the symmetry of (17) implies that it is
exchangeable.

In general, any method which directly optimizes a listwise loss to perform inference on a new query,
i.e. during the test phase, will result in a listwise ranking function. Both methods above fall under
this regime. In some cases such as that of [22], this optimization problem results in a closed form
expression. The key challenge these approaches face is that of performing fast inference, since an
expensive operation such as solving an optimization problem or performing a matrix multiplication
must be done for each test query. In our framework, test time inference is performed by evaluating
the listwise ranking function. An important direction for future work is then to investigate classes of
listwise ranking functions which can be efficiently evaluated. In this paper, we have proposed such
a class in Equation 14.

B Proof of Theorem 3.7

In this section, we extend the symmetric tensor decomposition to the partially symmetric case. We
first define the notion of a partially symmetric tensor:
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Definition B.1 (Partially symmetric tensor) An order-k tensor A is said to be partially symmetric
w.r.t the first index iff for any σ ∈ Sk−1

Ai1i2...ik = Ai1i(σ(1)+1)...i(σ(k−1)+1), (19)

for any (i1, i2, . . . , ik) ∈ X k.

We now extend Proposition 3.5 to provide a decomposition for partially symmetric tensors.

Proposition B.2 (Pairwise decomposition for partially symmetric tensors) Any tensor A par-
tially symmetric in indices i2, i3, . . . , im can be decomposed in terms of order-2 tensors V j as

A =
∑
j

[V ji1,i2V
j
i1,i3

, . . . , V ji1,im ], (20)

Proof For each fixed value of i1 = a ∈ X , Proposition 3.6 implies that there is an outer product
decomposition, say Aa,... =

∑
j ⊗kva,j . Then, for each j, we can concatenate the {va,j}a into an

order-2 tensor as Vi1=a,i2 = va,i2 , and we will end up with a number of terms maxa rank(Aa,...).
Since these ranks are all finite, the final decomposition is finite.

Theorem 3.7 (decomposition for partially symmetric functions) then follows as the functional coun-
terpart of this Proposition B.2 (decomposition for partially symmetric tensors); just as Proposi-
tion 3.6 (decomposition for symmetric functions) followed as the functional counterpart of Proposi-
tion 3.5 (decomposition for symmetric tensors).

C Extension to Partially Symmetric functions for compact X

Similar to the discrete case, we can show that a decomposition theorem for multivariate symmetric
functions leads to a corresponding pairwise partially symmetric decomposition theorem:

Theorem C.1 (Product decomposition for partially symmetric functions) A partially symmetric
function h : Xm → R symmetric in x2, . . . ,xm on a bounded set X can be decomposed as

h(xi, {x\i}) =
∑
t

Πj 6=igt(xi,xj) (21)

for some set of functions {gt}∞t=1, gt : X × X → R

Proof For a fixed a and xi = a, we have from theorem 3.8, since h(xi = a, {x\i}) is a symmetric
function and h(xi = a, {x\i}) =

∑
t Πj 6=igt,a(xj). We overload notation and define gt(xi =

a,xj) = gt,a(xj) and obtain a pairwise decomposition for h.

D Proof of Theorem 3.8

Theorem D.1 (Symmetric Product decomposition for symmetric pairwise functions) A contin-
uous symmetric function f(x, y) ∈ L2(X × X ) corresponds to a compact self-adjoint operator A,
and can be decomposed as

f(x, y) =
∑
t

λtgt(x)gt(y),

for some functions gt ∈ L2(X ), λt → 0 as t→∞

Proof A continuous symmetric function f(x, y) ∈ L2(X × X ) corresponds to a Hilbert-Schmidt
linear operator: (Ag)(x) =

∫
f(x, y)g(y)dµ(y). From Theorem VI.23 in [25] on Hilbert-Schmidt

operators,A is compact. It can be easily shown thatA is symmetric; since f isL2,A is also bounded;
so that it follows that A is a bounded self-adjoint operator. Thus, the Hilbert Schmidt theorem
applies, and we obtain a spectral decomposition for A. Noting that f in turn can be expressed in
terms of the operator as f(x, y) = 〈x,A(y)〉 = 〈A(x), y〉, yields the corresponding decomposition
for f as

f(x, y) =
∑
t

λtφt(x)φt(y),

where {φn} is a complete orthonormal basis for L2(X ) and λt → 0 as t→∞
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E Discussion of the relation between the different analyses

Some remarks on the similarities and contrast between the tensor, functional analytic, and proba-
bilistic viewpoints via De-finetti’s theorem:

I. De Finetti’s theorem requires the existence of infinitely many documents for which every lead-
ing subsequence is exchangeable and simple counterexamples can be given for finite exchange-
able sequences[19]. Consequently, Diaconis and Freedman have considered Finite Exchangeable
Sequences, and show that while no De Finetti-like theorem can hold for finite exchangeable se-
quences, the total variational distance between the De-Finetti representation and the true joint
distribution is O( 1

n )[13, 12].

II. The RHS of the theorem contains an integral over products of probabilities and so, each term
on the RHS is non-negative. Jaynes[18] points out that this non-negativity is the reason why finite
versions of the theorem do not hold. Jaynes gives a proof for 4 variables showing that for finite
exchangeable sequences, a decomposition always exists if negative terms are permitted. This proof
is essentially a restricted version of that of section 3.1 using tensor decomposition. 2 Jaynes also
points out a relationship between our problem and the N-representability problem which arises in
physics, which we will investigate in future work.

III. Even in the discrete case, De Finetti’s theorem leads to an integral, while the tensor analysis
leads us to a finite sum whose size is given by the rank of the matrix. Similarly, in the functional an-
alytic literature, the spectrum for bounded operators is discrete while that for unbounded operators
has an integral form.

IV. The measure µ in this theorem is independent of the n considered, i.e. unlike the previous
theorems which would apply to particular choices of n, this version relates decompositions across
different n’s.

F NDCG consistent loss functions

[24] exhaustively characterized the set of strongly NDCG consistent surrogates. First recall the
definition of a Bregman divergence Dψ corresponding to a strictly convex ψ as:

Dψ(p, q) = ψ(p)− ψ(q)− 〈∇ψ(p), p− q〉. (22)

A function h : Rm → Rm is called order preserving if xi � xj ⇒ h(xi) � h(xj). [24] then showed
that the set of strongly NDCG-consistent convex surrogates can be completely characterized as:

φ(s, r) = Dψ

(
G(r)

‖G(r)‖D
, (∇ψ)−1(s)

)
, (23)

for some strictly convex ψ with ∇ψ order preserving, and where G(t) = log(1 + t) and ‖r‖D =

maxπ∈Sm
∑m
j=1

|ri|
F (π(k)) . r, s are the score vectors associated with the true and predicted rankings

respectively. r is a vector of relevance labels for documents in a list, and s are the predicted scores
from the ranking function, which can be sorted to yield the predicted ranking.

Given a set of ranking functions F = {f : Xm → Rm}, this surrogate loss can be used to find the
optimal ranking function over D as:

f∗ = arg minf∈FED[φ(s, f(x))] (24)

G Experimental Details

Tables 2 through 8 tabulate our results on various datasets. We found that the choice of loss function
does not change the results significantly, so results for each base ranker with only one loss function
are shown. With the default parameter settings for RankLib, some methods such as LambdaMART
and the ListNet base ranker overfit heavily and are excluded from these results.

2Jaynes[18] also discusses an extension to the compact X case, “A more powerful and abstract approach,
which does not require us to go into all that detail, was discovered by Dr. Eric Mjolsness while he was a student
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Table 2: Results on OHSUMED
Base Reranked w/ Base Reranked w/ Base Reranked w/

RankBoost Cross Ent MART Cross Ent ListNet Cosine Loss
ndcg@1 0.5104 0.5421 0.4760 0.4760 0.4434 0.4339
ndcg@2 0.4798 0.4901 0.4065 0.4176 0.4641 0.4729
ndcg@5 0.4547 0.4615 0.3842 0.3939 0.4327 0.4331
ndcg@10 0.4356 0.4445 0.3677 0.3671 0.4223 0.4237

Table 3: Results on HP2003
Base Ranker Reranked with

MART NDCG Cross Ent
ndcg@1 0.6667 0.7333
ndcg@2 0.7667 0.7667
ndcg@5 0.7546 0.7618
ndcg@10 0.7740 0.7747

Table 4: Results on HP2004
Base Ranker Reranked with Base Ranker Reranked with
RankBoost NDCG q-Norm Random Forests NDCG q-Norm

ndcg@1 0.5200 0.5333 0.5467 0.5467
ndcg@2 0.6067 0.6533 0.6400 0.6533
ndcg@5 0.7034 0.7042 0.6795 0.6938
ndcg@10 0.7387 0.7420 0.7157 0.7136

Table 5: Results on TD2003
Base Ranker Reranked with Base Ranker Reranked with

Coordinate Ascent NDCG q-Norm Linear regression ListNet Loss
ndcg@1 0.3500 0.3250 0.3200 0.3600
ndcg@2 0.2875 0.3375 0.3000 0.3100
ndcg@5 0.3228 0.3461 0.2916 0.2957
ndcg@10 0.3210 0.3385 0.3193 0.3141

Table 6: Results on TD2004
Base Ranker Reranked with Base Ranker Reranked with

Linear regression ListNet Loss Random Forests NDCG Square
ndcg@1 0.2000 0.2000 0.5600 0.5600
ndcg@2 0.2667 0.3000 0.4667 0.4867
ndcg@5 0.2736 0.2979 0.3903 0.3939
ndcg@10 0.2545 0.2616 0.3531 0.3546

Table 7: Results on NP2003
Base Ranker Reranked with Base Ranker Reranked with

MART NDCG Square Random Forests ListNet Loss
ndcg@1 0.5467 0.5600 0.6000 0.6000
ndcg@2 0.6500 0.6567 0.7167 0.7233
ndcg@5 0.7112 0.7128 0.7673 0.7697
ndcg@10 0.7326 0.7344 0.8017 0.8016

Table 8: Results on NP2004
Base Ranker Reranked with Base Ranker Reranked with

MART NDCG Square Linear regression ListNet Loss
ndcg@1 0.3600 0.3733 0.3000 0.3167
ndcg@2 0.4733 0.4867 0.4583 0.4583
ndcg@5 0.5603 0.5719 0.5857 0.5878
ndcg@10 0.5951 0.6102 0.6390 0.6468
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H Directions for Future Work

We hope that this representation theory will enable the development of listwise ranking functions
across diverse domains, especially those less studied than ranking in information retrieval.

The analysis via De Finetti’s theorem provides a Bayesian perspective to this problem, where a
ranking function specifies a distribution over the objects. In future work, these probabilistic connec-
tions could be used to devise novel exchangeable listwise ranking functions. We would also like to
develop a representation theory for permutation-valued functions which take several ranked lists as
input, corresponding to the rank-aggregation problem. This more accurately models the learning to
rank setting in information retrieval where document features in typical datasets are themselves the
outputs of ranking functions.

While our assumption of exchangeability for ranking functions was very natural, we note that there
might be also cases of interest when ranking functions might not be exchangeable. For instance,
when the objects have a particular sequential (e.g. temporal) or spatial organization (e.g. via a
graph). In such cases, we might need to first embed the set of objects into a vector space before
considering the assumption of exchangeability; we plan to investigate these and other principled
approaches to such problems in future work.

of the author. We hope that, with its publication, the useful results of this representation will become more
readily obtainable”. To the best of our knowledge, this work was not published.
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