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Abstract

Undirected graphical models, such as Gaussian graphical models, Ising, and
multinomial/categorical graphical models, are widely used in a variety of applica-
tions for modeling distributions over a large number of variables. These standard
instances, however, are ill-suited to modeling count data, which are increasingly
ubiquitous in big-data settings such as genomic sequencing data, user-ratings data,
spatial incidence data, climate studies, and site visits. Existing classes of Poisson
graphical models, which arise as the joint distributions that correspond to Pois-
son distributed node-conditional distributions, have a major drawback: they can
only model negative conditional dependencies for reasons of normalizability given
its infinite domain. In this paper, our objective is to modify the Poisson graphi-
cal model distribution so that it can capture a rich dependence structure between
count-valued variables. We begin by discussing two strategies for truncating the
Poisson distribution and show that only one of these leads to a valid joint distribu-
tion. While this model can accommodate a wider range of conditional dependen-
cies, some limitations still remain. To address this, we investigate two additional
novel variants of the Poisson distribution and their corresponding joint graphical
model distributions. Our three novel approaches provide classes of Poisson-like
graphical models that can capture both positive and negative conditional depen-
dencies between count-valued variables. One can learn the graph structure of
our models via penalized neighborhood selection, and we demonstrate the perfor-
mance of our methods by learning simulated networks as well as a network from
microRNA-sequencing data.

1 Introduction

Undirected graphical models, or Markov random fields (MRFs), are a popular class of statistical
models for representing distributions over a large number of variables. These models have found
wide applicability in many areas including genomics, neuroimaging, statistical physics, and spatial
statistics. Popular instances of this class of models include Gaussian graphical models [1, 2, 3, 4],
used for modeling continuous real-valued data, the Ising model [3, 5], used for modeling binary
data, as well as multinomial graphical models [6] where each variable takes values in a small finite
set. There has also been recent interest in non-parametric extensions of these models [7, 8, 9, 10].
None of these models however are best suited to model count data, where the variables take values
in the set of all positive integers. Examples of such count data are increasingly ubiquitous in big-data
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settings, including high-throughput genomic sequencing data, spatial incidence data, climate studies,
user-ratings data, term-document counts, site visits, and crime and disease incidence reports.

In the univariate case, a popular choice for modeling count data is the Poisson distribution. Could
we then model complex multivariate count data using some multivariate extension of the Poisson
distribution? A line of work [11] has focused on log-linear models for count data in the context of
contingency tables, however the number of parameters in these models grow exponentially with the
number of variables and hence, these are not appropriate for high-dimensional regimes with large
numbers of variables. Yet other approaches are based on indirect copula transforms [12], as well as
multivariate Poisson distributions that do not have a closed, tractable form, and relying on limiting
results [13]. Another important approach defines a multivariate Poisson distribution by modeling
node variables as sums of independent Poisson variables [14, 15]. Since the sum of independent
Poisson variables is Poisson as well, this construction yields Poisson marginal distributions. The
resulting joint distribution, however, becomes intractable to characterize with even a few variables
and moreover, can only model positive correlations, with further restrictions on the magnitude of
these correlations. Other avenues for modeling multivariate count-data include hierarchical models
commonly used in spatial statistics [16].

In a qualitatively different line of work, Besag [17] discusses a tractable and natural multivariate
extension of the univariate Poisson distribution; while this work focused on the pairwise model
case, Yang et al. [18, 19] extended this to the general graphical model setting. Their construction
of a Poisson graphical model (PGM) is simple. Suppose all node-conditional distributions, the
conditional distribution of a node conditioned on the rest of the nodes, are univariate Poisson. Then,
there is a unique joint distribution consistent with these node-conditional distributions, and moreover
this joint distribution is a graphical model distribution that factors according to a graph specified
by the node-conditional distributions. While this graphical model seems like a good candidate to
model multivariate count data, there is one major defect. For the density to be normalizable, the edge
weights specifying the Poisson graphical model distribution have to be non-positive. This restriction
implies that a Poisson graphical model distribution only models negative dependencies, or so called
“competitive” relationships among variables. Thus, such a Poisson graphical model would have
limited practical applicability in modeling more general multivariate count data [20, 21], with both
positive and negative dependencies among the variables.

To address this major drawback of non-positive conditional dependencies of the Poisson MRF,
Kaiser and Cressie [20], Griffith [21] have suggested the use of the Winsorized Poisson distribu-
tion. This is the univariate distribution obtained by truncating the integer-valued Poisson random
variable at a finite constantR. Specifically, they propose the use of this Winsorized Poisson as node-
conditional distributions, and assert that there exists a consistent joint distribution by following the
construction of [17]. Interestingly, we will show that their result is incorrect and this approach can
never lead to a consistent joint distribution in the vein of [17, 18, 19]. Thus, there currently does not
exist a graphical model distribution for high-dimensional multivariate count data that does not suffer
from severe deficiencies. In this paper, our objective is to specify a joint graphical model distribution
over the set of non-negative integers that can capture rich dependence structures between variables.

The major contributions of our paper are summarized as follows: We first consider truncated Poisson
distributions and (1) show that the approach of [20] is NOT conducive to specifying a joint graphical
model distribution; instead, (2) we propose a novel truncation approach that yields a proper MRF
distribution, the Truncated PGM (TPGM). This model however, still has certain limitations on the
types of variables and dependencies that may be modeled, and we thus consider more fundamental
modifications to the univariate Poisson density’s base measure and sufficient statistics. (3) We will
show that in order to have both positive and negative conditional dependencies, the requirements
of normalizability are that the base measure of the Poisson density needs to scale quadratically for
linear sufficient statistics. This leads to (4) a novel Quadratic PGM (QPGM) with linear sufficient
statistics and its logical extension, (5) the Sublinear PGM (SPGM) with sub-linear sufficient statis-
tics that permit sub-quadratic base measures. Our three novel approaches for the first time specify
classes of joint graphical models for count data that permit rich dependence structures between vari-
ables. While the focus of this paper is model specification, we also illustrate how our models can be
used to learn the network structure from iid samples of high-dimensional multivariate count data via
neighborhood selection. We conclude our work by demonstrating our models on simulated networks
and by learning a breast cancer microRNA expression network form count-valued next generation
sequencing data.
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2 Poisson Graphical Models & Truncation

Poisson graphical models were introduced by [17] for the pairwise case, where they termed
these “Poisson auto-models”; [18, 19] provide a generalization to these models. Let X =
(X1, X2, . . . , Xp) be a p-dimensional random vector where the domain X of each Xs is
{0, 1, 2, . . .}; and let G = (V,E) be an undirected graph over p nodes corresponding to the p
variables. The pairwise Poisson graphical model (PGM) distribution over X is then defined as

P (X) = exp

{∑
s∈V

(θsXs − log(Xs!)) +
∑

(s,t)∈E

θstXsXt −A(θ)

}
. (1)

It can be seen that the node-conditional distributions for the above distribution are given by
P (Xs|XV \s) = exp{ηsXs − log(Xs!)− exp(ηs)}, which is a univariate Poisson distribution with
parameter λ = exp(ηs) = exp(θs +

∑
t∈N (s) θstXt), and whereN (s) is the neighborhood of node

s according to graph G.

As we have noted, there is a major drawback with this Poisson graphical model distribution. Note
that the domain of parameters θ of the distribution in (1) are specified by the normalizability condi-
tionA(θ) < +∞, whereA(θ) := log

∑
Xp exp

{∑
s∈V (θsXs−log(Xs!))+

∑
(s,t)∈E θstXsXt

}
.

Proposition 1 (See [17]). Consider the Poisson graphical model distribution in (1). Then, for any
parameter θ, A(θ) < +∞ only if the pairwise parameters are non-positive: θst ≤ 0 for (s, t) ∈ E .

The above proposition asserts that the Poisson graphical model in (1) only allows negative edge-
weights, and consequently can only capture negative conditional relationships between variables.
Thus, even though the Poisson graphical model is a natural extension of the univariate Poisson
distribution, it entails a highly restrictive parameter space with severely limited applicability. The
objective of this paper, then, is to arrive at a graphical model for count data that would allow relaxing
these restrictive assumptions, and model both positively and negatively correlated variables.

2.1 Truncation, Winsorization, and the Poisson Distribution

The need for finiteness ofA(θ) imposes a negativity constraint on θ because of the countably infinite
domain of the random variables. A natural approach to address this would then be to truncate the
domain of the Poisson random variables. In this section, we will investigate the two natural ways in
which to do so and discuss their possible graphical model distributions.

2.1.1 A Natural Truncation Approach

Kaiser and Cressie [20] first introduced an approach to truncate the Poisson distribution in the con-
text of graphical models. Suppose Z ′ is Poisson with parameter λ. Then, one can define what they
termed a Winsorized Poisson random variable Z as follows: Z = I(Z ′ < R)Z ′ + I(Z ′ ≥ R)R,
where I(A) is an indicator function, and R is a fixed positive constant denoting the truncation
level. The probability mass function of this truncated Poisson variable, P (Z;λ,R), can then
be written as I(Z < R)

(
λZ

Z! exp(−λ)
)

+ I(Z = R)
(

1 −
∑R−1
i=0

λi

i! exp(−λ)
)

. Now consider
the use of this Winsorized Poisson distribution for node-conditional distributions, P (Xs|XV \s):

I(Xs < R)
(
λXs
s

Xs!
exp(−λs)

)
+ I(Xs = R)

(
1−

∑R−1
k=0

λk
s

k! exp(−λs)
)

, where λs = exp(ηs) =

exp
(
θs +

∑
t∈N (s) θstXt

)
. By the Taylor series expansion of the exponential function, this distri-

bution can be expressed in a form reminiscent of the exponential family,

P (Xs|XV \s) = exp
{
ηsXs − log(Xs!) + I(Xs = R)Ψ(ηs)− exp(ηs)

}
, (2)

where Ψ(ηs) is defined as log
{

R!
exp(Rηs)

∑∞
k=R

exp(kηs)
k!

}
.

We now have the machinery to describe the development in [20] of a Winsorized Poisson graphical
model. Specifically, Kaiser and Cressie [20] assert in a Proposition of their paper that there is a valid
joint distribution consistent with these Winsorized Poisson node-conditional distributions above.
However, in the following theorem, we prove that such a joint distribution can never exist.
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Theorem 1. Suppose X = (X1, . . . , Xp) is a p-dimensional random vector with domain
{0, 1, ..., R}p where R > 3. Then there is no joint distribution over X such that the corresponding
node-conditional distributions P (Xs|XV \s), of a node conditioned on the rest of the nodes, have
the form specified as P (Xs|XV \s) ∝ exp

{
E(XV \s)Xs − log(Xs!) + I(Xs = R)Ψ

(
E(XV \s)

)}
,

where E(XV \s), the canonical exponential family parameter, can be an arbitrary function.

Theorem 1 thus shows that we cannot just substitute the Winsorized Poisson distribution in the
construction of [17, 18, 19] to obtain a Winsorized variant of Poisson graphical models.

2.1.2 A New Approach to Truncation

It is instructive to study the probability mass function of the univariate Winsorized Poisson distribu-
tion in (2). The “remnant” probability mass of the Poisson distribution for the cases where X > R,
was all moved to X = R. In the process, it is no longer an exponential family, a property that is
crucial for compatibility with the construction in [17, 18, 19]. Could we then derive a truncated
Poisson distribution that still belongs to the exponential family? It can be seen that the follow-
ing distribution over a truncated Poisson variable Z ∈ X = {0, 1, . . . , R} fits the bill perfectly:
P (Z) = exp{θZ−log(Z!)}∑

k∈X exp{θk−log(k!)} . The random variable Z here is another natural truncated Poisson
variant, where the “remnant” probability mass for the cases where X > R was distributed to all the
remaining events X ≤ R. It can be seen that this distribution also belongs to the exponential family.
A natural strategy would then be to use this distribution as the node-conditional distributions in the
construction of [17, 18]:

P (Xs|XV \s) =
exp

{(
θs +

∑
t∈N (s) θstXt

)
Xs − log(Xs!)

}
∑
k∈X exp

{(
θs +

∑
t∈N (s) θstXt

)
k − log(k!)

} . (3)

Theorem 2. Suppose X = (X1, X2, . . . , Xp) be a p-dimensional random vector, where each vari-
able Xs for s ∈ V takes values in the truncated positive integer set, {0, 1, ..., R}, where R is a fixed
positive constant. Suppose its node-conditional distributions are specified as in (3), where the node-
neighborhoods are as specified by a graph G. Then, there exists a unique joint distribution that is
consistent with these node-conditional distributions, and moreover this distribution belongs to the
graphical model represented by G, with the form: P (X) := exp

{∑
s∈V (θsXs − log(Xs!)) +∑

(s,t)∈E θstXsXt −A(θ)
}

, where A(θ) is the normalization constant.

We call this distribution the Truncated Poisson graphical model (TPGM) distribution. Note that it is
distinct from the original Poisson distribution (1); in particular its normalization constant involves
a summation over finitely many terms. Thus, no restrictions are imposed on the parameters for the
normalizability of the distribution. Unlike the original Poisson graphical model, the TPGM can
model both positive and negative dependencies among its variables.

There are, however, some drawbacks to this graphical model distribution. First, the domain of the
variables is bounded a priori by the distribution specification, so that it is not broadly applicable
to arbitrary, and possibly infinite, count-valued data. Second, problems arise when the random
variables take on large count values close to R. In particular by examining (3), one can see that
when Xt is large, the mass over Xs values get pushed towards R; thus, this truncated version is not
always close to that of the original Poisson density. Therefore, as the truncation value R increases,
the possible values that the parameters θ can take become increasingly negative or close to zero to
prevent all random variables from always taking large count values at the same time. This can be
seen as if we take R → ∞, we arrive at the original PGM and negativity constraints. In summary,
the TPGM approach offers some trade-offs between the value of R, it more closely follows the
Poisson density when R is large, and the types of dependencies permitted.

3 A New Class of Poisson Variants and Their Graphical Model Distributions

As discussed in the previous section, taking a Poisson random variable and truncating it may be a
natural approach but does not lead to a valid multivariate graphical model extension, or does so with
some caveats. Accordingly in this section, we investigate the possibility of modifying the Poisson
distribution more fundamentally, by modifying its sufficient statistic and base measure.
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Let us first briefly review the derivation of a Poisson graphical model as the graphical model exten-
sion of a univariate exponential family distribution from [17, 18, 19]. Consider a general univariate
exponential family distribution, for a random variable Z: P (Z) = exp(θB(Z) − C(Z) − D(θ)),
where B(Z) is the exponential family sufficient statistic, θ ∈ R is the parameter, C(Z) is the base
measure, and D(θ) is the log-partition function. Suppose the node-conditional distributions are all
specified by the above exponential family,

P (Xs|XV \s) = exp{E(XV \s)B(Xs) + C(Xs)− D̄(XV \s)}, (4)

where the canonical parameter of exponential family is some function E(·) on the rest of the vari-
ables XV \s (and hence so is the log-normalization constant D̄(·)). Further, suppose the correspond-
ing joint distribution factors according to the graph G, with the factors over cliques of size at most
k. Then, Proposition 2 in [18], shows that there exists a unique joint distribution corresponding to
the node-conditional distributions in (4). With clique factors of size k at most two, this joint distri-
bution takes the following form: P (X) = exp

{∑
s∈V θsB(Xs) +

∑
(s,t)∈E θstB(Xs)B(Xt) −∑

s∈V C(Xs) − A(θ)
}

. Note that although the log partition function A(θ) is usually computa-
tionally intractable, the log-partition function D̄(·) of its node-conditional distribution (4) is still
tractable, which allows consistent graph structure recovery [18]. Also note that the original Pois-
son graphical model (1) discussed in Section 2 can be derived from this construction with sufficient
statistics B(X) = X , and base measure C(X) = log(X!).

3.1 A Quadratic Poisson Graphical Model

As noted in Proposition 1, the normalizability of this Poisson graphical model distribution, however,
requires that the pairwise parameters be negative. A closer look at the proof of Proposition 1 shows
that a key driver of the result is that the base measure terms

∑
s∈V C(Xs) =

∑
s∈V log(Xs!)

scale more slowly than the quadratic pairwise terms XsXt. Accordingly, we consider the following
general distribution over count-valued variables:

P (Z) = exp(θZ − C(Z)−D(θ)), (5)

which has the same sufficient statistics as the Poisson, but a more general base measure C(Z),
for some function C(·). The following theorem shows that for normalizability of the resulting
graphical model distribution with possibly positive edge-parameters, the base measure cannot be
sub-quadratic:
Theorem 3. Suppose X = (X1, . . . , Xp) is a count-valued random vector, with joint distribution
given by the graphical model extension of the univariate distribution in (5) which follows the con-
struction of [17, 18, 19]). Then, if the distribution is normalizable so that A(θ) < ∞ for θ 6≤ 0, it
necessarily holds that C(Z) = Ω(Z2).

The previous theorem thus suggests using the “Gaussian-esque” quadratic base measure C(Z) =
Z2, so that we would obtain the following distribution over count-valued vectors, P (X) =
exp

{∑
s∈V θsXs +

∑
(s,t)∈E θstXsXt − c

∑
s∈V X

2
s − A(θ)

}
. for some fixed positive constant

c > 0. We consider the following generalization of the above distribution:

P (X) = exp

{∑
s∈V

θsXs +
∑

(s,t)∈E

θstXsXt +
∑
s∈V

θssX
2
s −A(θ)

}
. (6)

We call this distribution the Quadratic Poisson Graphical Model (QPGM). The following proposition
shows that the QPGM is normalizable while permitting both positive and negative edge-parameters.
Proposition 2. Consider the distribution in (6). Suppose we collate the quadratic term parameters
into a p× p matrix Θ. Then the distribution is normalizable provided the following condition holds:
There exists a positive constant cθ, such that for all X ∈Wp, XTΘX ≤ −cθ‖X‖22.

The condition in the proposition would be satisfied provided that the pairwise parameters are point-
wise negative: Θ < 0, similar to the original Poisson graphical model. Alternatively, it is also
sufficient for the pairwise parameter matrix to be negative-definite: Θ ≺ 0, which does allow for
positive and negative dependencies, as in the Gaussian distribution.

A possible drawback with this distribution is that due to the quadratic base measure, the QPGM
has a Gaussian-esque thin tail. Even though the domains of Gaussian and QPGM are distinct,
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their densities have similar behaviors and shapes as long as θs +
∑
t∈N(s) θstXt ≥ 0. Indeed,

the Gaussian log-partition function serves as a variational upper bound for the QPGM. Specifically,
under the restriction that θss < 0, we arrive at the following upper bound:

D(θ;XV \s) = log
∑

Xs∈W

exp
{
ηsXs + θssX

2
s

}
≤ log

∫
Xs∈R

exp
{
ηsXs + θssX

2
s

}
dXs

= DGauss(θ;X\s) = 1/2 log 2π − 1/2 log(−2θss)−
1

4θss
(θs +

∑
t∈N(s)

θstXt)
2,

by relating to the log-partition function of a node-conditional Gaussian distribution. Thus, node-
wise regressions according to the QPGM via the above variational upper bound on the partition
function would behave similarly to that of a Gaussian graphical model.

3.2 A Sub-Linear Poisson Graphical Model

From the previous section, we have learned that so long as we have linear sufficient statistics,
B(X) = X , we must have a base measure that scales at least quadratically, C(Z) = Ω(Z2),
for a Poisson-based graphical model (i) to permit both positive and negative conditional depen-
dencies and (ii) to ensure normalizability. Such a quadratic base measure however results in a
Gaussian-esque thin tail, while we would like to specify a distribution with possibly heavier tails
than those of QPGM. It thus follows that we would need to control the linear Poisson sufficient
statistics B(X) = X itself. Accordingly, we consider the following univariate distribution over
count-valued variables:

P (Z) = exp(θB(Z;R0, R)− logZ!−D(θ,R0, R)), (7)

which has the same base measure C(Z) = logZ! as the Poisson, but with the following sub-linear
sufficient statistics:

B(x;R0, R) =


x if x ≤ R0

− 1
2(R−R0)

x2 + R
R−R0

x− R2
0

2(R−R0)
if R0 < x ≤ R

R+R0

2 if x ≥ R
We depict this sublinear statistic in Figure 3 in the appendix; Up to R0, B(x) increases linearly,
however, after R0 its slope decreases linearly and becomes zero at R.

The following theorem shows the normalizability of the SPGM:
Theorem 4. Suppose X = (X1, . . . , Xp) is a count-valued random vector, with joint distribution
given by the graphical model extension of the univariate distribution in (7) (following the construc-
tion [17, 18, 19]):

P (X) = exp

{∑
s∈V

θsB(Xs;R0, R) +
∑

(s,t)∈E

θstB(Xs;R0, R)B(Xt;R0, R)−
∑
s∈V

log(Xs!)−A(θ,R0, R)

}
.

This distribution is normalizable, so thatA(θ) <∞ for all pairwise parameters θst ∈ R; (s, t) ∈ E.

On comparing with the QPGM, the SPGM has two distinct advantages: (1) it has a heavier tails
with milder base measures as seen in its motivation, and (2) allows a broader set of feasible pairwise
parameters (actually for all real values) as shown in Theorem 4.

The log-partition function D(θ,R0, R) of node-conditional SPGM involves the summation over in-
finite terms, and hence usually does not have a closed-form. The log-partition function of traditional
univariate Poisson distribution, however, can serve as a variational upper bound:
Proposition 3. Consider the node-wise conditional distributions in (7). If θ ≥ 0, we obtain the
following upper bound:

D(θ,R0, R) ≤ DPois(θ) = exp(θ).

4 Numerical Experiments

While the focus of this paper is model specification, we can learn our models from iid samples of
count-valued multivariate vectors using neighborhood selection approaches as suggested in [1, 5,
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Figure 1: ROC curves for recovering the true network structure of count-data generated by the
TPGM distribution or by [15] (sums of independent Poissons method) for both standard and high-
dimensional regimes. Our TPGM and SPGM M -estimators are compared to the graphical lasso [4],
the non-paranormal copula-based method [7] and the non-paranormal SKEPTIC estimator [10].

6, 18]. Specifically, we maximize the `1 penalized node-conditional likelihoods for our TPGM,
QPGM and SPGM models using proximal gradient ascent. Also, as our models are constructed in
the framework of [18, 19], we expect extensions of their sparsistency analysis to confirm that the
network structure of our model can indeed be learned from iid data; due to space limitations, this is
left for future work.

Simulation Studies. We evaluate the comparative performance of our TPGM and SPGM methods
for recovering the true network from multivariate count data. Data of dimension n = 200 samples
and p = 50 variables or the high-dimensional regime of n = 50 samples and p = 100 variables
is generated via the TPGM distribution using Gibbs sampling or via the sums of independent Pois-
sons method of [15]. For the former, edges were generated with both positive and negative weights,
while for the latter, only edges with positive weights can be generated. As we expect the SPGM to be
sparsistent for data generated from the SGPM distribution following the work of [18, 19], we have
chosen to present results for data generated from other models. Two network structures are con-
sidered that are commonly used throughout genomics: the hub and scale-free graph structures. We
compare the performance of our TPGM and SPGM methods withR set to the maximum count value
to Gaussian graphical models [4], the non-paranormal [7], and the non-paranormal SKEPTIC [10].

In Figure 1, ROC curves computed by varying the regularization parameter, and averaged over 50
replicates are presented for each scenario. Both TPGM and SPGM have superior performance for
count-valued data than Gaussian based methods. As expected, the TPGM method has the best results
when data is generated according to its distribution. Additionally, TPGM shows some advantages in
high-dimensional settings. This likely results from a facet of its node-conditional distribution which
places larger mass on strongly dependent count values that are close to R. Thus, the TPGM method
may be better able to infer edges from highly connected networks, such as those considered. Addi-
tionally, all methods compared outperform the original Poisson graphical model estimator, given in
[18] (results not shown), as this method can only recover edges with negative weights.

Case Study: Breast Cancer microRNA Networks. We demonstrate the advantages of our graph-
ical models for count-valued data by learning a microRNA (miRNA) expression network from next
generation sequencing data. This data consists of counts of sequencing reads mapped back to a
reference genome and are replacing microarrays, for which GGMs are a popular tool, as the pre-
ferred measures of gene expression [22]. Level III data was obtained from the Cancer Genome
Atlas (TCGA) [23] and processed according to techniques described in [24]; this data consists of
n = 544 subjects and p = 262 miRNAs. Note that [18, 24] used this same data set to demonstrate
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Figure 2: Breast cancer miRNA networks. Network inferred by (top left) TPGM with R = 11 and
by (top right) SPGM with R = 11 and R0 = 5. The bottom row presents adjacency matrices of
inferred networks with that of SPGM occupying the lower triangular portion and that of (left) PGM,
(middle) TPGM with R = 11, and graphical lasso (right) occupying the upper triangular portion.

network approaches for count-data, and thus, we use the same data set so that the results of our novel
methods may be compared to those of existing approaches.

Networks were learned from this data using the original Poisson graphical model, Gaussian graph-
ical models, our novel TPGM approach with R = 11, the maximum count, and our novel SPGM
approach with R = 11 and R0 = 5. Stability selection [25] was used to estimate the sparsity of the
networks in a data-driven manner. Figure 2 depicts the inferred networks for our TPGM and SPGM
methods as well as comparative adjacency matrices to illustrate the differences between our SPGM
method and other approaches. Notice that SPGM and TPGM find similar network structures, but
TPGM seems to find more hub miRNAs. This is consistent with the behavior of the TPGM distribu-
tion when strongly correlated counts have values close to R. The original Poisson graphical model,
on the other hand, misses much of the structure learned by the other methods and instead only
finds 14 miRNAs that have major conditionally negative relationships. As most miRNAs work in
groups to regulate gene expression, this result is expected and illustrates a fundamental flaw of the
PGM approach. Compared with Gaussian graphical models, our novel methods for count-valued
data find many more edges and biologically important hub miRNAs. Two of these, mir-375 and
mir-10b, found by both TPGM and SPGM but not by GGM, are known to be key players in breast
cancer [26, 27]. Additionally, our TPGM and SPGM methods find a major clique which consists
of miRNAs on chromosome 19, indicating that this miRNA cluster may by functionally associated
with breast cancer.
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Appendix

A Discussion

Our work for the first time has provided a graphical model distribution for high-dimensional count-
valued data that permits general dependencies between variables. We have shown that the PGM
of [17] can only capture negative conditional dependencies and the Winsorization of [20] can never
lead to a proper joint graphical model distribution. Our novel TPGM uses an alternative approach
to truncation permits a proper joint density, but with several drawbacks. To address these, we have
investigated alterations to the base measure and sufficient statistics of the univariate Poisson dis-
tribution, leading to our novel QPGM and SPGM approaches. The latter uses sub-linear sufficient
statistics to mitigate the effect of large counts, thus permitting both positive and negative conditional
dependencies. This paper presents a thorough investigation of Poisson Graphical Model specifica-
tion, from which we can conclude that it is indeed possible to specify a widely applicable graphical
model for high-dimensional count data.

There are many future items for further research related to our work. We have briefly described a
possible approach to sparse graph estimation according to our model by penalized neighborhood se-
lection. Specific algorithms for fitting our models, including possible variational approaches will be
investigated in future work. In particular, it may be of interest to consider the Local PGM proposed
in [24] as a special case of the TPGM, QPGM, and SPGM, specifically providing an upper bound
for the log-partition function of the latter. Such approaches and the statistical recovery properties of
these methods, including consistent graph recovery, are avenues for future research.

B Proofs

B.1 Proof of Proposition 1

Suppose θst > 0 for any (s, t) ∈ E. Then, recalling Stirling’s formula: ln(n!) = n ln(n) − n +
O(lnn), it can be seen that

θstxsxt + θsxs + θtxt − lnxs!− lnxt!

= θstxsxt + θsxs + θtxt − xs lnxs − xt lnxt + xs + ys +O(lnxs + lnxt)

→∞, as xs, xt →∞,

which would result in the distribution in (1) not being normalizable; so that it follows that θst ≤ 0.
The statement of the proposition follows.

B.2 Proof of Theorem 1

We will prove by contradiction.

Following the notations in [17, 18, 19], we denote Q(X) as

Q(X) = log(P (X)/P (0)),

R0 R
X

B
(X

)

 

 

B(X)

X

Figure 3: Sublinear sufficient statistics, B(X;R0, R)
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for any X = (X1, ..., Xp) ∈ {0, 1, ..., R}p. In this proof, we are going to focus only on the pairwise
MRF, however note that even with the higher order dependencies, the statement holds since the
pairwise terms satisfying the condition of the theorem do not exist:

Q(X) =
∑
s∈V

XsGs(Xs) +
∑

(s,t)∈E

XsXtGst(Xs, Xt). (8)

In order to specify the joint distribution, we need to compute the function Gs and Gst in (8).

It is useful to consider the relationship between the function Q(X), and the conditional distribution
P (Xs|XN(s)):

exp(Q(X)−Q(X̄s)) = P (X)/P (X̄s) (9)
= P (Xs|XN(s))/P (0|XN(s)),

where X̄s := (X1, . . . , Xs−1, 0, Xs+1, . . . , Xp). We then obtain

XsGs(Xs) +Xs

∑
t∈N(s)

XtGst(Xs, Xt) = − log(Xs!)+

E(XV \s)Xs + I(Xs = R)Ψ
(
E(XV \s)

)
(10)

We can obtain the first order function XsGs(Xs) by setting Xt = 0 for all t 6= s in (10):

XsGs(Xs) = E(0)Xs + I(Xs = R)Ψ
(
E(0)

)
− log(Xs!). (11)

Suppose nodes s and t are neighbors, i.e. θst 6= 0. Setting Xr = 0 for all r 6∈ {s, t}, we obtain

XsGs(Xs) +XsXtGst(Xs, Xt) (12)

= E(0, . . . , Xt, . . . , 0)Xs + I(Xs = R)Ψ
(
E(0, . . . , Xt, . . . , 0)

)
− log(Xs!).

Combining (11) and (12) yields

XsXtGst(Xs, Xt) ={
E(0, . . . , Xt, . . . , 0)− E(0)

}
Xs + I(Xs = R)

{
Ψ
(
E(0, . . . , Xt, . . . , 0)

)
−Ψ

(
E(0)

)}
. (13)

Similarly, considering the difference of Q values of X and X̄t in (9), we obtain

XsXtGst(Xs, Xt) ={
E(0, . . . , Xs, . . . , 0)− E(0)

}
Xt + I(Xt = R)

{
Ψ
(
E(0, . . . , Xs, . . . , 0)

)
−Ψ

(
E(0)

)}
. (14)

Note that (13) and (14) should be the same for all possible pairs of Xs and Xt. We first consider the
case whereXs, Xt ∈ {1, . . . , R−1}. Then, the indicator functions will fail to satisfy the arguments
and disappear. In this case, as shown in [18, 19], we can simply deduce

E(0, . . . , Xs, . . . , 0)− E(0) = βstXs if Xs ∈ {1, . . . , R− 1} (15)

where βst is some constant.

Now, we fix Xt = R and again Xs ∈ {1, R − 1}. Then, we can combine (13) and (14) with one
indicator function out of two:{

E(0, . . . , Xt = R, . . . , 0)− E(0)
}
Xs ={

E(0, . . . , Xs, . . . , 0)− E(0)
}
R+ Ψ

(
E(0, . . . , Xs, . . . , 0)

)
−Ψ

(
E(0)

)
.

Since we are assuming Xs ∈ {1, . . . , R− 1}, by (15), some elementary algebra yields that

c1Xs = Ψ(c2Xs) + c3.

where c1, c2 and c3 are all fixed constants with respect to Xs.

Since the slope of function Ψ(c2Xs) is strictly increasing (i.e. Ψ′′(c2Xs) > 0) by definition,
Ψ(c2Xs) cannot be same as a constant factor of Xs at more than 2 values in {1, . . . , R− 1}.

11



B.3 Proof of Theorem 4

If θxy ≤ 0, it can be trivially shown that the probability mass function is normalizable by similar
reasoning as in Proposition 1. Given parameters θxy > 0, θx and θy , consider some positive integer
a that is large enough to satisfy θxyR2 + |θx|R + |θy|R ≤ |θx|a. Similarly, also consider some
positive integer b s.t. θxyR2 + |θx|R + |θy|R ≤ |θy|b. Then, for all (x, y) s.t. x ≥ a or y ≥ b, we
have θxyR2 + |θx|R + |θy|R ≤ |θx|x+ |θy|y. If each entry of one sequence is smaller than that of
another sequence, its summation is also smaller. Therefore, we have∑

x≥a or y≥b

exp
(
θxyB(x)B(y) + θxB(x) + θyB(y)− log x!− log y!

)
(i)

≤
∑

x≥a or y≥b

exp
(
θxyR

2 + |θx|R+ |θy|R− log x!− log y!
)

≤
∑

x≥a or y≥b

exp
(
|θx|x+ |θy|y − log x!− log y!

)
,

where in inequality (i) we use the fact that θxy > 0. Since
∑
x≥a or y≥b exp

(
|θx|x+ |θy|y− log x!−

log y!
)

is normalizable, so is
∑
x≥a or y≥b exp

(
θxyB(x)B(y)+θxB(x)+θyB(y)− log x!− log y!

)
,

which completes the proof.

B.4 Proof of Proposition 3

D(θ,R0, R) = log
∑
Z∈W

exp
{
θB(Z)− log(Z!)

}
≤ log

∑
Z∈W

exp
{
θZ − log(Z!)

}
= DPois(θ) = exp(θ)

where the inequality holds if θ ≥ 0.
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