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Abstract

Relative to the large literature on upper bounds on complexity of convex optimiza-
tion, lesser attention has been paid to the fundamental hardness of these problems.
Recent years have seen a surge in optimization methods tailored to sparse opti-
mization problems. In this paper, we study the complexity of stochastic convex
optimization in an oracle model of computation, when the objective is optimized
at a sparse vector in a high dimensional space. Our result is matched by an appro-
priately tuned method of mirror descent, establishing the minimiax optimality of
the result.

1 Introduction

Convex optimization forms the backbone of many algorithms for statistical learning and estima-
tion. Given that many statistical estimation problems are large-scale in nature—with the problem
dimension and/or sample size being large—it is essential to use bounded computational resources
as efficiently as possible. Understanding the computational complexity of convex optimization is
thus a key issue for large-scale learning. High-dimensional data presents a challenge to convex
optimization methods since the minimax complexity of deterministic as well as stochastic convex
optimization is known to scale with the dimension of the space [1, 2, 3].

A large body of recent work has focused on developing optimization algorithms specifically tailored
to high-dimensional problems [4, 5, 6]. A common assumption throughout this line of work is that
the objective function is optimized at a sparse point. Under this assumption, the aforementioned
approaches enjoy a mild logarithmic scaling with the dimension of the space, making the methods
suitable for high-dimensional problems.

It is natural to ask what is the smallest possible number of queries with which an algorithm might
be able to optimize a function under such a sparsity assumption. In this paper we establish a lower
bound on the complexity of sparse convex optimization in a stochastic first order oracle model, first
introduced by Nemirovski and Yudin [1] (hereafter referred to as NY). Our result matches the best
known upper bound attained by an appropriately tuned method of mirror descent [1, 7], as well as
the other methods mentioned earlier. This establishes the minimax optimality of the above methods
for solving sparse optimization problems.
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Notation: For the convenience of the reader, we collect here some notation used throughout the
paper. For p ∈ [1,∞], we use ‖x‖p to denote the `p-norm of a vector x ∈ Rd, and we let q denote
the conjugate exponent, satisfying 1

p + 1
q = 1. For two distributions P and Q, we use D(P ‖Q) to

denote the Kullback-Leibler divergence between the distributions. The notation I(A) refers to the
0-1 valued indicator random variable of the set A. For two vectors α, β ∈ {−1,+1}d, we define the
Hamming distance ∆H(α, β) :=

∑d
i=1 I[αi 6= βi].

2 Background and problem formulation

We begin by introducing background on the oracle model of convex optimization, and precisely
defining the problem to be studied.

Convex optimization is the task of minimizing a convex function f over a convex set S ⊆ Rd.
Assuming that the minimum is achieved, it corresponds to computing an element x∗f that achieves
the minimum—that is, x∗f ∈ arg minx∈S f(x). An optimization method is any procedure that solves
this task, typically by repeatedly selecting values from S. Our primary focus in this paper is the
following question: given any class of convex functions F which is optimized at a point with only
few non-zero coordinates, what is the minimum computational labor any such optimization method
would expend for any function in F?

In order to address this question, we follow the approach of Nemirovski and Yudin [1], and
measure computational labor based on the oracle model of optimization. In particular we fo-
cus on the stochastic first-order oracle. Such an oracle takes a query x ∈ S and returns a tuple
φ(x, f) = (f̂(x), ẑ(x)) such that

E[f̂(x)] = f(x), E[ẑ(x)] ∈ ∂f(x), and E
[
‖ẑ(x)‖2p

]
≤ σ2. (1)

We use Op,σ to denote the class of all stochastic first-order oracles with parameters (p, σ). Note that
the first two conditions imply that f̂(x) is an unbiased estimate of the function value f(x), and that
ẑ(x) is an unbiased estimate of a sub-gradient z ∈ ∂f(x). When f is actually differentiable, then
ẑ(x) is an unbiased estimate of the gradient∇f(x). The third condition in equation (1) controls the
“noisiness” of the sub-gradient estimates in terms of the `p-norm.

We then measure the computational labor of any optimization method as the number of queries
it poses to the oracle. In particular, given a positive integer T corresponding to the number of
iterations, an optimization methodM designed to approximately minimize the convex function f
over the convex set S proceeds as follows. At any given iteration t = 1, . . . , T , the method M
queries at xt ∈ S, and the oracle reveals the information φ(xt, f). The method then uses this
information to decide at which point xt+1 the next query should be made. We remark here that all
the methods for high-dimensional problems mentioned earlier fit this general template. For a given
oracle function φ (which defines the distribution of the random variables), let MT denote the class
of all optimization methodsM that make T queries according to the procedure outlined above. For
any methodM∈MT , we define its error on function f after T steps as

εT (M, f,S, φ) := f(xT )−min
x∈S

f(x) = f(xT )− f(x∗f ), (2)

where xT is the method’s query at time T . Note that by definition of x∗f as a minimizing argument,
this error is a non-negative quantity. Given a class of functions F defined over a convex set S and a
class MT of all optimization methods based on T oracle queries, we define the minimax error

ε∗T (F ,S;φ) := inf
M∈MT

sup
f∈F

Eφ[εT (M, f,S, φ)]. (3)

So as to ease the notation, when the oracle φ is clear from the context, we simply write ε∗T (F ,S).

We now turn to defining the function class F of interest precisely. In all cases, we consider real-
valued convex functions defined over some convex set S. For a vector x ∈ Rd, we use ‖x‖0 to
denote the number of non-zero elements in x. We now define a class of Lipschitz functions with
sparse minimizers.
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Definition 1. For a convex set S ⊂ Rd and positive integer k ≤ bd/2c, we define Fsp(k,S, L) to be
the class of all convex functions f : S 7→ R such that

|f(x)− f(y)| ≤ L‖x− y‖1 for all x, y ∈ S, (4)

and ∃x∗ ∈ arg minx∈S f(x) satisfying ‖x∗‖0 ≤ k.

Note that the Lipschitz condition is equivalent to assuming that ‖z‖∞ ≤ L for all z ∈ ∂f(x) and for
all x ∈ S. The Lipschitz condition assumed here is different from our previous work[3], where we
assumed a bound on the `1-norm of the gradients. In the context of high-dimensional optimization,
however, the `∞ bound is most natural. Indeed for a high-dimensional vector, assuming a small
bound on the `1-norm implies that any single coordinate is getting smaller in the limit as the number
of dimensions grows, making the problem easier in some sense. On the contrary, for some of the
optimization problems encountered in this setup such as sparse linear regression with Gaussian noise
(see e.g. [8]), the `2 norm of the gradient grows as

√
d with high probability. Hence we assume

only an `∞ bound on the gradients to match the assumptions of the problems that are frequently
encountered in high-dimensional setups. We frequently use the shorthand notation Fsp(k) when
the set S and parameters L are clear from context. In words, the set Fsp(k) consists of all convex
functions that are L-Lipschitz in the `∞-norm, and have at least one k-sparse optimizer.

3 Oracle complexity for convex, Lipschitz functions with sparse optima

With the setup of stochastic convex optimization in place, we are now in a position to state the main
result of this paper, and to discuss some of its consequences. For the remainder of this paper, we set
the oracle variance bound σ to be the same as the Lipschitz constant L in our results. The following
theorem provides a lower bound on the complexity of optimization functions from the class Fsp.
Theorem 1. Let Fsp be the class of all convex functions that are L-Lipschitz with respect to the `∞
norm and have a k-sparse optimizer. Let S be any convex set containing a unit ball in `∞ norm.
Then for k ≤ bd2c, the oracle complexity satisfies the lower bound

sup
φ∈Op,L

ε∗(Fsp, φ) = Ω

L
√
k2 log d

k

T

 . (5)

Remark: If k = O(d1−δ) for some δ ∈ (0, 1) (so that log d
k = Θ(log d)), then this bound is sharp

up to constant factors. In particular, suppose that we use the method of mirror descent based on
‖ · ‖1+ε norm with ε = 2 log d/(2 log d− 1). Then it can be shown (see e.g. Chapter 11 of [9]) that

this technique will achieve a solution accurate to O(
√

k2 log d
T ) within T iterations, which matches

our lower bound (5) up to constant factors whenever k = O(d1−δ) . To the best of our knowledge,
Theorem 1 provides the first tight lower bound on the oracle complexity of sparse optimization. The
result also establishes the computational optimality of methods achieving a matching upper bound,
since we have shown that no other method can achieve a better convergence rate in the worst case.

3.1 Proof of main result

We now turn to the proof of our main result. We start by fixing the convex set S to be the unit ball
in `∞ norm. Since the complexity of optimizing over a large set is only larger than that over any
subset, this also implies the general result for any set containing the unit `∞ ball.

Our proof follows the technique from our previous work [3]. In particular, we define a hard subclass
of functions embedded in Fsp. We index this subclass by a set of appropriately chosen vectors in
{−1, 0,+1}d. Let V(k) := {α1, . . . , αM} be a set of vectors, such that each αj ∈ {−1, 0,+1}d
satisfies

‖αj‖0 = k for all j = 1, . . . ,M , and ∆H(αj , α`) ≥ k

2
for all j 6= `.

It can be shown that there exists such a packing set with |V(k)| ≥ exp
(
k
2 log d−k

k/2

)
elements (e.g.,

see Lemma 5 in Raskutti et al. [10]).
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For any α ∈ V(k), we define the function

gα(x) := c

[
d∑
i=1

{(1

2
+ αiδ

)∣∣x(i) +
1

2

∣∣+
(1

2
− αiδ

)∣∣x(i)− 1

2

∣∣}+ δ

d∑
i=1

|x(i)|

]
. (6)

In this definition, the quantity c > 0 is a pre-factor to be chosen later, and δ ∈ (0, 14 ] is a given error
tolerance. We use the notation G(δ, k) to refer to the class of functions {gα : α ∈ V(k)}. Observe
that each function gα ∈ G(δ; k) is convex, and Lipschitz with parameter c with respect to the ‖ · ‖∞
norm. Thus gα ∈ Fsp(k,S, c).

For ease of notation in the future, we will also define base functions f+i , f
−
i for i = 1, . . . , d that

constitute the functions gα. We define

f+i := d

(∣∣x(i) +
1

2

∣∣+
δ

2
|x(i)|

)
, and f−i (x) := d

(∣∣x(i)− 1

2

∣∣+
δ

2
|x(i)|

)
. (7)

It is easily seen that

gα(x) =
c

d

d∑
i=1

[(
1

2
+ α1δ

)
f+i (x) +

(
1

2
− αiδ

)
f−i (x)

]
.

The next key ingredient is to show that for α 6= β, gα and gβ are different so that any optimization
method needs to be able to distinguish between them based on the stochastic gradient samples.
Following previous work, we show this by demonstrating a large ρ-separation between gα and gβ .
Recall that for two convex functions, the semi-metric ρ is defined in Agarwal et al [3] as:

ρ(f, g) := inf
x∈S

[
f(x) + g(x)− f(x∗f )− g(x∗g)

]
. (8)

Here x∗f and x∗g are the minimizers of f and g respectively. We show that any two elements of
G(δ, k) are well-separated by analyzing the quantity

ψ(δ) := min
α6=β∈V(k)

ρ(gα, gβ).

Understanding the scaling of ψ with δ was critical to the proofs in our previous work [3], as it was
shown that any method attaining a minimax error (3) smaller than ψ(δ)/9 is capable of solving an
estimation problem of identifying the true function gα based on the oracle’s responses. Our next
lemma provides a lower bound on ψ(δ) for the class G(δ, k).
Lemma 1. For gα defined as in Equation 6, for α 6= β ∈ V(k) we have

ψ(δ; k) = inf
α 6=β∈V(k)

ρ(gα, gβ) ≥ ckδ

4
. (9)

The proof of this lemma is omitted due to lack of space and can be found in the full draft [11]. Let
MT be any optimization method that takes T rounds and produces a point xT ∈ S such that the
minimax optimization error of xT is smaller than ckδ/36. Then the above lemma, combined with
Lemmas 1 and 2 of Agarwal et al [3] allows us to conclude thatMT reliably estimates the parameter
α used by the oracle. That is, the method implicitly constructs an estimator α̂(MT ) such that

max
α∈V

P[α̂(MT ) 6= α] ≤ 1

3
, (10)

where α indexes the function used by the oracle.

In order to provide a lower bound on the number of queries needed by any method, we would like
to show a lower bound on the probability of error in this estimation problem, based on T noisy
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samples received from the oracle. To do this, we use a particular choice of oracle and then show a
lower bound on the error probability for this oracle using Fano’s inequality [12, 13].

We start by defining a stochastic first-order oracle that meets the conditions of Equation 1. It turns
out that the oracle from our previous work [3] that provides 1-dimensional stochastic gradient sam-
ples is unsuited for this problem. This is because here we require our gradients to be bounded in `∞
norm while the previous work assumed the gradients (and their variance) to be bounded in `1 norm.
As a result, in our setup we can provide d-dimensional gradients instead, with each co-ordinate
being large which allows us to inject a lot more noise in the problem.

We associate a coin with each coordinate of the problem and consider the set of coin bias vectors
lying in the set {(1/2 + α1δ), . . . , (1/2 + αdδ) : α ∈ V(k)}. Given a particular function gα ∈
G(δ, k), we present noisy value and gradient samples according to the following prescription:

• For each i = 1, . . . , d, draw bi ∈ {0, 1} according to a Bernoulli distribution with bias 1/2+αiδ.

• Return the value and sub-gradient of the function:

ĝ(x) =
c

d

d∑
i=1

[bif
+
i (x) + (1− bi)f−i (x)].

It is easy to see that ĝ defined above satisfies conditions (1) if c = L/3. As the final ingredient, we
would like to lower bound the probability of error in estimating the bias vectors of the coins, based
on tosses received from the oracle above. We adapt a version of Fano’s inequality from the work of
Yu [12]. Let Pα be the distribution of the function values and gradients generated by our stochastic
first-order oracle when using the function gα. Then Lemma 3 of Yu [12] allows us to conclude that

inf
α̂

sup
α∈V(k)

Pα[α̂ 6= α] ≥ 1− b+ log 2

log |V(k)|
,

where b is an upper bound on the Kullback-Leibler divergence between Pα and Pβ for α 6= β ∈
V(k). It can be shown using some algebra that in our case, b = 32kTδ2 suffices. Recalling that
|V(k)| ≥ exp

(
k
2 log d−k

k/2

)
, we get

sup
α

P[α̂(MT ) 6= α] ≥ 1− 2

(
32kTδ2 + log 2

k
2 log d−k

k/2

)

Detailed proof for this fact can be found in Lemma 3 of the long version [11]. Combining this with
the upper bound (10) yields the lower bound

T = Ω

(
log d−k

k/2

δ2

)
.

To complete the proof, we observe that we want to obtain a lower bound on T in terms of the
minimax optimization error. Since the upper bound on error probability applies to all methods with
optimization error no more than ckδ/36 = Lkδ/108, we get the relation ε = Lkδ/108 where ε is
the optimization error ofMT . Substituting this back in the previous lower bounds gives

T = Ω

(
L2k2 log d−k

k/2

ε2

)
,

which completes the statement of the theorem for S being the unit `∞ ball. The general result follows
from observing that enlarging the convex set only increases the oracle complexity of optimization.
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