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Figure 1.1  The human visual system has no problem interpreting the subtle variations in
translucency and shading in this photograph and correctly segmenting the object from its
background.
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Figure 1.2  Some examples of computer vision algorithms and applications. (a) Face de-
tection algorithms, coupled with color-based clothing and hair detection algorithms, can
locate and recognize the individuals in this image (Sivic, Zitnick, and Szeliski 2006) © 2006
Springer. (b) Object instance segmentation can delineate each person and object in a com-
plex scene (He, Gkioxari et al. 2017) © 2017 IEEE. (c¢) Structure from motion algorithms
can reconstruct a sparse 3D point model of a large complex scene from hundreds of par-
tially overlapping photographs (Snavely, Seitz, and Szeliski 2006) © 2006 ACM. (d) Stereo
matching algorithms can build a detailed 3D model of a building facade from hundreds of
differently exposed photographs taken from the internet (Goesele, Snavely et al. 2007) © 2007
IEEE.
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1.1 What is computer vision?

As humans, we perceive the three-dimensional structure of the world around us with appar-
ent ease. Think of how vivid the three-dimensional percept is when you look at a vase of
flowers sitting on the table next to you. You can tell the shape and translucency of each petal
through the subtle patterns of light and shading that play across its surface and effortlessly
segment each flower from the background of the scene (Figure 1.1). Looking at a framed
group portrait, you can easily count and name all of the people in the picture and even guess
at their emotions from their facial expressions (Figure 1.2a). Perceptual psychologists have
spent decades trying to understand how the visual system works and, even though they can
devise optical illusions' to tease apart some of its principles (Figure 1.3), a complete solution
to this puzzle remains elusive (Marr 1982; Wandell 1995; Palmer 1999; Livingstone 2008;
Frisby and Stone 2010).

Researchers in computer vision have been developing, in parallel, mathematical tech-
niques for recovering the three-dimensional shape and appearance of objects in imagery.
Here, the progress in the last two decades has been rapid. We now have reliable techniques for
accurately computing a 3D model of an environment from thousands of partially overlapping
photographs (Figure 1.2¢). Given a large enough set of views of a particular object or fagade,
we can create accurate dense 3D surface models using stereo matching (Figure 1.2d). We can
even, with moderate success, delineate most of the people and objects in a photograph (Fig-
ure 1.2a). However, despite all of these advances, the dream of having a computer explain an
image at the same level of detail and causality as a two-year old remains elusive.

Why is vision so difficult? In part, it is because it is an inverse problem, in which we seek
to recover some unknowns given insufficient information to fully specify the solution. We
must therefore resort to physics-based and probabilistic models, or machine learning from
large sets of examples, to disambiguate between potential solutions. However, modeling the
visual world in all of its rich complexity is far more difficult than, say, modeling the vocal
tract that produces spoken sounds.

The forward models that we use in computer vision are usually developed in physics (ra-
diometry, optics, and sensor design) and in computer graphics. Both of these fields model
how objects move and animate, how light reflects off their surfaces, is scattered by the atmo-
sphere, refracted through camera lenses (or human eyes), and finally projected onto a flat (or
curved) image plane. While computer graphics are not yet perfect, in many domains, such

as rendering a still scene composed of everyday objects or animating extinct creatures such

'Some fun pages with striking illusions include https://michaelbach.de/ot, https://www.illusionsindex.org, and
http://www.ritsumei.ac.jp/~akitaoka/index-e.html.
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Figure 1.3  Some common optical illusions and what they might tell us about the visual
system: (a) The classic Miiller-Lyer illusion, where the lengths of the two horizontal lines
appear different, probably due to the imagined perspective effects. (b) The “white” square B
in the shadow and the “black” square A in the light actually have the same absolute intensity
value. The percept is due to brightness constancy, the visual system’s attempt to discount
illumination when interpreting colors. Image courtesy of Ted Adelson, http://persci.mit.edu/
gallery/checkershadow. (c) A variation of the Hermann grid illusion, courtesy of Hany Farid.
As you move your eyes over the figure, gray spots appear at the intersections. (d) Count the
red Xs in the left half of the figure. Now count them in the right half. Is it significantly
harder? The explanation has to do with a pop-out effect (Treisman 1985), which tells us

about the operations of parallel perception and integration pathways in the brain.
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as dinosaurs, the illusion of reality is essentially there.

In computer vision, we are trying to do the inverse, i.e., to describe the world that we
see in one or more images and to reconstruct its properties, such as shape, illumination,
and color distributions. It is amazing that humans and animals do this so effortlessly, while
computer vision algorithms are so error prone. People who have not worked in the field often
underestimate the difficulty of the problem. This misperception that vision should be easy
dates back to the early days of artificial intelligence (see Section 1.2), when it was initially
believed that the cognitive (logic proving and planning) parts of intelligence were intrinsically
more difficult than the perceptual components (Boden 2006).

The good news is that computer vision is being used today in a wide variety of real-world
applications, which include:

* Optical character recognition (OCR): reading handwritten postal codes on letters
(Figure 1.4a) and automatic number plate recognition (ANPR);

* Machine inspection: rapid parts inspection for quality assurance using stereo vision
with specialized illumination to measure tolerances on aircraft wings or auto body parts
(Figure 1.4b) or looking for defects in steel castings using X-ray vision;

* Retail: object recognition for automated checkout lanes and fully automated stores
(Wingfield 2019);

* Warehouse logistics: autonomous package delivery and pallet-carrying “drives” (Guizzo
2008; O’Brian 2019) and parts picking by robotic manipulators (Figure 1.4c; Acker-
man 2020);

* Medical imaging: registering pre-operative and intra-operative imagery (Figure 1.4d)

or performing long-term studies of people’s brain morphology as they age;

* Self-driving vehicles: capable of driving point-to-point between cities (Figure 1.4e;
Montemerlo, Becker et al. 2008; Urmson, Anhalt ef al. 2008; Janai, Giiney et al. 2020)
as well as autonomous flight (Kaufmann, Gehrig et al. 2019);

¢ 3D model building (photogrammetry): fully automated construction of 3D models
from aerial and drone photographs (Figure 1.4f);

¢ Match move: merging computer-generated imagery (CGI) with live action footage by
tracking feature points in the source video to estimate the 3D camera motion and shape
of the environment. Such techniques are widely used in Hollywood, e.g., in movies
such as Jurassic Park (Roble 1999; Roble and Zafar 2009); they also require the use of
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Figure 1.4  Some industrial applications of computer vision: (a) optical char-
acter recognition (OCR), http://yann.lecun.com/exdb/lenet; (b) mechanical inspection,
http://www.cognitens.com; (c) warehouse picking, https://covariant.ai;  (d) medical
imaging, http://www.clarontech.com; (e) self-driving cars, (Montemerlo, Becker et al.
2008) © 2008 Wiley; (f) drone-based photogrammetry, https://www.pix4d.com/blog/
mapping-chillon-castle-with-drone.
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precise matting to insert new elements between foreground and background elements
(Chuang, Agarwala et al. 2002).

* Motion capture (mocap): using retro-reflective markers viewed from multiple cam-
eras or other vision-based techniques to capture actors for computer animation;

* Surveillance: monitoring for intruders, analyzing highway traffic and monitoring pools

for drowning victims (e.g., https://swimeye.com);

* Fingerprint recognition and biometrics: for automatic access authentication as well
as forensic applications.

David Lowe’s website of industrial vision applications (http://www.cs.ubc.ca/spider/lowe/
vision.html) lists many other interesting industrial applications of computer vision. While
the above applications are all extremely important, they mostly pertain to fairly specialized
kinds of imagery and narrow domains.

In addition to all of these industrial applications, there exist myriad consumer-level ap-
plications, such as things you can do with your own personal photographs and video. These
include:

* Stitching: turning overlapping photos into a single seamlessly stitched panorama (Fig-
ure 1.5a), as described in Section 8.2;

* Exposure bracketing: merging multiple exposures taken under challenging lighting
conditions (strong sunlight and shadows) into a single perfectly exposed image (Fig-
ure 1.5b), as described in Section 10.2;

* Morphing: turning a picture of one of your friends into another, using a seamless

morph transition (Figure 1.5¢);

* 3D modeling: converting one or more snapshots into a 3D model of the object or
person you are photographing (Figure 1.5d), as described in Section 13.6;

* Video match move and stabilization: inserting 2D pictures or 3D models into your
videos by automatically tracking nearby reference points (see Section 11.4.4)% or using
motion estimates to remove shake from your videos (see Section 9.2.1);

* Photo-based walkthroughs: navigating a large collection of photographs, such as the
interior of your house, by flying between different photos in 3D (see Sections 14.1.2
and 14.5.5);

2For a fun student project on this topic, see the “PhotoBook” project at http://www.cc.gatech.edu/dvfx/videos/
dvfx2005.html.
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* Face detection: for improved camera focusing as well as more relevant image search-
ing (see Section 6.3.1);

¢ Visual authentication: automatically logging family members onto your home com-
puter as they sit down in front of the webcam (see Section 6.2.4).

The great thing about these applications is that they are already familiar to most students;
they are, at least, technologies that students can immediately appreciate and use with their
own personal media. Since computer vision is a challenging topic, given the wide range
of mathematics being covered® and the intrinsically difficult nature of the problems being
solved, having fun and relevant problems to work on can be highly motivating and inspiring.

The other major reason why this book has a strong focus on applications is that they can
be used to formulate and constrain the potentially open-ended problems endemic in vision.
Thus, it is better to think back from the problem at hand to suitable techniques, rather than to
grab the first technique that you may have heard of. This kind of working back from problems
to solutions is typical of an engineering approach to the study of vision and reflects my own
background in the field.

First, I come up with a detailed problem definition and decide on the constraints and
specifications for the problem. Then, I try to find out which techniques are known to work,
implement a few of these, evaluate their performance, and finally make a selection. In order
for this process to work, it is important to have realistic test data, both synthetic, which
can be used to verify correctness and analyze noise sensitivity, and real-world data typical of
the way the system will finally be used. If machine learning is being used, it is even more
important to have representative unbiased training data in sufficient quantity to obtain good
results on real-world inputs.

However, this book is not just an engineering text (a source of recipes). It also takes a
scientific approach to basic vision problems. Here, I try to come up with the best possible
models of the physics of the system at hand: how the scene is created, how light interacts
with the scene and atmospheric effects, and how the sensors work, including sources of noise
and uncertainty. The task is then to try to invert the acquisition process to come up with the
best possible description of the scene.

The book often uses a statistical approach to formulating and solving computer vision
problems. Where appropriate, probability distributions are used to model the scene and the
noisy image acquisition process. The association of prior distributions with unknowns is often

called Bayesian modeling (Appendix B). It is possible to associate a risk or loss function with

3These techniques include physics, Euclidean and projective geometry, statistics, and optimization. They make
computer vision a fascinating field to study and a great way to learn techniques widely applicable in other fields.
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Figure 1.5  Some consumer applications of computer vision: (a) image stitching: merging
different views (Szeliski and Shum 1997) © 1997 ACM; (b) exposure bracketing: merging
different exposures; (c) morphing: blending between two photographs (Gomes, Darsa et
al. 1999) © 1999 Morgan Kaufmmann; (d) smartphone augmented reality showing real-time
depth occlusion effects (Valentin, Kowdle et al. 2018) © 2018 ACM.
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misestimating the answer (Section B.2) and to set up your inference algorithm to minimize
the expected risk. (Consider a robot trying to estimate the distance to an obstacle: it is
usually safer to underestimate than to overestimate.) With statistical techniques, it often helps
to gather lots of training data from which to learn probabilistic models. Finally, statistical
approaches enable you to use proven inference techniques to estimate the best answer (or
distribution of answers) and to quantify the uncertainty in the resulting estimates.

Because so much of computer vision involves the solution of inverse problems or the esti-
mation of unknown quantities, my book also has a heavy emphasis on algorithms, especially
those that are known to work well in practice. For many vision problems, it is all too easy to
come up with a mathematical description of the problem that either does not match realistic
real-world conditions or does not lend itself to the stable estimation of the unknowns. What
we need are algorithms that are both robust to noise and deviation from our models and rea-
sonably efficient in terms of run-time resources and space. In this book, I go into these issues
in detail, using Bayesian techniques, where applicable, to ensure robustness, and efficient
search, minimization, and linear system solving algorithms to ensure efficiency.* Most of the
algorithms described in this book are at a high level, being mostly a list of steps that have to
be filled in by students or by reading more detailed descriptions elsewhere. In fact, many of
the algorithms are sketched out in the exercises.

Now that I’ve described the goals of this book and the frameworks that I use, I devote the
rest of this chapter to two additional topics. Section 1.2 is a brief synopsis of the history of
computer vision. It can easily be skipped by those who want to get to “the meat” of the new
material in this book and do not care as much about who invented what when.

The second is an overview of the book’s contents, Section 1.3, which is useful reading for
everyone who intends to make a study of this topic (or to jump in partway, since it describes
chapter interdependencies). This outline is also useful for instructors looking to structure
one or more courses around this topic, as it provides sample curricula based on the book’s
contents.

1.2 A brief history

In this section, I provide a brief personal synopsis of the main developments in computer vi-
sion over the last fifty years (Figure 1.6) with a focus on advances I find personally interesting
and that have stood the test of time. Readers not interested in the provenance of various ideas
and the evolution of this field should skip ahead to the book overview in Section 1.3.

“In some cases, deep neural networks have also been shown to be an effective way to speed up algorithms that
previously relied on iteration (Chen, Xu, and Koltun 2017).
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