CS311H

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

• I messed up on midterm question 6

- I messed up on midterm question 6
 - Was supposed to be integer solutions to an equation

- I messed up on midterm question 6
 - Was supposed to be integer solutions to an equation
 Students needed to be indistinguishable.

- I messed up on midterm question 6
 - Was supposed to be integer solutions to an equation
 Students needed to be indistinguishable.
- Until Thanksgiving: Big O, Master Theorem, Proving program correctness

- I messed up on midterm question 6
 - Was supposed to be integer solutions to an equation
 Students needed to be indistinguishable.
- Until Thanksgiving: Big O, Master Theorem, Proving program correctness
 - This week may have been review consider it vacation after exam

- I messed up on midterm question 6
 - Was supposed to be integer solutions to an equation
 Students needed to be indistinguishable.
- Until Thanksgiving: Big O, Master Theorem, Proving program correctness
 - This week may have been review consider it vacation after exam
- No discussion Wed. before Thanksgiving

- How does O, Ω, Θ relate to limits?
- f(x) being of "order" g(x) is a way of saying f(x) is $\Theta(g(x))$

• $f(n) = 4n^2 - 5n + 3$ is $O(n^2)$.

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.
- $(x^2+1)/(x+1)$ is O(x).

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.
- $(x^2 + 1)/(x + 1)$ is O(x). 1. Let K = 1.

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.
- $(x^2 + 1)/(x + 1)$ is O(x). 1. Let K = 1. 2. For x > K, $|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1)$.

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.
- $(x^2 + 1)/(x + 1)$ is O(x). 1. Let K = 1. 2. For x > K, $|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1)$. 3. $(x^2 + 1)/(x + 1) < (x^2 + 1)/x$

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.

•
$$(x^2 + 1)/(x + 1)$$
 is $O(x)$.
1. Let $K = 1$.
2. For $x > K$, $|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1)$.
3. $(x^2 + 1)/(x + 1) < (x^2 + 1)/x$
4. $< (x^2 + x^2)/x$

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.

•
$$(x^2 + 1)/(x + 1)$$
 is $O(x)$.
1. Let $K = 1$.
2. For $x > K$, $|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1)$.
3. $(x^2 + 1)/(x + 1) < (x^2 + 1)/x$
4. $< (x^2 + x^2)/x$ {because $x > 1$ }

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.

•
$$(x^2 + 1)/(x + 1)$$
 is $O(x)$.
1. Let $K = 1$.
2. For $x > K$, $|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1)$.
3. $(x^2 + 1)/(x + 1) < (x^2 + 1)/x$
4. $< (x^2 + x^2)/x$ {because $x > 1$ }
5. $= 2x^2/x$

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.

•
$$(x^2 + 1)/(x + 1)$$
 is $O(x)$.
1. Let $K = 1$.
2. For $x > K$, $|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1)$.
3. $(x^2 + 1)/(x + 1) < (x^2 + 1)/x$
4. $< (x^2 + x^2)/x$ {because $x > 1$ }
5. $= 2x^2/x$
6. $= 2x$

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.

•
$$(x^2 + 1)/(x + 1)$$
 is $O(x)$.
1. Let $K = 1$.
2. For $x > K$, $|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1)$.
3. $(x^2 + 1)/(x + 1) < (x^2 + 1)/x$
4. $< (x^2 + x^2)/x$ {because $x > 1$ }
5. $= 2x^2/x$
6. $= 2x$
7. $= 2|x|$

- $f(n) = 4n^2 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.

•
$$(x^2 + 1)/(x + 1)$$
 is $O(x)$.
1. Let $K = 1$.
2. For $x > K$, $|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1)$.
3. $(x^2 + 1)/(x + 1) < (x^2 + 1)/x$
4. $< (x^2 + x^2)/x$ {because $x > 1$ }
5. $= 2x^2/x$
6. $= 2x$
7. $= 2|x|$
8. Therefore $C = 2$ and $\forall x > K$, $|(x^2 + 1)/(x + 1)| \le C|x|$.

Proof by Contradiction:

Proof by Contradiction: Suppose n^3 is O(7 n^2)

Proof by Contradiction: Suppose n³ is O(7n²) Then there are C and k such that $n^3 \le C7n^2, \quad \forall n \ge k$

Proof by Contradiction: Suppose n³ is O(7n²) Then there are C and k such that $n^3 \le C7n^2$, $\forall n \ge k$ But $n^3 \le C7n^2$ implies that $n \le 7C$

Proof by Contradiction: Suppose n³ is O(7n²) Then there are C and k such that $n^3 \leq C7n^2$, $\forall n \geq k$ But $n^3 \leq C7n^2$ implies that $n \leq 7C$ But this fails for values of n that are greater than 7C. So we have a contradiction.

• Suppose f(x) is O(g(x)) and g(x) is O(h(x)). Prove f(x) is O(h(x)).

• Suppose f(x) is O(g(x)) and g(x) is O(h(x)). Prove f(x) is O(h(x)).

• Prove if f(x) is O(g(x)), then g(x) is $\Omega(f(x))$

• Suppose f(x) is O(g(x)) and g(x) is O(h(x)). Prove f(x) is O(h(x)).

• Suppose f(x) is O(g(x)) and g(x) is O(h(x)). Prove f(x) is O(h(x)). 1. f(x) is $O(g(x)) \Rightarrow \forall x > K_1, |f(x)| \le C_1|g(x)|$ for some K_1, C_1 .

- Suppose f(x) is O(g(x)) and g(x) is O(h(x)). Prove f(x) is O(h(x)).
 - 1. f(x) is $O(g(x)) \Rightarrow \forall x > K_1, |f(x)| \leq C_1|g(x)|$ for some K_1, C_1 .
 - 2. g(x) is $O(h(x)) \Rightarrow \forall x > K_2, |g(x)| \leq C_2|h(x)|$ for some K_2, C_2 .

- Suppose f(x) is O(g(x)) and g(x) is O(h(x)). Prove f(x) is O(h(x)).
 - 1. f(x) is $O(g(x)) \Rightarrow \forall x > K_1, |f(x)| \leq C_1 |g(x)|$ for some K_1, C_1 .
 - 2. g(x) is $O(h(x)) \Rightarrow \forall x > K_2, |g(x)| \leq C_2|h(x)|$ for some K_2, C_2 .
 - 3. Let $K = max(K_1, K_2)$ and $C = C_1C_2$.

- Suppose f(x) is O(g(x)) and g(x) is O(h(x)). Prove f(x) is O(h(x)).
 - 1. f(x) is $O(g(x)) \Rightarrow \forall x > K_1, |f(x)| \leq C_1|g(x)|$ for some K_1, C_1 .
 - 2. g(x) is $O(h(x)) \Rightarrow \forall x > K_2, |g(x)| \leq C_2|h(x)|$ for some K_2, C_2 .
 - 3. Let $K = max(K_1, K_2)$ and $C = C_1C_2$.
 - 4. Then $\forall x > K$, $|f(x)| \le C_1|g(x)| \le C_1(C_2|h(x)|) = C|h(x)|$.

- Suppose f(x) is O(g(x)) and g(x) is O(h(x)). Prove f(x) is O(h(x)).
 - 1. f(x) is $O(g(x)) \Rightarrow \forall x > K_1, |f(x)| \leq C_1|g(x)|$ for some K_1, C_1 .
 - 2. g(x) is $O(h(x)) \Rightarrow \forall x > K_2, |g(x)| \leq C_2|h(x)|$ for some K_2, C_2 .
 - 3. Let $K = max(K_1, K_2)$ and $C = C_1C_2$.
 - 4. Then $\forall x > K$, $|f(x)| \le C_1 |g(x)| \le C_1 (C_2 |h(x)|) = C |h(x)|$. 5. Therefore f(x) is O(h(x)).
 - 5. Therefore f(x) is O(h(x)).

- Suppose f(x) is O(g(x)) and g(x) is O(h(x)). Prove f(x) is O(h(x)).
 - 1. f(x) is $O(g(x)) \Rightarrow \forall x > K_1, |f(x)| \leq C_1|g(x)|$ for some K_1, C_1 .
 - 2. g(x) is $O(h(x)) \Rightarrow \forall x > K_2, |g(x)| \leq C_2|h(x)|$ for some K_2, C_2 .
 - 3. Let $K = max(K_1, K_2)$ and $C = C_1C_2$.
 - 4. Then $\forall x > K$, $|f(x)| \le C_1 |g(x)| \le C_1 (C_2 |h(x)|) = C |h(x)|$. 5. Therefore f(x) is O(h(x)).
- Prove if f(x) is O(g(x)), then g(x) is $\Omega(f(x))$
 - (Try on piazza)

• Consider $f(n) = n(\sin n)$

- Consider $f(n) = n(\sin n)$
- Show that f(n) is O(n).

- Consider $f(n) = n(\sin n)$
- Show that f(n) is O(n).
- Is $f(n) \ \Omega(n)$?

- Consider $f(n) = n(\sin n)$
- Show that f(n) is O(n).
- Is $f(n) \ \Omega(n)$?
- Show that f(n) is $\Omega(\sin n)$.

- Consider $f(n) = n(\sin n)$
- Show that f(n) is O(n).
- Is $f(n) \ \Omega(n)$?
- Show that f(n) is $\Omega(\sin n)$.
- Is $f(n) O(\sin n)$?

- Consider $f(n) = n(\sin n)$
- Show that f(n) is O(n).
- Is $f(n) \ \Omega(n)$?
- Show that f(n) is $\Omega(\sin n)$.
- Is $f(n) O(\sin n)$?
- Show that f(n) is neither O(1) nor $\Omega(1)$
- Find a function g(n) such that f(n) is $\Theta(g(n))$.

- Consider $f(n) = n(\sin n)$
- Show that f(n) is O(n).
- Is $f(n) \ \Omega(n)$?
- Show that f(n) is $\Omega(\sin n)$.
- Is $f(n) O(\sin n)$?
- Show that f(n) is neither O(1) nor $\Omega(1)$
- Find a function g(n) such that f(n) is $\Theta(g(n))$.
 - $-g(n)=n(\sin n)$
 - Every function is Θ of itself!