
CS311H

Prof: Peter Stone

Department of Computer Science
The University of Texas at Austin

Good Morning, Colleagues

Peter Stone

Good Morning, Colleagues

Are there any questions?

Peter Stone

Logistics

• No discussion tomorrow

Peter Stone

Logistics

• No discussion tomorrow

• Tricky module due next Tuesday

Peter Stone

Logistics

• No discussion tomorrow

• Tricky module due next Tuesday

• Official course surveys

Peter Stone

Who Comes Out Ahead?

Peter Stone

Who Comes Out Ahead?

• If a girl can never propose to a boy, she has no better
strategy than the one she uses in TMA.

Peter Stone

Who Comes Out Ahead?

• If a girl can never propose to a boy, she has no better
strategy than the one she uses in TMA. Why?

Peter Stone

Who Comes Out Ahead?

• If a girl can never propose to a boy, she has no better
strategy than the one she uses in TMA. Why?

• So if the boys use TMA, the boys and girls will be running
TMA.

Peter Stone

Who Comes Out Ahead?

• If a girl can never propose to a boy, she has no better
strategy than the one she uses in TMA. Why?

• So if the boys use TMA, the boys and girls will be running
TMA.

• Is it in the boys’ interest to use TMA?

Peter Stone

Who Comes Out Ahead?

• If a girl can never propose to a boy, she has no better
strategy than the one she uses in TMA. Why?

• So if the boys use TMA, the boys and girls will be running
TMA.

• Is it in the boys’ interest to use TMA?

− What if there are multiple stable pairings?

Peter Stone

Who Comes Out Ahead?

• If a girl can never propose to a boy, she has no better
strategy than the one she uses in TMA. Why?

• So if the boys use TMA, the boys and girls will be running
TMA.

• Is it in the boys’ interest to use TMA?

− What if there are multiple stable pairings?
− How should we define a person’s optimal mate?

Pessimal mate?

Peter Stone

Who Comes Out Ahead?

• If a girl can never propose to a boy, she has no better
strategy than the one she uses in TMA. Why?

• So if the boys use TMA, the boys and girls will be running
TMA.

• Is it in the boys’ interest to use TMA?

− What if there are multiple stable pairings?
− How should we define a person’s optimal mate?

Pessimal mate?
− Theorem: TMA is optimal for the males and pessimal for

the females

Peter Stone

Male Optimality (ack: Steven Rudich)
• Suppose not.

Peter Stone

Male Optimality (ack: Steven Rudich)
• Suppose not.

• There must be a first time in TMA that some boy b gets
rejected by his optimal girl g because she said “maybe”
to some better b̂.

Peter Stone

Male Optimality (ack: Steven Rudich)
• Suppose not.

• There must be a first time in TMA that some boy b gets
rejected by his optimal girl g because she said “maybe”
to some better b̂.

• Since its the first time a boy gets rejected by his optimal, b̂

has not yet been rejected by his optimal.

Peter Stone

Male Optimality (ack: Steven Rudich)
• Suppose not.

• There must be a first time in TMA that some boy b gets
rejected by his optimal girl g because she said “maybe”
to some better b̂.

• Since its the first time a boy gets rejected by his optimal, b̂

has not yet been rejected by his optimal.

• So b̂ likes g at least as much as his optimal.

Peter Stone

Male Optimality (ack: Steven Rudich)
• Suppose not.

• There must be a first time in TMA that some boy b gets
rejected by his optimal girl g because she said “maybe”
to some better b̂.

• Since its the first time a boy gets rejected by his optimal, b̂

has not yet been rejected by his optimal.

• So b̂ likes g at least as much as his optimal.

• Let ∆ be a stable pairing in which b and g are paired (why
does it exist?)

Peter Stone

Male Optimality (ack: Steven Rudich)
• Suppose not.

• There must be a first time in TMA that some boy b gets
rejected by his optimal girl g because she said “maybe”
to some better b̂.

• Since its the first time a boy gets rejected by his optimal, b̂

has not yet been rejected by his optimal.

• So b̂ likes g at least as much as his optimal.

• Let ∆ be a stable pairing in which b and g are paired (why
does it exist?)

• ∆ pairs b̂ with some ĝ

Peter Stone

Male Optimality (ack: Steven Rudich)
• Suppose not.

• There must be a first time in TMA that some boy b gets
rejected by his optimal girl g because she said “maybe”
to some better b̂.

• Since its the first time a boy gets rejected by his optimal, b̂

has not yet been rejected by his optimal.

• So b̂ likes g at least as much as his optimal.

• Let ∆ be a stable pairing in which b and g are paired (why
does it exist?)

• ∆ pairs b̂ with some ĝ

• b̂ and g form a rogue couple in ∆

Peter Stone

Female Pessimality

• The pairing output by TMA, T, is male-optimal

Peter Stone

Female Pessimality

• The pairing output by TMA, T, is male-optimal

• Assume there is a stable pairing ∆ where g does worse in
∆ than in T.

Peter Stone

Female Pessimality

• The pairing output by TMA, T, is male-optimal

• Assume there is a stable pairing ∆ where g does worse in
∆ than in T.

• Let b be her mate in T.

Peter Stone

Female Pessimality

• The pairing output by TMA, T, is male-optimal

• Assume there is a stable pairing ∆ where g does worse in
∆ than in T.

• Let b be her mate in T.

• Let b̂ be her mate in ∆.

Peter Stone

Female Pessimality

• The pairing output by TMA, T, is male-optimal

• Assume there is a stable pairing ∆ where g does worse in
∆ than in T.

• Let b be her mate in T.

• Let b̂ be her mate in ∆.

• g and b form a rogue couple in ∆.

Peter Stone

Lessons

• Boys act in their own self-interest if they follow TMA

Peter Stone

Lessons

• Boys act in their own self-interest if they follow TMA

• If girls don’t propose to boys, they will follow TMA

Peter Stone

Lessons

• Boys act in their own self-interest if they follow TMA

• If girls don’t propose to boys, they will follow TMA

• Dating advice for girls. . .

Peter Stone

Linear Majority
Recall from last week:

Peter Stone

Linear Majority
Recall from last week:

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements
of a sequence. To win, a candidate must receive
a majority (more than half) of the votes. Devise a
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)
What is it’s Big-O runtime?

Peter Stone

Linear Majority
Recall from last week:

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements
of a sequence. To win, a candidate must receive
a majority (more than half) of the votes. Devise a
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)
What is it’s Big-O runtime?
• It was O(n log n)

Peter Stone

Linear Majority
Recall from last week:

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements
of a sequence. To win, a candidate must receive
a majority (more than half) of the votes. Devise a
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)
What is it’s Big-O runtime?
• It was O(n log n)
• There is a simple algorithm that is linear: O(n)

Peter Stone

Linear Majority
Recall from last week:

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements
of a sequence. To win, a candidate must receive
a majority (more than half) of the votes. Devise a
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)
What is it’s Big-O runtime?
• It was O(n log n)
• There is a simple algorithm that is linear: O(n)
− Correctness proof doesn’t (technically) use induction

Peter Stone

Linear Majority
Recall from last week:

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements
of a sequence. To win, a candidate must receive
a majority (more than half) of the votes. Devise a
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)
What is it’s Big-O runtime?
• It was O(n log n)
• There is a simple algorithm that is linear: O(n)
− Correctness proof doesn’t (technically) use induction
− First lets see the algorithm illustrated

Peter Stone

Some notation

• concat(A, B): the concatenation of lists A and B

Peter Stone

Some notation

• concat(A, B): the concatenation of lists A and B
• append(A, x): the list obtained by appending integer x to

the list A

Peter Stone

Some notation

• concat(A, B): the concatenation of lists A and B
• append(A, x): the list obtained by appending integer x to

the list A
• bad(A): the predicate “List A is of even length and does

not have a majority element”

Peter Stone

Some notation

• concat(A, B): the concatenation of lists A and B
• append(A, x): the list obtained by appending integer x to

the list A
• bad(A): the predicate “List A is of even length and does

not have a majority element”
• count(A, x): the number of times integer x occurs in list A

Peter Stone

Some notation

• concat(A, B): the concatenation of lists A and B
• append(A, x): the list obtained by appending integer x to

the list A
• bad(A): the predicate “List A is of even length and does

not have a majority element”
• count(A, x): the number of times integer x occurs in list A

Some simple facts:

Peter Stone

Some notation

• concat(A, B): the concatenation of lists A and B
• append(A, x): the list obtained by appending integer x to

the list A
• bad(A): the predicate “List A is of even length and does

not have a majority element”
• count(A, x): the number of times integer x occurs in list A

Some simple facts:

1. If bad(A) and bad(B), then bad(concat(A, B)).

Peter Stone

Some notation

• concat(A, B): the concatenation of lists A and B
• append(A, x): the list obtained by appending integer x to

the list A
• bad(A): the predicate “List A is of even length and does

not have a majority element”
• count(A, x): the number of times integer x occurs in list A

Some simple facts:

1. If bad(A) and bad(B), then bad(concat(A, B)).
2. If L has a majority element and L = concat(A, B) and
bad(A), then B has a majority element and the majority
element of B is equal to the majority element of L.

Peter Stone

An Update Procedure
• update(x) will process one list element at a time

Peter Stone

An Update Procedure
• update(x) will process one list element at a time

• L will be initially empty, and end up as the whole list

Peter Stone

An Update Procedure
• update(x) will process one list element at a time

• L will be initially empty, and end up as the whole list

• z will be the majority element, if it exists (otherwise, it can
be anything)

Peter Stone

An Update Procedure
• update(x) will process one list element at a time

• L will be initially empty, and end up as the whole list

• z will be the majority element, if it exists (otherwise, it can
be anything)

• k will be the algorithm’s counter

Peter Stone

An Update Procedure
• update(x) will process one list element at a time

• L will be initially empty, and end up as the whole list

• z will be the majority element, if it exists (otherwise, it can
be anything)

• k will be the algorithm’s counter

• A will be the front part of the list with no majority

Peter Stone

An Update Procedure
• update(x) will process one list element at a time

• L will be initially empty, and end up as the whole list

• z will be the majority element, if it exists (otherwise, it can
be anything)

• k will be the algorithm’s counter

• A will be the front part of the list with no majority

• B will be the back part of the list with z as the majority

Peter Stone

An Update Procedure
• update(x) will process one list element at a time

• L will be initially empty, and end up as the whole list

• z will be the majority element, if it exists (otherwise, it can
be anything)

• k will be the algorithm’s counter

• A will be the front part of the list with no majority

• B will be the back part of the list with z as the majority

• Invariant I: “L=concat(A,B) and bad(A) and

Peter Stone

An Update Procedure
• update(x) will process one list element at a time

• L will be initially empty, and end up as the whole list

• z will be the majority element, if it exists (otherwise, it can
be anything)

• k will be the algorithm’s counter

• A will be the front part of the list with no majority

• B will be the back part of the list with z as the majority

• Invariant I: “L=concat(A,B) and bad(A) and
k=2×count(B,z)−|B| and k≥ 0”

Peter Stone

Initial Update Procedure
Initialize L=A=B={}, k=0, z=anything // I

update(x)

if (k = 0)

A := concat(A, B)

B := empty list

z := x

// I and (k = 0 => z = x)

L := append(L, x)

B := append(B, x)

if (z = x)

k := k + 1

else

k := k - 1

return z // I

Peter Stone

Lemmas
• Lemma 1: After initialization, I holds.

Peter Stone

Lemmas
• Lemma 1: After initialization, I holds.

• Lemma 2: If I holds before first block, then
“I and (k = 0⇒ z = x)” holds after.

Peter Stone

Lemmas
• Lemma 1: After initialization, I holds.

• Lemma 2: If I holds before first block, then
“I and (k = 0⇒ z = x)” holds after.

• Lemma 3: If “I and (k = 0⇒ z = x)” holds before 2nd block,
then I holds after.

Peter Stone

Lemmas
• Lemma 1: After initialization, I holds.

• Lemma 2: If I holds before first block, then
“I and (k = 0⇒ z = x)” holds after.

• Lemma 3: If “I and (k = 0⇒ z = x)” holds before 2nd block,
then I holds after.

• Lemma 4: If I holds and L has a majority element, then z is
equal to the majority element of L.

Peter Stone

Lemmas
• Lemma 1: After initialization, I holds.

• Lemma 2: If I holds before first block, then
“I and (k = 0⇒ z = x)” holds after.

• Lemma 3: If “I and (k = 0⇒ z = x)” holds before 2nd block,
then I holds after.

• Lemma 4: If I holds and L has a majority element, then z is
equal to the majority element of L.

• These lemmas can be used to easily prove that the
algorithm works correctly!

Peter Stone

Lemmas
• Lemma 1: After initialization, I holds.

• Lemma 2: If I holds before first block, then
“I and (k = 0⇒ z = x)” holds after.

• Lemma 3: If “I and (k = 0⇒ z = x)” holds before 2nd block,
then I holds after.

• Lemma 4: If I holds and L has a majority element, then z is
equal to the majority element of L.

• These lemmas can be used to easily prove that the
algorithm works correctly! Why?

Peter Stone

Lemmas
• Lemma 1: After initialization, I holds.

• Lemma 2: If I holds before first block, then
“I and (k = 0⇒ z = x)” holds after.

• Lemma 3: If “I and (k = 0⇒ z = x)” holds before 2nd block,
then I holds after.

• Lemma 4: If I holds and L has a majority element, then z is
equal to the majority element of L.

• These lemmas can be used to easily prove that the
algorithm works correctly! Why? Was this the same
algorithm?

Peter Stone

Final update procedure

• k and z do not depend on L, A, and B.

Peter Stone

Final update procedure

• k and z do not depend on L, A, and B. Neither does the
return value.

Peter Stone

Final update procedure

• k and z do not depend on L, A, and B. Neither does the
return value. So:

Peter Stone

Final update procedure

• k and z do not depend on L, A, and B. Neither does the
return value. So:

update(x)

if (k = 0)

z := x

if (z = x)

k := k + 1

else

k := k - 1

return z

}

Peter Stone

Challenge Problem

• Use divide and conquer to find the closest pair of points in
a (planar) set in time O(n log n)

Peter Stone

