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Logistics
• Final: Sat., Dec. 14, 7pm-10pm, JGB 2.216
− Like midterms: hand-written notes allowed. No book or

electronic devices.
− Covers the whole class
− Difficulty like the midterms (but longer)
− Can skip one question
• How to study
− Review modules, slides, notes, book
− Practice doing problems (not just understanding)
− Ask us for more practice problems if needed
• Office hour Monday: 1:00-2:00
− Available by piazza, email, and appointment until final
• Please complete the official survey
− Think about what you’ve learned. . .
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Course Recap
• Propositional logic and Satisfiability
• Predicates, and Quantifiers
• Basic proof techniques, mathematical induction
• Sets and functions
• (*) Infinite sets
• Graphs and graph coloring
• Special types of graphs (planar, bipartite)
• (*) Eulerian and Hamiltonian graphs
• (*) Counting and pigeonhole principle
• Recurrences
• Big O, program efficiency, and master theorem
• (*) Proving program correctness
• (*) Undecidability
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• Can’t cover all problem types

• Will go through some of these quickly

• Continue on your own for the next 9 days!
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True or False?

• Predicate : ∀x∃y(x < y ∧ ¬∃z(x < z ∧ z < y))

− Domain: rational numbers
− Domain: integers

Answer: Under rational domain, the predicate is false
because for all x, y where x < y there always exists z = x+y

2

which satisfies that condition that x < z < y. So for all x, such
y doesn’t exist. which means the predicate is false.
Under integer domain, there exists y = x + 1 such that no
integer z exists such that x < z < y. Thus the predicate is
true.

Peter Stone
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Solution
1. Suppose a finite number of primes n and seek
contradiction.
2. Let p1, ..., pn be the primes, and define m = (p1× ...×pn)+1
3. For every prime pi, m is not divisible by pi since there will
be a remainder of 1.
4. Use the fact: m is either prime or can be written as a
product of primes.
5. If m is prime, it is bigger than all of p1, ..., pn, and therefore
not equal to any of them. Contradiction.
6. If m is not prime, it is a product of primes. Let q be one of
these primes.
7. Then m is divisible by q.
8. Since m is not divisible by any pi, prime q is not equal to
any of pi. Contradiction.

Peter Stone
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Infinite sets

• Prove that the cardinality of the prime numbers is the
same as the cardinality of the integers by defining a
bijection from the integers to the primes.

Call the primes in order starting from 2 as p1, p2, p3, . . .

f(0) = p1

n > 0⇒ f(n) = p2n

n < 0⇒ f(n) = p−2n+1

To show:
Every integer has a unique image (injective)
Every prime has a pre-image (surjective)

Peter Stone
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Graphs

• Prove that any bipartite graph with t vertices has at most
t2

4 edges.

Proof: If G is a bipartite graph, G can be partition into vertex
set A and B such that v(A) + v(B) = t and there is no edge
within set A and B. For every vertex in A, its degree is at
most v(B), thus the total number of edges are at most |E| ≤
v(A)v(B) = v(A)(t− v(A)) = t2

4 − (v(A)− t
2)

2 ≤ t2

4

Proof completed.
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Memory wheels

• Definition: a cycle of bits such that every n-bit pattern
occurs among adjacent bits

• Example: memory wheel with 8 bits that contains all 3-bit
patterns

• Theorem: For every n, a memory wheel exists of size 2n

which has all n-bit patterns

• Proof: uses Eurlerian circuits

Peter Stone
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Counting

• How many ways are there to sit 7 people at a round table
with 7 chairs?

− Consider two ways the same if everyone has the same
2 neighbors (regardless of which side they are on)
− What if there are 2 who can’t sit next to each other?

• 6!
2 = 360

• 360 - 5! = 360 - 120 = 240

Peter Stone
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When a > 1, let k = 2a2, when n > k we have n
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Proof (cont.)

When a > 1, let k = 2a2, when n > k we have n
2 > a2 and

n! = n× (n− 1)...
n

2
× (

n

2
− 1)...× 1

> a2 × a2...a2︸ ︷︷ ︸
n
2

×(
n

2
− 1)...× 1

> (a2)
n
2

= an

Thus we have C = 1, k = max(1, 2a2) such that for all x > k,
an < Cn!. So we have an = O(n!). Proof completed.
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Functions

• Let A be a finite set and f : A → A be a function. Prove
that f is injective if and only if f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B

be the set of the images of f(x). Since f is injective, we have
|B| = |A|. Since we have B ⊆ A and A has finite number of
elements, we have B = A which means f is surjective.
Then we prove f is surjective then f is injective. Assume
BWOC f is not injective which means there exists x, y such
that f(x) = f(y) = z. Thus we have |B| ≤ |A−{x, y}|+1 = |A|−
2+1 = |A|−1 which means f is not surjective. Contradiction.
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Other problem types
• DeMorgan’s laws and other propositional logic

• Induction

• Planar graphs

• Graph coloring

• Recurrences

• Master theorem

• Proving program correctness

• Undecidability
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