CS311H Discrete Math for CS: Honors

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

Are there any questions?

• How do we write "There exists one and only one" (and its negation)?

 Office hours - try to let us know in advance if you're coming

- Office hours try to let us know in advance if you're coming
- Keep posting on piazza

- Office hours try to let us know in advance if you're coming
- Keep posting on piazza
- First homework due at start of class

- Multiple ways of converting the same English sentence to logic
- s.t. = "such that"
- Dogs and collars problem

Translate these statements into English:

1. $\forall x[(H(x) \land \neg \exists y M(x, y)) \rightarrow U(x)]$ where H(x) = "x is a man", M(x,y) = "x is married to y", U(x) = "x is unhappy".

Translate these statements into English:

- 1. $\forall x[(H(x) \land \neg \exists y M(x, y)) \rightarrow U(x)]$ where H(x) = "x is a man", M(x,y) = "x is married to y", U(x) = "x is unhappy".
- 2. $\exists z(P(z, Jake) \land S(z, Alex) \land W(Alex))$ P(z,x) = "z is a parent of x", S(z,y) = "z and y are siblings",W(y) = "y is a woman".
- 3. $\forall n((P(n) \land n > 2) \rightarrow \neg \exists a, b, c(P(a) \land P(b) \land P(c) \land (a^n + b^n = c^n)))$ where P(n) = "n is a positive integer".

Translate the following statements into logical notation

No new predicates (just use common mathematical symbols), where the domain is natural numbers.

1. x is a perfect square.

2. x is a multiple of y.

3. p is prime.

Translate the following statements into logical notation

No new predicates (just use common mathematical symbols), where the domain is natural numbers.

- 1. x is a perfect square. $\exists y(x = y^2)$
- 2. x is a multiple of y. $\exists z(x = yz)$
- 3. p is prime. $(p \in \mathbb{Z}) \land (p > 1) \land \neg \exists x, y(x$

Domains

How does the choice of domain for the following quantified statements affect whether each statement is true or false? The domains to pick from are \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} .

- $\exists x \exists y (2x y = 0)$
- 2. $\exists y \forall x (2x y = 0)$
- 3. $\forall x \exists y(x 2y = 0)$

Domains

How does the choice of domain for the following quantified statements affect whether each statement is true or false? The domains to pick from are \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} .

- $\exists x \exists y (2x y = 0)$
- 2. $\exists y \forall x (2x y = 0)$
- 3. $\forall x \exists y(x 2y = 0)$
- 4. $\forall x (x < 10 \rightarrow \forall y (y < x \rightarrow y < 9))$
- 5. $\exists x \exists y (x + y = 100)$

6.
$$\forall x \exists y (y > x \land \exists z (y + z = 100))$$

True or False?

- 1. Domain: all real numbers P(x,y): x + y = 0
 - Predicate 1: $\forall x \exists y P(x, y)$ Predicate 2: $\exists x \forall y P(x, y)$

1. Domain: all real numbers P(x,y): x + y = 0Predicate 1: $\forall x \exists y P(x,y)$ Predicate 2: $\exists x \forall y P(x,y)$

2. Domain: all rational numbers Predicate : $\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$ What if the domain is all integers?

Quiz: True or False?

- If P(x) = "x is prime"
- Q(x) = x is even''
- the domain is the natural numbers
- 1. $P(5) \wedge Q(10) \wedge \neg Q(5) \wedge \neg P(4)$
- 2. $(\forall x P(x)) \rightarrow Q(4)$
- **3.** $\neg \exists x, y(P(x) \land P(y) \land P(x+y))$
- 4. $\exists x (P(x) \land Q(x) \land \forall y ((P(y) \land Q(y)) \rightarrow x = y))$
- 5. $\forall x(\neg P(x) \rightarrow Q(x))$
- 6. $\forall x((x > 2 \land P(x)) \rightarrow \exists y(Q(y) \land x = y + 1))$

- First homework **due at start of class**
- Modules 4,5 with associated readings

- First homework **due at start of class**
- Modules 4,5 with associated readings

