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Prove that. . .

• Suppose a, b and c are integers. If (b is a multiple of a) and
(c is a multiple of a) then ((b + c) is a multiple of a).

• The length of the hypotenuse of a right triangle is less than
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1. Let a, b, and c be different lengths of sides of a right
triangle, in which c corresponds to the hypotenuse.
2. To prove that c < a + b, assume the opposite, i.e. c ≥ a + b,
and seek a contradiction.
3. Because a, b, and c are triangle side lengths, they are
positive numbers.
4. Therefore, the assumed inequality can be squared to get
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5. Expand the right-hand side to get c2 ≥ a2 + 2ab + b2.
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a2 + b2.
8. However, according to the Pythagorean Theorem: c2 =
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