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• Keeping up and posting on piazza is required

• Due to time constraints, some proofs in the videos and
class aren’t fully formal: proof sketches

− But we’ve shown some fully formal examples
− On HW and test you need to be fully formal
− If you’re not sure what that means, go to office hours

• If you need a nametag, email me

• Bring in chairs? (but then return them)
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Some questions

• How do you do proof by exhaustive cases?

− First establish all the possible solutions
− Then examine them one by one
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Prove by Contradiction

• There are no positive integer solutions to equation
x2 − y2 = 1
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5. AB = (1/2) × (2/3) × (3/4) × (4/5) × (5/6) × (6/7) × ... ×
(98/99)× (99/100)× 1 = 1/100.
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• Show that there is no rational number r for which
r3 + r + 1 = 0
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Prove by direct proof:

• If a and b are real numbers, then a2 + b2 ≥ 2ab.

• (Tricky problem) The number 100...01 (with 3n − 1 zeros
where n is positive integer) is not a prime. (Hint: using
identity x3 + 1 = (x + 1)(x2 − x + 1).
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