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Odd snowball fight

• An odd number of people stand on a football field. No
two people are the same distance from each other as any
other two people. When I shout “go”, everyone throws a
snowball at his/her nearest neighbor, hitting this person.
Prove that at least one person is not hit by a snowball (a
“survivor”).
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Good Morning, Colleagues

Are there any questions?
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Logistics

• Third homework due at start of class in a week
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Some questions

• Not all horses have the same color (see Piazza)
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Odd snowball fight

• An odd number of people stand on a football field. No
two people are the same distance from each other as any
other two people. When I shout “go”, everyone throws a
snowball at his/her nearest neighbor, hitting this person.
Prove that at least one person is not hit by a snowball (a
“survivor”).

• P(n): “There is a survivor whenever 2n+1 people stand in a
yard at distinct mutual distances and each person throws
a snowball at his nearest neighbor.”

• Base case: n=1 (3 people)
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• P(n): “There is a survivor whenever 2n+1 people stand in a
yard at distinct mutual distances and each person throws
a snowball at his nearest neighbor.”

• Inductive step: Assume P(k) for k ≥ 1 (that’s the inductive
hypothesis). To prove: P(k+1).
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• P(n): “There is a survivor whenever 2n+1 people stand in a
yard at distinct mutual distances and each person throws
a snowball at his nearest neighbor.”

• Inductive step: Assume P(k) for k ≥ 1 (that’s the inductive
hypothesis). To prove: P(k+1).

• Call the two closest people A and B

• There is survivor of other 2k + 1 (IH)

• That person is still a survivor.

Peter Stone



Prove:

• For integer n > 0: 12 +22 +32 + ...+n2 = (1/6)n(n+1)(2n+1)
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Prove:

• For integer n > 0: 12 +22 +32 + ...+n2 = (1/6)n(n+1)(2n+1)

• For integer n > 0: 22+52+82+(3n−1)2 = (1/2)n(6n2+3n−1)
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Prove:

• For integer n > 0: 12 +22 +32 + ...+n2 = (1/6)n(n+1)(2n+1)
Base Case: 12 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 +
1)(2(1) + 1)

Peter Stone



Prove:

• For integer n > 0: 12 +22 +32 + ...+n2 = (1/6)n(n+1)(2n+1)
Base Case: 12 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 +
1)(2(1) + 1)
Induction Step:
1. 12 + 22 + 32 + ... + n2 + (n + 1)2
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1)(2(1) + 1)
Induction Step:
1. 12 + 22 + 32 + ... + n2 + (n + 1)2

2. = (1/6)n(n + 1)(2n + 1) + (n + 1)2 {IH}
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Prove:

• For integer n > 0: 12 +22 +32 + ...+n2 = (1/6)n(n+1)(2n+1)
Base Case: 12 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 +
1)(2(1) + 1)
Induction Step:
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Prove:

• For integer n > 0: 22+52+82+(3n−1)2 = (1/2)n(6n2+3n−1)
Base Case: 22 = 4 = 8/2 = (1/2)(6 + 3− 1)
Inductive Step:
1. 22 + 52 + 82 + (3n− 1)2 + (3(n + 1)− 1)2

2. = (1/2)n(6n2 + 3n− 1) + (3(n + 1)− 1)2 {IH}
3. = (1/2)n(6n2 + 3n− 1) + (2/2)(3n + 3− 1)2

4. = (1/2)[n(6n2 + 3n− 1) + 2(3n + 2)2]
5. = (1/2)[n(6n2 + 3n− 1) + 2(9n2 + 12n + 4)]
6. = (1/2)[6n3 + 3n2 − n + 18n2 + 24n + 8]
7. = (1/2)[6n3 + 21n2 + 23n + 8]
8. = (1/2)(n + 1)(6n2 + 15n + 8)
9. = (1/2)(n + 1)(6n2 + 15n + 9− 1)
10. = (1/2)(n + 1)(6n2 + 12n + 6 + 3n + 3− 1)
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11. = (1/2)(n + 1)(6(n2 + 2n + 1) + 3(n + 1)− 1)
12. = (1/2)(n + 1)(6(n + 1)2 + 3(n + 1)− 1)
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Prove:

• One of De Morgan’s laws is: ¬(X1 ∧X2) ≡ ¬X1 ∨ ¬X2.
This can be generalized to ¬(X1∧ ...∧Xn) ≡ ¬X1∨ ...∨¬Xn.
Prove the general version.
Base Case: De Morgan’s Law.
Inductive Step:
1. ¬X1 ∨ ... ∨ ¬Xn ∨ ¬Xn+1

2. ≡ ¬(X1 ∧ ... ∧Xn) ∨ ¬Xn+1 {IH}
3. ≡ ¬[(X1 ∧ ... ∧Xn) ∧Xn+1] {De Morgan’s Law}
4. ≡ ¬(X1 ∧ ... ∧Xn ∧Xn+1) {Associativity}
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• For integer n > 0: 9 divides (4n + 6n− 1)
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5. ≥ n3 + 10n2 {since n ≥ 10}
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Prove:

• For integer n ≥ 10, 2n > n3
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Prove:

• For integer n > 0: 9 divides (4n + 6n− 1)
Base Case: (4 + 6− 1) = 9, which is divisible by 9.
Inductive Case:
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Prove:

• For integer n > 0: 9 divides (4n + 6n− 1)
Base Case: (4 + 6− 1) = 9, which is divisible by 9.
Inductive Case:
1. 4n+1 + 6(n + 1)− 1
2. 4n+1 + 6n + 6− 1
3. 4n+1 + 6n + 5
4. 4n+1 + 6n + 18n− 18n + 5− 4 + 4
5. 4n+1 + 24n− 4− 18n + 9
6. 4(4n + 6n− 1) + 9(1− 2n)
7. 4(9k) + 9(1− 2n) {IH: k is an integer}
8. 9(4k + 1− 2n)
9. (4k + 1− 2n) is an integer, so quantity is divisible by 9.
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Prove:

• For integer n > 0: 1
12 + 1

22 + ... + 1
n2 ≤ 2− 1

n,
given the fact:
[k ≥ 1]→ [ 1

k(k+1) ≥
1

(k+1)2
]
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• For integer n > 0: 1
12 + 1

22 + ... + 1
n2 ≤ 2− 1

n,
given the fact:
[k ≥ 1]→ [ 1

k(k+1) ≥
1

(k+1)2
]

Base Case: 1
12 = 1 ≤ 1 = 2− 1 = 2− 1

1.
Inductive Case:
1. 1

12 + 1
22 + ... + 1

k2 ≤ 2− 1
k {Inductive hypothesis}

2. 1
12 + 1

22 + ... + 1
k2 + 1

(k+1)2
≤ 2− 1

k + 1
k(k+1)

{Add inequality 1
(k+1)2

≤ 1
k(k+1), (FACT)}

3. 1
12 + 1

22 + ... + 1
k2 + 1

(k+1)2
≤ 2− k+1

k(k+1) + 1
k(k+1)

{Common denominator}
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1
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]
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Inductive Case:
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22 + ... + 1

k2 ≤ 2− 1
k {Inductive hypothesis}

2. 1
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22 + ... + 1
k2 + 1
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≤ 2− 1

k + 1
k(k+1)

{Add inequality 1
(k+1)2

≤ 1
k(k+1), (FACT)}

3. 1
12 + 1

22 + ... + 1
k2 + 1

(k+1)2
≤ 2− k+1

k(k+1) + 1
k(k+1)

{Common denominator}
4. 1

12 + 1
22 + ... + 1

k2 + 1
(k+1)2

≤ 2− k
k(k+1) {Add}
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Prove:

• For integer n > 0: 1
12 + 1

22 + ... + 1
n2 ≤ 2− 1

n,
given the fact:
[k ≥ 1]→ [ 1

k(k+1) ≥
1

(k+1)2
]

Base Case: 1
12 = 1 ≤ 1 = 2− 1 = 2− 1

1.
Inductive Case:
1. 1

12 + 1
22 + ... + 1

k2 ≤ 2− 1
k {Inductive hypothesis}

2. 1
12 + 1

22 + ... + 1
k2 + 1

(k+1)2
≤ 2− 1

k + 1
k(k+1)

{Add inequality 1
(k+1)2

≤ 1
k(k+1), (FACT)}

3. 1
12 + 1

22 + ... + 1
k2 + 1

(k+1)2
≤ 2− k+1

k(k+1) + 1
k(k+1)

{Common denominator}
4. 1

12 + 1
22 + ... + 1

k2 + 1
(k+1)2

≤ 2− k
k(k+1) {Add}

5. 1
12 + 1

22 + ... + 1
k2 + 1

(k+1)2
≤ 2− 1

k+1 {Divide}
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Prove:

• (n2 − 1) is divisible by 8 whenever n is an odd positive
integer

Peter Stone



Assignments for Thursday

• Modules 9 on strong induction

Peter Stone



Assignments for Thursday

• Modules 9 on strong induction

• Work on third homework due at start of class next Tuesday

Peter Stone


