

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

 An odd number of people stand on a football field. No two people are the same distance from each other as any other two people. When I shout "go", everyone throws a snowball at his/her nearest neighbor, hitting this person. Prove that at least one person is not hit by a snowball (a "survivor").

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

• Third homework due at start of class in a week

• Not all horses have the same color (see Piazza)

 An odd number of people stand on a football field. No two people are the same distance from each other as any other two people. When I shout "go", everyone throws a snowball at his/her nearest neighbor, hitting this person. Prove that at least one person is not hit by a snowball (a "survivor").

- An odd number of people stand on a football field. No two people are the same distance from each other as any other two people. When I shout "go", everyone throws a snowball at his/her nearest neighbor, hitting this person. Prove that at least one person is not hit by a snowball (a "survivor").
- P(n): "There is a survivor whenever 2n+1 people stand in a yard at distinct mutual distances and each person throws a snowball at his nearest neighbor."

- An odd number of people stand on a football field. No two people are the same distance from each other as any other two people. When I shout "go", everyone throws a snowball at his/her nearest neighbor, hitting this person. Prove that at least one person is not hit by a snowball (a "survivor").
- P(n): "There is a survivor whenever 2n+1 people stand in a yard at distinct mutual distances and each person throws a snowball at his nearest neighbor."
- Base case: n=1 (3 people)

- P(n): "There is a survivor whenever 2n+1 people stand in a yard at distinct mutual distances and each person throws a snowball at his nearest neighbor."
- Inductive step: Assume P(k) for k ≥ 1 (that's the inductive hypothesis). To prove: P(k+1).

- P(n): "There is a survivor whenever 2n+1 people stand in a yard at distinct mutual distances and each person throws a snowball at his nearest neighbor."
- Inductive step: Assume P(k) for k ≥ 1 (that's the inductive hypothesis). To prove: P(k+1).
- Call the two closest people A and B

- P(n): "There is a survivor whenever 2n+1 people stand in a yard at distinct mutual distances and each person throws a snowball at his nearest neighbor."
- Inductive step: Assume P(k) for k ≥ 1 (that's the inductive hypothesis). To prove: P(k+1).
- Call the two closest people A and B
- There is survivor of other 2k + 1 (IH)

- P(n): "There is a survivor whenever 2n+1 people stand in a yard at distinct mutual distances and each person throws a snowball at his nearest neighbor."
- Inductive step: Assume P(k) for k ≥ 1 (that's the inductive hypothesis). To prove: P(k+1).
- Call the two closest people A and B
- There is survivor of other 2k + 1 (IH)
- That person is still a survivor.

• For integer n > 0: $1^2 + 2^2 + 3^2 + \ldots + n^2 = (1/6)n(n+1)(2n+1)$

• For integer n > 0: $1^2 + 2^2 + 3^2 + \ldots + n^2 = (1/6)n(n+1)(2n+1)$

• For integer n > 0: $2^2 + 5^2 + 8^2 + (3n-1)^2 = (1/2)n(6n^2 + 3n - 1)$

• For integer n > 0: $1^2 + 2^2 + 3^2 + \ldots + n^2 = (1/6)n(n+1)(2n+1)$

• For integer n > 0: $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6)n(n+1)(2n+1)$ Base Case: $1^2 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 + 1)(2(1) + 1)$

• For integer n > 0: $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6)n(n+1)(2n+1)$ Base Case: $1^2 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 + 1)(2(1) + 1)$ Induction Step: $1, 1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2$

• For integer n > 0: $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6)n(n+1)(2n+1)$ Base Case: $1^2 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 + 1)(2(1) + 1)$ Induction Step: $1. 1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2$ $2. = (1/6)n(n+1)(2n+1) + (n+1)^2$ {IH}

• For integer n > 0: $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6)n(n+1)(2n+1)$ Base Case: $1^2 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 + 1)(2(1) + 1)$ Induction Step: 1. $1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2$ 2. $= (1/6)n(n+1)(2n+1) + (n+1)^2$ {IH} 3. = (n+1)[(1/6)n(2n+1) + (n+1)]

• For integer n > 0: $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6)n(n+1)(2n+1)$ Base Case: $1^2 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 + 1)(2(1) + 1)$ Induction Step: 1. $1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2$ 2. $= (1/6)n(n+1)(2n+1) + (n+1)^2$ {IH} 3. = (n+1)[(1/6)n(2n+1) + (n+1)]4. = (1/6)(n+1)[n(2n+1) + 6(n+1)]

• For integer n > 0: $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6)n(n+1)(2n+1)$ Base Case: $1^2 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 + 1)(2(1) + 1)$ Induction Step: $1. 1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2$ $2. = (1/6)n(n+1)(2n+1) + (n+1)^2$ {IH} 3. = (n+1)[(1/6)n(2n+1) + (n+1)]4. = (1/6)(n+1)[n(2n+1) + 6(n+1)] $5. = (1/6)(n+1)[2n^2 + n + 6n + 6]$

• For integer n > 0: $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6)n(n+1)(2n+1)$ Base Case: $1^2 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 + 1)(6)(2)(3)$ 1)(2(1) + 1)Induction Step: 1. $1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2$ 2. = $(1/6)n(n+1)(2n+1) + (n+1)^2$ {IH} **3**. = (n+1)[(1/6)n(2n+1) + (n+1)]4. = (1/6)(n+1)[n(2n+1)+6(n+1)]5. = $(1/6)(n+1)[2n^2 + n + 6n + 6]$ 6. = $(1/6)(n+1)[2n^2+3n+4n+6]$

• For integer n > 0: $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6)n(n+1)(2n+1)$ Base Case: $1^2 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 + 1)(6)(2)(3)$ 1)(2(1) + 1)Induction Step: 1. $1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2$ 2. = $(1/6)n(n+1)(2n+1) + (n+1)^2$ {IH} **3**. = (n+1)[(1/6)n(2n+1) + (n+1)]4. = (1/6)(n+1)[n(2n+1) + 6(n+1)]5. = $(1/6)(n+1)[2n^2 + n + 6n + 6]$ 6. = $(1/6)(n+1)[2n^2 + 3n + 4n + 6]$ 7. = (1/6)(n+1)(n+2)(2n+3)

• For integer n > 0: $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6)n(n+1)(2n+1)$ Base Case: $1^2 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 + 1)(6)(2)(3)$ 1)(2(1) + 1)Induction Step: 1. $1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2$ 2. = $(1/6)n(n+1)(2n+1) + (n+1)^2$ {IH} **3**. = (n+1)[(1/6)n(2n+1) + (n+1)]4. = (1/6)(n+1)[n(2n+1) + 6(n+1)]5. = $(1/6)(n+1)[2n^2 + n + 6n + 6]$ 6. = $(1/6)(n+1)[2n^2 + 3n + 4n + 6]$ 7. = (1/6)(n+1)(n+2)(2n+3)8. = (1/6)(n+1)(n+2)(2n+2+1)

• For integer n > 0: $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6)n(n+1)(2n+1)$ Base Case: $1^2 = 1 = (6/6) = (1/6)(2)(3) = (1/6)1(1 + 1)(6)(2)(3)$ 1)(2(1) + 1)Induction Step: 1. $1^2 + 2^2 + 3^2 + \dots + n^2 + (n+1)^2$ 2. = $(1/6)n(n+1)(2n+1) + (n+1)^2$ {IH} **3**. = (n+1)[(1/6)n(2n+1) + (n+1)]4. = (1/6)(n+1)[n(2n+1) + 6(n+1)]5. = $(1/6)(n+1)[2n^2 + n + 6n + 6]$ 6. = $(1/6)(n+1)[2n^2 + 3n + 4n + 6]$ 7. = (1/6)(n+1)(n+2)(2n+3)8. = (1/6)(n+1)(n+2)(2n+2+1)9. = (1/6)(n+1)(n+2)(2(n+1)+1)

• For integer n > 0: $2^2 + 5^2 + 8^2 + (3n-1)^2 = (1/2)n(6n^2 + 3n-1)$ Base Case: $2^2 = 4 = 8/2 = (1/2)(6 + 3 - 1)$ Inductive Step: 1. $2^2 + 5^2 + 8^2 + (3n - 1)^2 + (3(n + 1) - 1)^2$ 2. = $(1/2)n(6n^2 + 3n - 1) + (3(n + 1) - 1)^2$ {IH} **3**. = $(1/2)n(6n^2 + 3n - 1) + (2/2)(3n + 3 - 1)^2$ 4. = $(1/2)[n(6n^2 + 3n - 1) + 2(3n + 2)^2]$ 5. = $(1/2)[n(6n^2 + 3n - 1) + 2(9n^2 + 12n + 4)]$ 6. = $(1/2)[6n^3 + 3n^2 - n + 18n^2 + 24n + 8]$ 7. = $(1/2)[6n^3 + 21n^2 + 23n + 8]$ 8. = $(1/2)(n+1)(6n^2+15n+8)$ 9. = $(1/2)(n+1)(6n^2+15n+9-1)$ 10. = $(1/2)(n+1)(6n^2 + 12n + 6 + 3n + 3 - 1)$

11. = $(1/2)(n+1)(6(n^2+2n+1)+3(n+1)-1)$ 12. = $(1/2)(n+1)(6(n+1)^2+3(n+1)-1)$

• One of De Morgan's laws is: $\neg(X_1 \land X_2) \equiv \neg X_1 \lor \neg X_2$.

• One of De Morgan's laws is: $\neg(X_1 \land X_2) \equiv \neg X_1 \lor \neg X_2$. This can be generalized to $\neg(X_1 \land ... \land X_n) \equiv \neg X_1 \lor ... \lor \neg X_n$.

• One of De Morgan's laws is: $\neg(X_1 \land X_2) \equiv \neg X_1 \lor \neg X_2$. This can be generalized to $\neg(X_1 \land ... \land X_n) \equiv \neg X_1 \lor ... \lor \neg X_n$. Prove the general version.

• One of De Morgan's laws is: $\neg(X_1 \land X_2) \equiv \neg X_1 \lor \neg X_2$. This can be generalized to $\neg(X_1 \land ... \land X_n) \equiv \neg X_1 \lor ... \lor \neg X_n$. Prove the general version. Base Case: De Morgan's Law.

• One of De Morgan's laws is: $\neg(X_1 \land X_2) \equiv \neg X_1 \lor \neg X_2$. This can be generalized to $\neg(X_1 \land ... \land X_n) \equiv \neg X_1 \lor ... \lor \neg X_n$. Prove the general version. Base Case: De Morgan's Law. Inductive Step: $1, \neg X_1 \lor ... \lor \neg X_n \lor \neg X_{n+1}$

• One of De Morgan's laws is: $\neg(X_1 \land X_2) \equiv \neg X_1 \lor \neg X_2$. This can be generalized to $\neg(X_1 \land ... \land X_n) \equiv \neg X_1 \lor ... \lor \neg X_n$. Prove the general version. Base Case: De Morgan's Law. Inductive Step: $1, \neg X_1 \lor ... \lor \neg X_n \lor \neg X_{n+1}$ $2, \equiv \neg(X_1 \land ... \land X_n) \lor \neg X_{n+1}$ {IH}

• One of De Morgan's laws is: $\neg(X_1 \land X_2) \equiv \neg X_1 \lor \neg X_2$. This can be generalized to $\neg(X_1 \land ... \land X_n) \equiv \neg X_1 \lor ... \lor \neg X_n$. Prove the general version. Base Case: De Morgan's Law. Inductive Step: $1. \neg X_1 \lor ... \lor \neg X_n \lor \neg X_{n+1}$ $2. \equiv \neg(X_1 \land ... \land X_n) \lor \neg X_{n+1}$ {IH} $3. \equiv \neg[(X_1 \land ... \land X_n) \land X_{n+1}]$ {De Morgan's Law}

• One of De Morgan's laws is: $\neg(X_1 \land X_2) \equiv \neg X_1 \lor \neg X_2$. This can be generalized to $\neg(X_1 \land ... \land X_n) \equiv \neg X_1 \lor ... \lor \neg X_n$. Prove the general version. Base Case: De Morgan's Law. Inductive Step: 1. $\neg X_1 \lor ... \lor \neg X_n \lor \neg X_{n+1}$ 2. $\equiv \neg(X_1 \land ... \land X_n) \lor \neg X_{n+1}$ {IH} 3. $\equiv \neg[(X_1 \land ... \land X_n) \land X_{n+1}]$ {De Morgan's Law} 4. $\equiv \neg(X_1 \land ... \land X_n \land X_{n+1})$ {Associativity}

• For integer $n \ge 10$, $2^n > n^3$

• For integer $n \ge 10$, $2^n > n^3$

• For integer n > 0: 9 divides $(4^n + 6n - 1)$

• For integer $n \ge 10$, $2^n > n^3$

• For integer $n \ge 10$, $2^n > n^3$ Base Case: $2^{10} = 1024 > 1000 = 10^3$

• For integer $n \ge 10$, $2^n > n^3$ Base Case: $2^{10} = 1024 > 1000 = 10^3$ Inductive Case: 1. 2^{n+1}

• For integer $n \ge 10$, $2^n > n^3$ Base Case: $2^{10} = 1024 > 1000 = 10^3$ Inductive Case: 1. 2^{n+1} 2. $= 2 \times 2^n$

• For integer $n \ge 10$, $2^n > n^3$ Base Case: $2^{10} = 1024 > 1000 = 10^3$ Inductive Case: 1. 2^{n+1} 2. $= 2 \times 2^n$ 3. $> 2 \times n^3$ {IH}

• For integer $n \ge 10$, $2^n > n^3$ Base Case: $2^{10} = 1024 > 1000 = 10^3$ Inductive Case: 1. 2^{n+1} 2. $= 2 \times 2^n$ 3. $> 2 \times n^3$ {IH} 4. $= n^3 + n^3$

• For integer $n \ge 10$, $2^n > n^3$ Base Case: $2^{10} = 1024 > 1000 = 10^3$ Inductive Case: 1. 2^{n+1} 2. $= 2 \times 2^n$ 3. $> 2 \times n^3$ {IH} 4. $= n^3 + n^3$ 5. $> n^3 + 10n^2$ {since $n \ge 10$ }

• For integer $n \ge 10$, $2^n > n^3$ Base Case: $2^{10} = 1024 > 1000 = 10^3$ Inductive Case: 1. 2^{n+1} 2. $= 2 \times 2^n$ 3. $> 2 \times n^3$ {IH} 4. $= n^3 + n^3$ 5. $\ge n^3 + 10n^2$ {since $n \ge 10$ } 6. $= n^3 + 3n^2 + 7n^2$

• For integer $n \ge 10$, $2^n > n^3$ Base Case: $2^{10} = 1024 > 1000 = 10^3$ Inductive Case: 1. 2^{n+1} 2. = 2×2^n 3. > 2 × n^3 {IH} $4 = n^3 + n^3$ 5. $> n^3 + 10n^2$ {since $n \ge 10$ } 6. $= n^3 + 3n^2 + 7n^2$ 7. > $n^3 + 3n^2 + 70n$ {since n > 10}

• For integer $n \ge 10$, $2^n > n^3$ Base Case: $2^{10} = 1024 > 1000 = 10^3$ Inductive Case: 1. 2^{n+1} 2. = 2×2^n 3. > 2 × n^3 {IH} $4_{1} = n^{3} + n^{3}$ 5. $> n^3 + 10n^2$ {since n > 10} 6. $= n^3 + 3n^2 + 7n^2$ 7. > $n^3 + 3n^2 + 70n$ {since n > 10} 8. $= n^3 + 3n^2 + 3n + 67n$

```
• For integer n \ge 10, 2^n > n^3
Base Case: 2^{10} = 1024 > 1000 = 10^3
Inductive Case:
1. 2^{n+1}
2. = 2 \times 2^n
3. > 2 × n^3 {IH}
4_{1} = n^{3} + n^{3}
5. > n^3 + 10n^2 {since n > 10}
6. = n^3 + 3n^2 + 7n^2
7. > n^3 + 3n^2 + 70n {since n > 10}
8. = n^3 + 3n^2 + 3n + 67n
9. > n^3 + 3n^2 + 3n + 1
```



```
• For integer n \ge 10, 2^n > n^3
Base Case: 2^{10} = 1024 > 1000 = 10^3
Inductive Case:
]. 2^{n+1}
2. = 2 \times 2^n
3. > 2 × n^3 {IH}
4_{1} = n^{3} + n^{3}
5. > n^3 + 10n^2 {since n > 10}
6. = n^3 + 3n^2 + 7n^2
7. > n^3 + 3n^2 + 70n {since n > 10}
8. = n^3 + 3n^2 + 3n + 67n
9_1 > n^3 + 3n^2 + 3n + 1
10. = (n+1)^3
```


• For integer n > 0: 9 divides $(4^n + 6n - 1)$

• For integer n > 0: 9 divides $(4^n + 6n - 1)$ Base Case: (4 + 6 - 1) = 9, which is divisible by 9.

• For integer n > 0: 9 divides $(4^n + 6n - 1)$ Base Case: (4 + 6 - 1) = 9, which is divisible by 9. Inductive Case: $1, 4^{n+1} + 6(n + 1) - 1$

• For integer n > 0: 9 divides $(4^n + 6n - 1)$ Base Case: (4 + 6 - 1) = 9, which is divisible by 9. Inductive Case: 1. $4^{n+1} + 6(n + 1) - 1$ 2. $4^{n+1} + 6n + 6 - 1$

• For integer n > 0: 9 divides $(4^n + 6n - 1)$ Base Case: (4 + 6 - 1) = 9, which is divisible by 9. Inductive Case: 1. $4^{n+1} + 6(n + 1) - 1$ 2. $4^{n+1} + 6n + 6 - 1$ 3. $4^{n+1} + 6n + 5$

• For integer n > 0: 9 divides $(4^n + 6n - 1)$ Base Case: (4 + 6 - 1) = 9, which is divisible by 9. Inductive Case: 1. $4^{n+1} + 6(n + 1) - 1$ 2. $4^{n+1} + 6n + 6 - 1$ 3. $4^{n+1} + 6n + 5$ 4. $4^{n+1} + 6n + 18n - 18n + 5 - 4 + 4$

• For integer n > 0: 9 divides $(4^n + 6n - 1)$ Base Case: (4 + 6 - 1) = 9, which is divisible by 9. Inductive Case: 1. $4^{n+1} + 6(n + 1) - 1$ 2. $4^{n+1} + 6n + 6 - 1$ 3. $4^{n+1} + 6n + 5$ 4. $4^{n+1} + 6n + 18n - 18n + 5 - 4 + 4$ 5. $4^{n+1} + 24n - 4 - 18n + 9$

• For integer n > 0: 9 divides $(4^n + 6n - 1)$ Base Case: (4 + 6 - 1) = 9, which is divisible by 9. Inductive Case: 1. $4^{n+1} + 6(n + 1) - 1$ 2. $4^{n+1} + 6n + 6 - 1$ 3. $4^{n+1} + 6n + 5$ 4. $4^{n+1} + 6n + 18n - 18n + 5 - 4 + 4$ 5. $4^{n+1} + 24n - 4 - 18n + 9$ 6. $4(4^n + 6n - 1) + 9(1 - 2n)$

• For integer n > 0: 9 divides $(4^n + 6n - 1)$ Base Case: (4+6-1) = 9, which is divisible by 9. Inductive Case: 1. $4^{n+1} + 6(n+1) - 1$ 2. $4^{n+1} + 6n + 6 - 1$ 3. $4^{n+1} + 6n + 5$ **4**. $4^{n+1} + 6n + 18n - 18n + 5 - 4 + 4$ 5. $4^{n+1} + 24n - 4 - 18n + 9$ 6. $4(4^n + 6n - 1) + 9(1 - 2n)$ 7. 4(9k) + 9(1 - 2n) {IH: k is an integer}

• For integer n > 0: 9 divides $(4^n + 6n - 1)$ Base Case: (4+6-1) = 9, which is divisible by 9. Inductive Case: 1. $4^{n+1} + 6(n+1) - 1$ 2. $4^{n+1} + 6n + 6 - 1$ 3. $4^{n+1} + 6n + 5$ **4**. $4^{n+1} + 6n + 18n - 18n + 5 - 4 + 4$ 5. $4^{n+1} + 24n - 4 - 18n + 9$ 6. $4(4^n + 6n - 1) + 9(1 - 2n)$ 7. 4(9k) + 9(1-2n) {IH: k is an integer} 8. 9(4k+1-2n)

• For integer n > 0: 9 divides $(4^n + 6n - 1)$ Base Case: (4+6-1) = 9, which is divisible by 9. Inductive Case: 1. $4^{n+1} + 6(n+1) - 1$ 2. $4^{n+1} + 6n + 6 - 1$ 3. $4^{n+1} + 6n + 5$ **4**. $4^{n+1} + 6n + 18n - 18n + 5 - 4 + 4$ 5. $4^{n+1} + 24n - 4 - 18n + 9$ 6. $4(4^n + 6n - 1) + 9(1 - 2n)$ 7. 4(9k) + 9(1 - 2n) {IH: k is an integer} 8. 9(4k+1-2n)9. (4k + 1 - 2n) is an integer, so quantity is divisible by 9.

• For integer n > 0: $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$, given the fact: $[k \ge 1] \rightarrow [\frac{1}{k(k+1)} \ge \frac{1}{(k+1)^2}]$

• For integer n > 0: $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$, given the fact: $[k \ge 1] \rightarrow [\frac{1}{k(k+1)} \ge \frac{1}{(k+1)^2}]$ Base Case: $\frac{1}{1^2} = 1 \le 1 = 2 - 1 = 2 - \frac{1}{1}$.

• For integer n > 0: $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$, given the fact: $[k \ge 1] \rightarrow [\frac{1}{k(k+1)} \ge \frac{1}{(k+1)^2}]$ Base Case: $\frac{1}{1^2} = 1 \le 1 = 2 - 1 = 2 - \frac{1}{1}$. Inductive Case: $1. \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} \le 2 - \frac{1}{k}$ {Inductive hypothesis}

• For integer n > 0: $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$, given the fact: $[k \ge 1] \rightarrow [\frac{1}{k(k+1)} \ge \frac{1}{(k+1)^2}]$ Base Case: $\frac{1}{1^2} = 1 \le 1 = 2 - 1 = 2 - \frac{1}{1}$. Inductive Case: $1. \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} \le 2 - \frac{1}{k}$ {Inductive hypothesis} $2. \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{k(k+1)}$

• For integer n > 0: $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$, given the fact: $[k \ge 1] \rightarrow [\frac{1}{k(k+1)} \ge \frac{1}{(k+1)^2}]$ Base Case: $\frac{1}{1^2} = 1 \le 1 = 2 - 1 = 2 - \frac{1}{1}$. Inductive Case: 1. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} \le 2 - \frac{1}{k}$ {Inductive hypothesis} 2. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{k(k+1)}$ {Add inequality $\frac{1}{(k+1)^2} \le \frac{1}{k(k+1)}$, (FACT)}

• For integer n > 0: $\frac{1}{12} + \frac{1}{22} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$, given the fact: $[k \ge 1] \to [\frac{1}{k(k+1)} \ge \frac{1}{(k+1)^2}]$ Base Case: $\frac{1}{12} = 1 \le 1 = 2 - 1 = 2 - \frac{1}{1}$. Inductive Case: 1. $\frac{1}{12} + \frac{1}{22} + ... + \frac{1}{k^2} \le 2 - \frac{1}{k}$ {Inductive hypothesis} 2. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{k(k+1)}$ {Add inequality $\frac{1}{(k+1)^2} \leq \frac{1}{k(k+1)}$, (FACT)} 3. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{k+1}{k(k+1)} + \frac{1}{k(k+1)}$

• For integer n > 0: $\frac{1}{12} + \frac{1}{22} + ... + \frac{1}{n^2} \le 2 - \frac{1}{n}$, given the fact: $[k \ge 1] \to [\frac{1}{k(k+1)} \ge \frac{1}{(k+1)^2}]$ Base Case: $\frac{1}{12} = 1 \le 1 = 2 - 1 = 2 - \frac{1}{1}$. Inductive Case: 1. $\frac{1}{1^2} + \frac{1}{2^2} + ... + \frac{1}{k^2} \le 2 - \frac{1}{k}$ {Inductive hypothesis} 2. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{k(k+1)}$ {Add inequality $\frac{1}{(k+1)^2} \leq \frac{1}{k(k+1)}$, (FACT)} 3. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{k+1}{k(k+1)} + \frac{1}{k(k+1)}$ {Common denominator}

• For integer n > 0: $\frac{1}{12} + \frac{1}{22} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$, given the fact: $[k \ge 1] \to [\frac{1}{k(k+1)} \ge \frac{1}{(k+1)^2}]$ Base Case: $\frac{1}{12} = 1 \le 1 = 2 - 1 = 2 - \frac{1}{1}$. Inductive Case: 1. $\frac{1}{12} + \frac{1}{22} + ... + \frac{1}{k^2} \le 2 - \frac{1}{k}$ {Inductive hypothesis} 2. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{k(k+1)}$ {Add inequality $\frac{1}{(k+1)^2} \leq \frac{1}{k(k+1)}$, (FACT)} 3. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{k+1}{k(k+1)} + \frac{1}{k(k+1)}$ {Common denominator} 4. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{k}{k(k+1)}$ {Add}

• For integer n > 0: $\frac{1}{12} + \frac{1}{22} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$, given the fact: $[k \ge 1] \to [\frac{1}{k(k+1)} \ge \frac{1}{(k+1)^2}]$ Base Case: $\frac{1}{12} = 1 \le 1 = 2 - 1 = 2 - \frac{1}{1}$. Inductive Case: 1. $\frac{1}{1^2} + \frac{1}{2^2} + ... + \frac{1}{k^2} \le 2 - \frac{1}{k}$ {Inductive hypothesis} 2. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{k(k+1)}$ {Add inequality $\frac{1}{(k+1)^2} \leq \frac{1}{k(k+1)}$, (FACT)} 3. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{k+1}{k(k+1)} + \frac{1}{k(k+1)}$ {Common denominator} 4. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{k}{k(k+1)}$ {Add} 5. $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k+1}$ {Divide}

• $(n^2 - 1)$ is divisible by 8 whenever n is an odd positive integer

• Modules 9 on strong induction

Peter Stone

- Modules 9 on strong induction
- Work on third homework **due at start of class** next Tuesday

