

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

 Prove that for any non-empty set A, there does not exist a bijective function from A to P(A) where P(A) is power set of A (remember that A could be infinite).

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

• Start/keep reviewing everything we've done

- Start/keep reviewing everything we've done
- Thurday and Tuesday is more advanced material

- Start/keep reviewing everything we've done
- Thurday and Tuesday is more advanced material
 - Different types of infinity

Some important concepts

• Sets vs. tuples

- Sets vs. tuples
- Cartesian product: deck of cards, plane

- Sets vs. tuples
- Cartesian product: deck of cards, plane
- injection, surjection, bijection

$\bullet \ X \subseteq A \cap B \leftrightarrow X \subseteq A \wedge X \subseteq B$

$\bullet \ X \subseteq A \cap B \leftrightarrow X \subseteq A \wedge X \subseteq B$

• $P(A \cap B) = P(A) \cap P(B)$ (use previous problem's result)

• $A \subseteq B$ iff $P(A) \subseteq P(B)$.

• $A \subseteq B$ iff $P(A) \subseteq P(B)$.

• $(A \bigcup B) \times C = (A \times C) \bigcup (B \times C).$

- Look at fourth homework
- Module 16.5

- Look at fourth homework
- Module 16.5

