CS311H

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

Are there any questions?

• Applications of graphs?

Are there any questions?

- Applications of graphs?
- Graph of degree k colorable with k + 1 colors

Are there any questions?

- Applications of graphs?
- Graph of degree k colorable with k + 1 colors
 - Clever predicate!

• How was the midterm?

- How was the midterm?
 - I know it was long, but everything should have been doable.

- How was the midterm?
 - I know it was long, but everything should have been doable.
 - Next exam will be of similar difficulty

- How was the midterm?
 - I know it was long, but everything should have been doable.
 - Next exam will be of similar difficulty
- New unit: graph theory and counting

How Many Handshakes Occur?

1. 12 people go to a party and everyone shakes each other's hand.

How Many Handshakes Occur?

1. 12 people go to a party and everyone shakes each other's hand.

2. 12 couples go to a party and everyone shakes hands with everyone except for their spouse.

3. Three groups of people go to a party. No one shakes hands with anyone from the group they came with but they all shake hands with everyone else. The sizes of the three groups are 4, 6 and 10.

What's the induced subgraph?

• Vertices $\{v_1, v_2, v_3\}$ of graph $G = (\{v_1, v_2, v_3, v_4\}, \{(v_1, v_2), (v_2, v_4), (v_3, v_4), (v_2, v_3)\})$

• Vertices $\{v_1, v_2, v_3\}$ of graph $G = (\{v_1, v_2, v_3, v_4\}, \{(v_1, v_2), (v_2, v_4), (v_3, v_4), (v_2, v_3)\})$ Answer: $(\{v_1, v_2, v_3\}, \{(v_1, v_2), (v_2, v_3)\})$.

 If in a graph with n > 1 vertices, all vertices have the same neighborhood, then the neighborhood of all vertices is the empty set.

- If in a graph with n > 1 vertices, all vertices have the same neighborhood, then the neighborhood of all vertices is the empty set.
 - 1. Proof by contradiction: Assume the neighborhood of all vertices is non-empty.

- If in a graph with n > 1 vertices, all vertices have the same neighborhood, then the neighborhood of all vertices is the empty set.
 - 1. Proof by contradiction: Assume the neighborhood of all vertices is non-empty.
 - 2. Then all neighborhoods contain a vertex v, including v's neighborhood.

- If in a graph with n > 1 vertices, all vertices have the same neighborhood, then the neighborhood of all vertices is the empty set.
 - 1. Proof by contradiction: Assume the neighborhood of all vertices is non-empty.
 - 2. Then all neighborhoods contain a vertex v, including v's neighborhood.
 - 3. However, this means v is its own neighbor, which means there is self-loop.

- If in a graph with n > 1 vertices, all vertices have the same neighborhood, then the neighborhood of all vertices is the empty set.
 - 1. Proof by contradiction: Assume the neighborhood of all vertices is non-empty.
 - 2. Then all neighborhoods contain a vertex v, including v's neighborhood.
 - 3. However, this means v is its own neighbor, which means there is self-loop.
 - 4. Self-loops are not allowed, so this is a contradiction.

1. A simple graph with 6 vertices, whose degrees are 2, 2, 2, 3, 4, 4.

 A simple graph with 6 vertices, whose degrees are 2, 2, 2, 3, 4, 4.

2. A simple graph with 8 vertices, whose degrees are 0, 1, 2, 3, 4, 5, 6, 7.

3. A simple graph with degrees 1, 2, 2, 3.

Possible or Impossible?

- A simple graph with 6 vertices, whose degrees are 2, 2, 2, 3, 4, 4.
 It is not possible to have one vertex of odd degree.
- 2. A simple graph with 8 vertices, whose degrees are 0, 1, 2, 3, 4, 5, 6, 7.
 It is not possible to have a vertex of degree 7 and a vertex of degree 0 in this graph.
- 3. A simple graph with degrees 1, 2, 2, 3. Possible: v_1, v_2, v_3, v_4 . Edges: $(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_3)$.

Assume that the graph has n vertices.

Ans:

Assume that the graph has n vertices.

Degrees are $\in \{0, 1, ..., ..n - 1\}$

Ans:

Assume that the graph has n vertices.

Degrees are $\in \{0, 1, ..., ..n - 1\}$

Can't have vertices with degree n-1 and 0.

Ans:

Assume that the graph has n vertices.

Degrees are $\in \{0, 1, ..., ..n - 1\}$

Can't have vertices with degree n-1 and 0.

Thus the vertices can have at most n-1 different degrees.

Ans:

Assume that the graph has n vertices.

Degrees are $\in \{0, 1, ..., ..n - 1\}$

Can't have vertices with degree n-1 and 0.

Thus the vertices can have at most n-1 different degrees. Therefore at least 2 must have the same degree.

Find the chromatic number k, and define a valid k-coloring for each graph.

• $G = (\{v_1, v_2, v_3, v_4\}, \{(v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_4), (v_3, v_4)\})$

Find the chromatic number k, and define a valid k-coloring for each graph.

• $G = (\{v_1, v_2, v_3, v_4\}, \{(v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_4), (v_3, v_4)\})$ Chromatic number is 3, and a valid 3-coloring is v_1 and v_4 RED, v_2 BLUE, and v_3 GREEN.

• For n > 0, suppose n star graphs are linked in a chain, such that there is one edge connecting some vertex in the i^{th} graph with some vertex in the $(i+1)^{th}$ graph for all i where 0 < i < n. Prove that the resulting graph is 2-colorable.

Scheduling

The Math Department has 6 committees that meet once a month. How many different meeting times must be used to guarantee that no one is scheduled to be at 2 meetings at the same time, if committees and their members are: C1 = {Allen, Brooks, Marg}, C2 = {Brooks, Jones, Morton}, C3 = {Allen, Marg, Morton}, C4 = {Jones, Marg, Morton}, C5 = {Allen, Brooks}, C6 = {Brooks, Marg, Morton}.

Scheduling

The Math Department has 6 committees that meet once a month. How many different meeting times must be used to guarantee that no one is scheduled to be at 2 meetings at the same time, if committees and their members are: C1 = {Allen, Brooks, Marg}, C2 = {Brooks, Jones, Morton}, C3 = {Allen, Marg, Morton}, C4 = {Jones, Marg, Morton}, C5 = {Allen, Brooks}, C6 = {Brooks, Marg, Morton}.

Ans:

We can draw a graph with C1 to C6 as vertices and an edge between the vertices if they share common elements. The answer is again the chromatic number of the graph - 5. Only C4 and C5 do not share any common elements.

Suppose for directed graph G = (V, E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique.

Suppose for directed graph G = (V, E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique. Formally, $D(G) \equiv \forall v \in V[deg^+(v) \neq deg^-(v)],$

Suppose for directed graph G = (V, E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique. Formally, $D(G) \equiv \forall v \in V[deg^+(v) \neq deg^-(v)],$

$$I(G) \equiv \forall v, u \in V[deg^{-}(v) = deg^{-}(u) \to u = v]$$

Suppose for directed graph G = (V, E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique. Formally, $D(G) = \forall v \in V[dea^+(v) \neq dea^-(v)]$

$$D(G) \equiv \forall v \in v [aeg^+(v) \neq aeg^-(v)],$$

$$I(G) \equiv \forall v, u \in V[deg^-(v) = deg^-(u) \to u = v],$$

$$O(G) \equiv \forall v, u \in V[deg^+(v) = deg^+(u) \to u = v],$$

Suppose for directed graph G = (V, E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique.Formally, $D(G) \equiv \forall v \in V[deg^+(v) \neq deg^-(v)],$ $I(G) \equiv \forall v, u \in V[deg^-(v) = deg^-(u) \rightarrow u = v]$ $O(G) \equiv \forall v, u \in V[deg^+(v) = deg^+(u) \rightarrow u = v]$

• Prove that for any even number n, there exists a graph with n vertices that has these properties.

Suppose for directed graph G = (V, E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique.Formally, $D(G) \equiv \forall v \in V[deg^+(v) \neq deg^-(v)],$ $I(G) \equiv \forall v, u \in V[deg^-(v) = deg^-(u) \rightarrow u = v]$ $O(G) \equiv \forall v, u \in V[deg^+(v) = deg^+(u) \rightarrow u = v]$

Prove that for any even number n, there exists a graph with n vertices that has these properties.
 Define: V(G, n) ≡ "graph G has n vertices"
 Formally, prove: ∀k > 0, ∃G[V(G, 2k) ∧ D(G) ∧ I(G) ∧ O(G)].

• Modules 12 and 13

