
Proof of Sufficiency for Euler Circuits

First we will prove a lemma, the use of which will be allowed on future
assignments:

1 Lemma Proof

Claim: Every connected graph of two or more vertices has a vertex that can
be removed (along with its incident edges) without disconnecting the remaining
graph.
Proof: We will prove an even stronger fact by induction on the number of
vertices:
P (n) = “A connected graph with n vertices has two distinct vertices, each of
which can be removed individually (along with incident edges) without discon-
necting the remaining graph”
Base Case: P (2): Either one of the vertices can be removed. The remaining
graph is a single vertex in both cases, which is a connected graph.
Inductive Case: P (2) ∧ · · · ∧ P (n)→ P (n + 1)

1. Consider arbitrary connected graph G with n + 1 vertices.

2. Remove an arbitrary vertex v to get G′.

3. Case 1: G′ is connected

(a) Since P (n) is true (Inductive Hypothesis), there are two distinct ver-
tices w and u that (individually) can be removed from G′ without
disconnecting it.

(b) Sub-case 1: v was only connected to w:
Then if u were removed from G instead of v, the resulting graph
would still be connected.
Sub-case 2: v was connected to a vertex besides w:
Then if w were removed from G instead of v, the resulting graph
would still be connected.

(c) Therefore, two distinct vertices can be safely removed from G, and
we are done.

4. Case 2: G′ is disconnected

5. Then G′ is made up of k connected component subgraphs C1, . . . , Ck.
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6. k ≥ 2 because with at least n+1 vertices in G where n ≥ 2, the remaining n
vertices (at least 2) must be in separate components if G′ is disconnected.

7. Each component Ci has a vertex vi that was a neighbor of v in G.

8. Case 2.1: For each Ci, vertex vi is the only vertex in the component.

(a) Add v back to G′ get G again, and then remove v1 instead.

(b) Alternately, since k ≥ 2, we could have removed vk instead.

(c) Now we have removed a vertex from G in two different ways, and
each results in a connected graph.

9. Case 2.2: At least one of Ci, call it Cq, has 2 or more vertices.

(a) The Strong Inductive Hypothesis applies to Cq, so there are two
distinct vertices that can be removed from Cq without disconnecting
it.

(b) Since there are two, and they are distinct, at least one of them is not
vq. Call the other one x.

(c) Add v back to G′ to get G again.

(d) We have already identified one vertex, x, that can be safely removed
from G without disconnecting it.

(e) We also know that there is at least one other Cp where p 6= q because
k ≥ 2.

(f) If Cp is just one vertex, we can remove it (vp) as in Case 2.1.

(g) If Cp is more than one vertex, then the I.H. allows us to find and
remove one vertex (not vp) as in Case 2.2.

(h) The vertex removed from Cp accounts for the second vertex that we
could remove from G without disconnecting it.

10. In all cases, P (n+ 1) is true because we found two distinct vertices, either
of which could be removed without disconnecting G.

Feel free to use this lemma on tests and other assignments. Now we can use
this lemma to do the actual proofs from class.
Note: Can you figure out why the stronger fact about two distinct vertices had
to be proven instead? All we care about is having one vertex to safely remove,
so why was this proof done instead? Discuss this on Piazza.

2 Induction on number of vertices

P (n) = “A connected multi-graph with n vertices, each of even degree, has an
Euler circuit”
Base Case: P (2):
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1. Because vertex degrees are even, there must be an even number of edges
between these two vertices.

2. Call the vertices a and b, and assume there are 2k edges.

3. Then going from a to b and then back again to a k times results in an
Euler circuit.

Inductive Case: P (n)→ P (n + 1)

1. Take arbitrary connect graph G with n + 1 vertices, each of even degree.

2. By the lemma, we can remove a vertex v (and incident edges) that does
not disconnect the graph. Call the result G′.

3. v had an even degree in G, so we can arbitrarily pair up all of v’s incident
edges.

4. For every such pair of edges (x, v), (v, y) that existed in G, add one edge
(x, y) to G′.

5. The degree of each remaining vertex in G′ stays the same as in G, so all
are still even.

6. The Inductive Hypothesis then indicates that G′ has an Euler circuit. Call
it C.

7. Add v back to get G again, and restore the edges to their original state.

8. Create a path in G from C: whenever an edge (x, y) is traversed that
existed in G′, but does not exist in G, traverse (x, v) then (v, y) instead.

9. The resulting path is an Euler circuit in G.

Q.E.D.

3 Induction on number of edges

P (n) = “A connected multi-graph with n edges and all vertices of even degree
has an Euler circuit”
Base Case: P (2):

1. Because there are only two edges, and vertex degrees are even, these edges
must both be between the same two vertices.

2. Call the vertices a and b: Then (a, b, a) is an Euler circuit.

Inductive Case: P (n)→ P (n + 1):

1. Start with connected graph G with n + 1 edges and vertices all of even
degree.
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2. By lemma, pick a vertex v that can be removed without disconnecting the
graph.

3. Since the removal of v will not disconnect the graph, no number of edges
removed from it will disconnect the graph either.

4. v must have at least 2 edges since the graph is connected and all vertices
have even degree.

5. Pick any two such edges (x, v) and (y, v).

6. Remove (x, v) and (y, v) from G, and add an edge (x, y). If v now has no
incident edges, remove it as well. Call the result G′.

7. G′ is connected, and it has n edges (we removed 2, but then added 1).

8. The Inductive Hypothesis says that G′ has an Euler circuit C.

9. Restore the graph to get G again, and traverse C within G.

10. The first time (x, y) is traversed, traverse (x, v) and then (v, y) instead.

11. The result is an Euler circuit in G.

Q.E.D.

4 Proof via maximal path

1. Consider a maximal simple path W = (a, . . . , b) in connected graph G,
where each vertex has even degree.

2. Look at the endpoint a, which like all other vertices has even degree.

3. Because W is maximal, a’s neighbors must be in W (otherwise we could
extend the path).

4. Moreover, for each neighbor x of a, each edge (x, a) must be in W in order
for the path to be maximal.

5. Because a is the starting point, and its even number of edges are all in the
path, the only way for all of them to be traversed is for W to end at a.

6. Therefore a = b and W is a (simple) circuit.

7. Now, assume W is not an Euler circuit BWOC.

8. Then there is an edge (x, y) that is not in W .

9. Since G is connected, there is a path from y to some vertex v in W , which
is (y, . . . , v).

10. Crete a path (x, y, . . . , v, . . . , a, . . . , v), which exists because W is a circuit.

11. This path is clearly longer than W , which contradicts the assumption that
it is a maximal path.
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