CS313H Logic, Sets, and Functions: Honors Fall 2012

Prof: Peter Stone TA: Jacob Schrum Proctor: Sudheesh Katkam

Department of Computer Science The University of Texas at Austin

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

• Office hours delayed

- Office hours delayed
- Grades

- Office hours delayed
- Grades
- Extra big-O problems on piazza

- Office hours delayed
- Grades
- Extra big-O problems on piazza
- Class Tuesday next week important
- No discussion Wed. before Thanksgiving

Questions

• log:

• log:remember that $\log_b x = \frac{\log_d x}{\log_d b}$

- log:remember that $\log_b x = \frac{\log_d x}{\log_d b}$
- Examples of usage, coming up with recurrences

Questions

- log:remember that $\log_b x = \frac{\log_d x}{\log_d b}$
- Examples of usage, coming up with recurrences
- Is Master theorem tight?

Questions

- log:remember that $\log_b x = \frac{\log_d x}{\log_d b}$
- Examples of usage, coming up with recurrences
- Is Master theorem tight?
- Can d be 0?

- log:remember that $\log_b x = \frac{\log_d x}{\log_d b}$
- Examples of usage, coming up with recurrences
- Is Master theorem tight?
- Can d be 0?
- Why is Master theorem true? (intuition, proof)

• For each function f(x) find a function g(x) such that f(x) is $\theta(g(x)).$

For each function f(x) find a function g(x) such that f(x) is θ(g(x)).
1. f(x) = 10
2. f(x) = 3x + 7
3. f(x) = x² + x + 1
4. f(x) = 5 log x
5. f(x) = floor(x)
6. f(x) = ceiling(x/2)

• For each function f(x) find a function g(x) such that f(x) is $\theta(g(x))$. 1. f(x) = 10

For each function f(x) find a function g(x) such that f(x) is θ(g(x)).
1. f(x) = 10 ⇒ g(x) = 1.
2. f(x) = 3x + 7

For each function f(x) find a function g(x) such that f(x) is θ(g(x)).
1. f(x) = 10 ⇒ g(x) = 1.
2. f(x) = 3x + 7 ⇒ g(x) = x.
3. f(x) = x² + x + 1

For each function f(x) find a function g(x) such that f(x) is θ(g(x)).
1. f(x) = 10 ⇒ g(x) = 1.
2. f(x) = 3x + 7 ⇒ g(x) = x.
3. f(x) = x² + x + 1 ⇒ g(x) = x².
4. f(x) = 5 log x

Big Theta

For each function f(x) find a function g(x) such that f(x) is θ(g(x)).
1. f(x) = 10 ⇒ g(x) = 1.
2. f(x) = 3x + 7 ⇒ g(x) = x.
3. f(x) = x² + x + 1 ⇒ g(x) = x².
4. f(x) = 5 log x ⇒ g(x) = log x.
5. f(x) = floor(x)

For each function f(x) find a function g(x) such that f(x) is θ(g(x)).
1. f(x) = 10 ⇒ g(x) = 1.
2. f(x) = 3x + 7 ⇒ g(x) = x.
3. f(x) = x² + x + 1 ⇒ g(x) = x².
4. f(x) = 5 log x ⇒ g(x) = log x.
5. f(x) = floor(x) ⇒ g(x) = x.
6. f(x) = ceiling(x/2)

For each function f(x) find a function g(x) such that f(x) is θ(g(x)).
1. f(x) = 10 ⇒ g(x) = 1.
2. f(x) = 3x + 7 ⇒ g(x) = x.
3. f(x) = x² + x + 1 ⇒ g(x) = x².
4. f(x) = 5 log x ⇒ g(x) = log x.
5. f(x) = floor(x) ⇒ g(x) = x.
6. f(x) = ceiling(x/2) ⇒ g(x) = x.

• Prove if f(x) is O(g(x)), then g(x) is $\Omega(f(x))$

Peter Stone

f increasing function with $f(n) = af(n/b) + cn^d$, $a \ge 1, b \in \mathbb{N}, c, d > 0$.

• Show that if $a = b^d$ and n a power of b, then $f(n) = f(1)n^d + cn^d \log_b n$.

f increasing function with $f(n) = af(n/b) + cn^d$, $a \ge 1, b \in \mathbb{N}, c, d > 0.$

- Show that if $a = b^d$ and n a power of b, then $f(n) = f(1)n^d + cn^d \log_b n$.
- Show that if $a = b^d$, then f(n) is $O(n^d \log n)$.

• Determine Big-O for the following:

1. $T(n) = 4T(n/5) + 6n^2$

• Determine Big-O for the following:

1. $T(n) = 4T(n/5) + 6n^2$ 2. $T(n) = 4T(\frac{n}{2}) + n^2$

• Determine Big-O for the following:

1. $T(n) = 4T(n/5) + 6n^2$ 2. $T(n) = 4T(\frac{n}{2}) + n^2$ 3. $T(n) = 8T(n/2) + 6n + 7\log n$

• Determine Big-O for the following:

1.
$$T(n) = 4T(n/5) + 6n^2$$

2.
$$T(n) = 4T(\frac{n}{2}) + n^2$$

3.
$$T(n) = 8T(n/2) + 6n + 7\log n$$

Answer: $7\log n = O(n) \Rightarrow 7\log n \le Cn$

- Determine Big-O for the following:
 - 1. $T(n) = 4T(n/5) + 6n^2$

2.
$$T(n) = 4T(\frac{n}{2}) + n^2$$

3.
$$T(n) = 8T(n/2) + 6n + 7\log n$$

Answer: $7\log n = O(n) \Rightarrow 7\log n \le Cn$
So, $T(n) = 8T(n/2) + 6n + 7\log n \le 8T(n/2) + 6n + Cn$

• Determine Big-O for the following:

1.
$$T(n) = 4T(n/5) + 6n^2$$

2.
$$T(n) = 4T(\frac{n}{2}) + n^2$$

3.
$$T(n) = 8T(n/2) + 6n + 7\log n$$

Answer: $7\log n = O(n) \Rightarrow 7\log n \le Cn$
So, $T(n) = 8T(n/2) + 6n + 7\log n \le 8T(n/2) + 6n + Cn = 8T(n/2) + (6 + C)n$

• Determine Big-O for the following:

1.
$$T(n) = 4T(n/5) + 6n^2$$

2.
$$T(n) = 4T(\frac{n}{2}) + n^2$$

3.
$$T(n) = 8T(n/2) + 6n + 7 \log n$$

Answer: $7 \log n = O(n) \Rightarrow 7 \log n \le Cn$
So, $T(n) = 8T(n/2) + 6n + 7 \log n \le 8T(n/2) + 6n + Cn =$
 $8T(n/2) + (6 + C)n$
Use Master Theorem: $8 > 2^1 \Rightarrow T(n) = O(n^{\log_2 8}) = O(n^3)$