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Logistics

e G0O0d job on quiz!
e For now, we'll confinue to push fast

e Next week’s assignments up
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Some imporiant concepts

e Contrapositive vs. contradiction
e HOw tO choose a proof technique

e WLOG

e Constructive vs. non-constructive
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Prove that...

e [The product of an even number and an odd number is
always even.

e If X and y are two integers whose product is even, then at
east one of the two must be even.

More formally: For x,y € Z, (Xy even) = (X even VvV y even)
Use contraposifive: (x odd Ay odd) = (xy odd)

e Forinteger n, If n? is even, then n is even.
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e SUPPOSe a, b and ¢ are integers. If (b is a multiple of a) and
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Prove that...

e SUPPOSe a, b and ¢ are integers. If (b is a multiple of a) and
(c is a multiple of a) then ((b + ¢) is a multiple of Q).

e [The length of the hypotenuse of a right triangle is less Than
the sum of the lengths of the two legs.

Peter Stone



Proof

1. Let a, b, and ¢ be different lengths of sides of a right
tfriangle, in which ¢ corresponds to the hypotenuse.
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Proof

1. Let a, b, and ¢ be different lengths of sides of a right
tfriangle, in which ¢ corresponds to the hypotenuse.
2. To prove that ¢ < a + b, assume the opposite, i.e. ¢ > a + b,

and seek a contradiction.
3. Because a, b, and ¢ are triangle side lengths, they are

posifive numbers.
4. Therefore, the assumed inequality can be squared to get

c? > (a+b)?
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Proof

1. Let a, b, and ¢ be different lengths of sides of a right
tfriangle, in which ¢ corresponds to the hypotenuse.

2. To prove that ¢ < a + b, assume the opposite, i.e. ¢ > a + b,
and seek a confradiction.

3. Because a, b, and ¢ are triangle side lengths, they are
positive numbers.

4. Therefore, the assumed inequality can be squared to get
c? > (a+b)?

5. Expand the right-hand side to get ¢? > a? + 2ab + b2
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Proof

1. Let a, b, and ¢ be different lengths of sides of a right
tfriangle, in which ¢ corresponds to the hypotenuse.

2. To prove that ¢ < a + b, assume the opposite, i.e. ¢ > a + b,
and seek a confradiction.
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4. Therefore, the assumed inequality can be squared to get
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5. Expand the right-hand side to get ¢? > a? + 2ab + b2

6. Because ¢ and b are positive, a + 2ab + b > a? + b2,
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Proof

1. Let a, b, and ¢ be different lengths of sides of a right
tfriangle, in which ¢ corresponds to the hypotenuse.

2. To prove that ¢ < a + b, assume the opposite, i.e. ¢ > a + b,
and seek a confradiction.

3. Because a, b, and ¢ are triangle side lengths, they are
positive numbers.

4. Therefore, the assumed inequality can be squared to get
c? > (a+b)?

5. Expand the right-hand side to get ¢? > a? + 2ab + b2

6. Because ¢ and b are positive, a + 2ab + b > a? + b2,

7. Combining the inequalities in lines 5 and 6 yields ¢? >
a’® + b2,

8. However, according to the Pythagorean Theorem: ¢?
a’ + b2, Contradicts line 7.
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