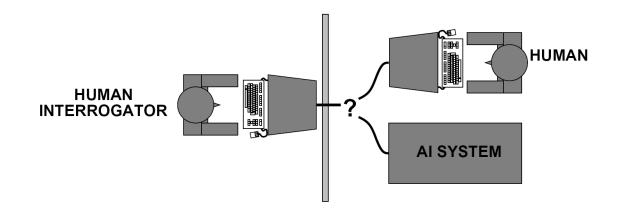

The science of making machines that:

Think like humans

Thinking Like Humans?

- The cognitive science approach:
 - 1960s ``cognitive revolution": information-processing psychology replaced prevailing orthodoxy of behaviorism
- Scientific theories of internal activities of the brain
 - What level of abstraction? "Knowledge" or "circuits"?
 - Cognitive science: Predicting and testing behavior of human subjects (top-down)
 - Cognitive neuroscience: Direct identification from neurological data (bottom-up)
 - Both approaches now distinct from AI
 - Both share with AI the following characteristic: The available theories do not explain (or engender) anything resembling human-level general intelligence


The science of making machines that:

Think like humans

Act like humans

Acting Like Humans?

- Turing (1950) "Computing machinery and intelligence"
 - "Can machines think?" → "Can machines behave intelligently?"
 - Operational test for intelligent behavior: the *Imitation Game*

- Predicted by 2000, a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning
- Problem: Turing test is not reproducible or amenable to mathematical analysis

The science of making machines that:

Think like humans	Think rationally
Act like humans	

Thinking Rationally?

The "Laws of Thought" approach

- What does it mean to "think rationally"?
- Normative / prescriptive rather than descriptive
- Logicist tradition:
 - Logic: notation and rules of derivation for thoughts
 - Aristotle: what are correct arguments/thought processes?
 - Direct line through mathematics, philosophy, to modern AI

Problems:

- Not all intelligent behavior is mediated by logical deliberation
- What is the purpose of thinking? What thoughts should I (bother to) have?
- Logical systems tend to do the wrong thing in the presence of uncertainty

The science of making machines that:

Think like humans	Think rationally
Act like humans	Act rationally

Acting Rationally

- Rational behavior: doing the "right thing"
 - The right thing: that which is expected to maximize goal achievement, given the available information
 - Doesn't necessarily involve thinking, e.g., blinking
 - Thinking can be in the service of rational action
 - Entirely dependent on goals!
 - Irrational ≠ insane, irrationality is sub-optimal action
 - Rational ≠ successful

Our focus here: rational agents

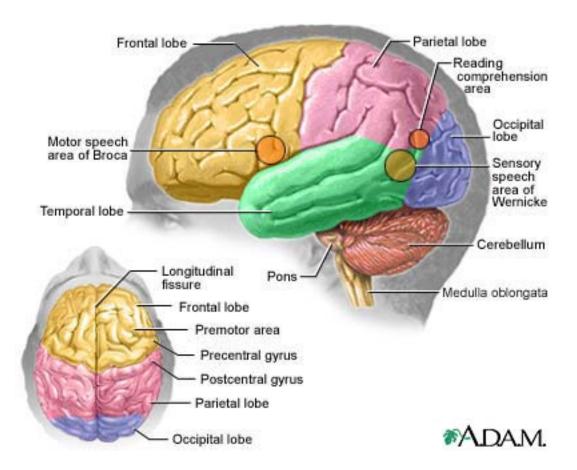
- Systems which make the best possible decisions given goals, evidence, and constraints
- In the real world, usually lots of uncertainty
 - ... and lots of complexity
- Usually, we're just approximating rationality
- "Computational rationality"

Rational Decisions

We'll use the term **rational** in a particular way:

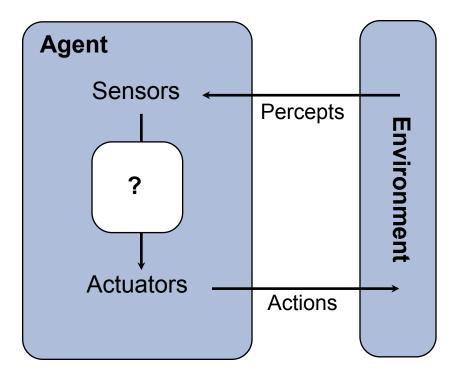
- Rational: maximally achieving pre-defined goals
- Rational only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the utility of outcomes
- Being rational means maximizing your expected utility

A better title for this course would be:

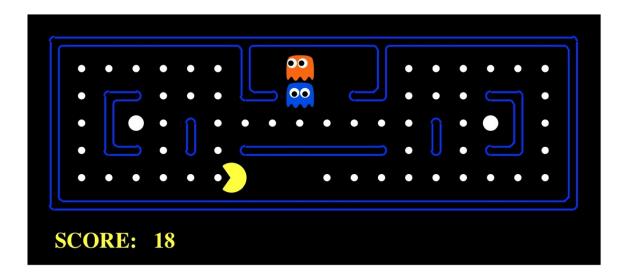

Computational Rationality

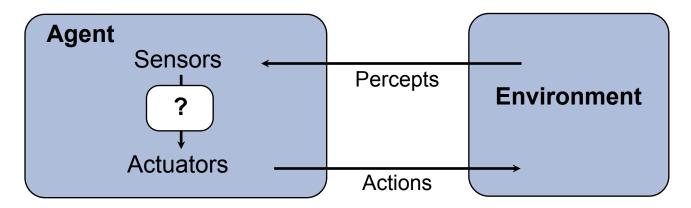
Acting Rationally

Maximize your expected utility.


What about the brain?

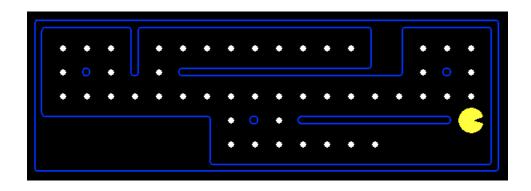
- Brains (human minds) are very good at making rational decisions (but not perfect)
- Brains aren't as modular as software
- "Brains are to intelligence as wings are to flight"
- Lessons learned: prediction and simulation are key to decision making

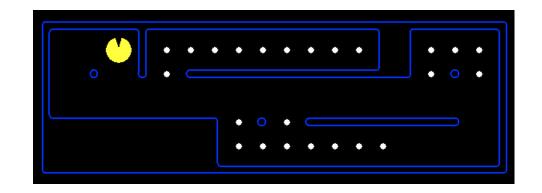

Designing Rational Agents


- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its utility function.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions.

- This course is about:
 - General AI techniques for a variety of problem types
 - Learning to recognize when and how a new problem can be solved with an existing technique

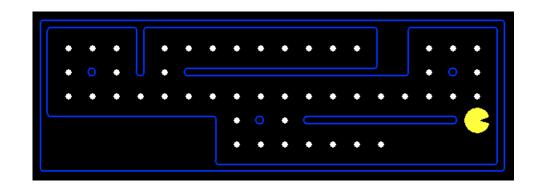
Pacman as an Agent

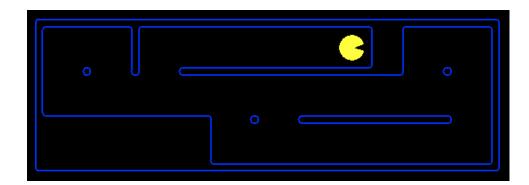




Reflex Agents

Reflex agents:


- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world's current state
- Do not consider the future consequences of their actions
- Consider how the world IS
- Can a reflex agent be rational?



Planning Agents

- Plan ahead
- Ask "what if"
- Decisions based on (hypothesized) consequences of actions

- Must have a model of how the world evolves in response to actions
- Consider how the world WOULD BE

Quiz: Reflex or Planning?

Select which type of agent is described:

- 1. Pacman, where Pacman is programmed to move in the direction of the closest food pellet
- 2. Pacman, where Pacman is programmed to move in the direction of the closest food pellet, unless there is a ghost in that direction that is less than 3 steps away.
- 3. A navigation system that first considers all possible routes to the destination, then selects the shortest route.

AI Adjacent Fields

- Philosophy:
 - Logic, methods of reasoning
 - Mind as physical system
 - Foundations of learning, language, rationality
- Mathematics
 - Formal representation and proof
 - Algorithms, computation, (un)decidability, (in)tractability
 - Probability and statistics
- Psychology
 - Adaptation
 - Phenomena of perception and motor control
 - Experimental techniques (psychophysics, etc.)
- Economics: formal theory of rational decisions
- Linguistics: knowledge representation, grammar
- Neuroscience: physical substrate for mental activity
- Control theory:
 - homeostatic systems, stability
 - simple optimal agent designs