343H: Honors Al

Week 3 – Beyond classical search

Today

- Review of A* and admissibility
- Graph search
- Consistent heuristics
- Local search
 - Hill climbing
 - Simulated annealing
 - Genetic algorithms
 - Continuous search spaces

Local Search Methods

 Tree search keeps unexplored alternatives on the fringe (ensures completeness)

- Local search: improve what you have until you can't make it better
- Tradeoff: Generally much faster and more memory efficient (but incomplete)

Types of Search Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations
- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What's good about it?

Hill Climbing Diagram

- Sideways steps?
- Random restarts?

"Many real problems have a landscape that looks more like a widely scattered family of balding porcupines on a flat floor, with miniature porcupines living on the tip of each porcupine needle, ad infinitum." [Russell & Norvig]

Quiz

• Hill climbing on this graph:

Could the computer paint a replica of the Mona Lisa using only 50 semi transparent polygons?

http://rogeralsing.com/2008

ı-of-mona-lisa/

Could the computer paint a replica of the Mona Lisa using only 50 semi transparent polygons?

http://rogeralsing.com/2008

ı-of-mona-lisa/

Could the computer paint a replica of the Mona Lisa using only 50 semi transparent polygons?

http://rogeralsing.com/2008

ı-of-mona-lisa/

Could the computer paint a replica of the Mona Lisa using only 50 semi transparent polygons?

904314.jpg

http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Accepting bad moves

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
inputs: problem, a problem
          schedule, a mapping from time to "temperature"
local variables: current, a node
                     next. a node
                     T, a "temperature" controlling prob. of downward steps
current \leftarrow MAKE-NODE(INITIAL-STATE[problem])
for t \leftarrow 1 to \infty do
     T \leftarrow schedule[t]
     if T = 0 then return current
     next \leftarrow a randomly selected successor of current
     \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
     if \Delta E > 0 then current \leftarrow next
     else current \leftarrow next only with probability e^{\Delta E/T}
```

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
inputs: problem, a problem
          schedule, a mapping from time to "temperature"
local variables: current, a node
                     next. a node
                     T, a "temperature" controlling prob. of downward steps
current \leftarrow MAKE-NODE(INITIAL-STATE[problem])
for t \leftarrow 1 to \infty do
     T \leftarrow schedule[t]
     if T = 0 then return current
     next \leftarrow a randomly selected successor of current
     \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
     if \Delta E > 0 then current \leftarrow next
     else current \leftarrow next only with probability e^{\Delta E/T}
```

Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution: $p(x) \propto e^{\frac{E(x)}{kT}}$
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to ever make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Beam Search

 Like greedy hillclimbing search, but keep K states at all times:

Greedy Search

Beam Search

- Variables: beam size, encourage diversity?
- The best choice in many practical settings

Genetic Algorithms

Fitness

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation

Example: N-Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

Exercise 4.1

Continuous Problems

- Placing airports in Romania
 - States: (x₁,y₁,x₂,y₂,x₃,y₃)
 - Cost: sum of squared distances to closest city

Gradient Methods

- How to deal with continous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$
$$x \leftarrow x + \alpha \nabla f(x)$$

Image from vias.og

Summary

- Graph search
 - Keep closed set, avoid redundant work
- A* graph search
 - Optimal if h is consistent
- Local search: Improve current state
 - Avoid local min traps (simulated annealing, crossover, beam search)