CS343 Artificial Intelligence

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

• Any questions about the search project?

- Any questions about the search project?
- Please give page numbers in responses, use correct headings

- Any questions about the search project?
- Please give page numbers in responses, use correct headings
- Exercise responses not all checked

- Any questions about the search project?
- Please give page numbers in responses, use correct headings
- Exercise responses not all checked
- Next week's readings posted: adversarial search

- Any questions about the search project?
- Please give page numbers in responses, use correct headings
- Exercise responses not all checked
- Next week's readings posted: adversarial search
- Future readings

- Any questions about the search project?
- Please give page numbers in responses, use correct headings
- Exercise responses not all checked
- Next week's readings posted: adversarial search
- Future readings
- Midterm and final

• Nondeterministic actions:

• Nondeterministic actions: AND-OR search

Peter Stone

- Nondeterministic actions: AND-OR search
- Partial observations:

- Nondeterministic actions: AND-OR search
- Partial observations: Belief states

- Nondeterministic actions: AND-OR search
- Partial observations: Belief states
- Unknown environments:

- Nondeterministic actions: AND-OR search
- Partial observations: Belief states
- Unknown environments: Online search

- Nondeterministic actions: AND-OR search
- Partial observations: Belief states
- Unknown environments: Online search
- Adversaries:

- Nondeterministic actions: AND-OR search
- Partial observations: Belief states
- Unknown environments: Online search
- Adversaries: Next week....

Pending Questions

- Ridges in state space
- AND-OR graphs
- Optimality of online agents
- Partially observable *and* unknown?
- How to know belief state in unknown environment?
- Linear programming

Partial Observability

Peter Stone

Continuous Local Search to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

Peter Stone

Continuous Local Search to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

- Start with a **parameterized walk**
- Learn fastest possible parameters

Continuous Local Search to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

- Start with a **parameterized walk**
- Learn fastest possible parameters
- No simulator available:
 - Learn entirely on robots
 - Minimal human intervention

- Walks that "come with" Aibo are **slow**
- RoboCup soccer: 25+ Aibo teams internationally
 - Motivates faster walks

- Walks that "come with" Aibo are **slow**
- **RoboCup** soccer: **25+ Aibo teams** internationally
 - Motivates faster walks

Hand-tuned gaits (2003)			Learned gaits		
German	UT Austin		Hornby et al.	Kim & Uther	
Ieam	VIIIO	UNSW	(1999)	(2003)	
230 mm/s	245	254	170	270 (±5)	

A Parameterized Walk

- Developed from scratch as part of UT Austin Villa 2003
- Trot gait with elliptical locus on each leg

Locus Parameters

12 continuous parameters

Locus Parameters

12 continuous parameters

- Hand tuning by April, '03: **140 mm/s**
- Hand tuning by July, '03: **245 mm/s**

Parameters To Learn

Parameter	Initial
	Value
Front ellipse:	
(height)	4.2
(x offset)	2.8
(y offset)	4.9
Rear ellipse:	
(height)	5.6
(x offset)	0.0
(y offset)	-2.8
Ellipse length	4.893
Ellipse skew multiplier	0.035
Front height	7.7
Rear height	11.2
Time to move	
through locus	0.704
Time on ground	0.5

• Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk speed when using π

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk **speed** when using π
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Multiple traversals (3) per policy to account for **noise**

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk **speed** when using π
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Multiple traversals (3) per policy to account for noise
 - Multiple robots evaluate policies simultaneously
 - Off-board computer collects results, assigns policies

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk **speed** when using π
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Multiple traversals (3) per policy to account for **noise**
 - Multiple robots evaluate policies simultaneously
 - Off-board computer collects results, assigns policies

No human intervention except battery changes

• From π want to move in direction of **gradient** of $V(\pi)$

- From π want to move in direction of **gradient** of $V(\pi)$
 - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: **estimate** empirically

- From π want to move in direction of gradient of $V(\pi)$ - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: estimate empirically
- Evaluate **neighboring policies** to estimate gradient
- Each trial randomly varies every parameter

- From π want to move in direction of **gradient** of $V(\pi)$ - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: **estimate** empirically
- Evaluate **neighboring policies** to estimate gradient
- Each trial randomly varies every parameter

Gradient Estimation

Taking a step

Taking a step

$$A_{i} = \begin{cases} 0 \text{ if } Avg_{+0,i} > Avg_{+\epsilon,i} \text{ and} \\ Avg_{+0,i} > Avg_{-\epsilon,i} \end{cases}$$
(1)
$$Avg_{+\epsilon,i} - Avg_{-\epsilon,i} \text{ otherwise} \end{cases}$$

Taking a step

• Normalize A, multiply by scalar step-size η

•
$$\pi = \pi + \eta A$$

TTY Department of Computer Sciences
The University of Texas at Austin

Experiments

- Started from **stable**, but fairly slow gait
- Used **3 robots** simultaneously
- Each iteration takes 45 traversals, $7\frac{1}{2}$ minutes

Experiments

- Started from **stable**, but fairly slow gait
- Used **3 robots** simultaneously
- Each iteration takes 45 traversals, $7\frac{1}{2}$ minutes

After learning

• 24 iterations = 1080 field traversals, \approx 3 hours

Results

Results

Additional iterations didn't help

• Spikes: evaluation **noise**? large **step size**?

Learned Parameters

Parameter	Initial	ϵ	Best
	Value		Value
Front ellipse:			
(height)	4.2	0.35	4.081
(x offset)	2.8	0.35	0.574
(y offset)	4.9	0.35	5.152
Rear ellipse:			
(height)	5.6	0.35	6.02
(x offset)	0.0	0.35	0.217
(y offset)	-2.8	0.35	-2.982
Ellipse length	4.893	0.35	5.285
Ellipse skew multiplier	0.035	0.175	0.049
Front height	7.7	0.35	7.483
Rear height	11.2	0.35	10.843
Time to move			
through locus	0.704	0.016	0.679
Time on ground	0.5	0.05	0.430

Algorithmic Comparison, Robot Port

Before learning

After learning

- Used policy gradient RL to learn fastest Aibo walk
- All learning done **on real robots**
- No human itervention (except battery changes)

Grasping the Ball

- Three stages: walk to ball; slow down; lower chin
- Head proprioception, IR chest sensor \mapsto ball distance
- Movement specified by **4 parameters**

Grasping the Ball

- Three stages: walk to ball; slow down; lower chin
- Head proprioception, IR chest sensor \mapsto ball distance
- Movement specified by **4 parameters**

Brittle!

Parameterization

- slowdown_dist: when to slow down
- **slowdown_factor:** how much to slow down
- capture_angle: when to stop turning

• capture_dist: when to put down head

Learning the Chin Pinch

- Binary, noisy reinforcement signal: multiple trials
- Robot evaluates self: **no human intervention**

Results

• Evaluation of **policy gradient**, **hill climbing**, **amoeba**

What it learned

Policy	slowdown	slowdown	capture	capture	Success
	dist	factor	angle	dist	rate
Initial	200mm	0.7	15.0°	110mm	36%
Policy gradient	125mm	1	17.4 ^{<i>o</i>}	152mm	64%
Amoeba	208mm	1	33.4 ^o	162mm	69%
Hill climbing	240mm	1	35.0 ^o	170mm	66%

Instance of Layered Learning

- For domains too **complex** for tractably mapping state features $S \mapsto$ outputs O
- Hierarchical subtask decomposition **given**: $\{L_1, L_2, \ldots, L_n\}$
- Machine learning: **exploit data** to train, adapt
- Learning in one layer feeds into next layer

