CS343 Artificial Intelligence

Prof: Peter Stone

Department of Computer Sciences
The University of Texas at Austin

Good Afternoon, Colleagues

Good Afternoon, Colleagues

Are there any questions?

Logistics

• Exercise responses not all checked

Logistics

- Exercise responses not all checked
- Next week's readings: adversarial search

Logistics

- Exercise responses not all checked
- Next week's readings: adversarial search
- Kautz talk on Friday

Pending Questions

- Can you turn continuous domains into discrete?
- Computing gradient locally not globally?

Continuous Local Search to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

Continuous Local Search to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

- Start with a parameterized walk
- Learn fastest possible parameters

Continuous Local Search to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

- Start with a parameterized walk
- Learn fastest possible parameters
- No simulator available:
 - Learn entirely on robots
 - Minimal human intervention

Walking Aibos

- Walks that "come with" Aibo are slow
- RoboCup soccer: 25+ Aibo teams internationally
 - Motivates faster walks

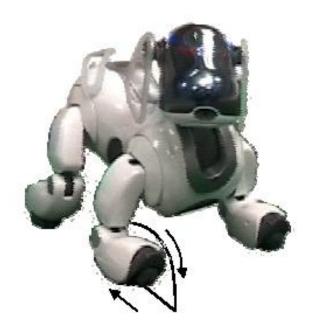
Walking Aibos

- Walks that "come with" Aibo are slow
- RoboCup soccer: 25+ Aibo teams internationally
 - Motivates faster walks

Hand-tuned gaits (2003)			Learned gaits		
German Team	UT Austin Villa	UNSW	Hornby et al. (1999)	Kim & Uther (2003)	
230 mm/s	245	254	170	270 (±5)	

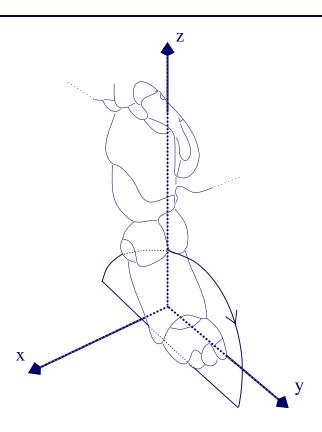
A Parameterized Walk

- Developed from scratch as part of UT Austin Villa 2003
- Trot gait with elliptical locus on each leg





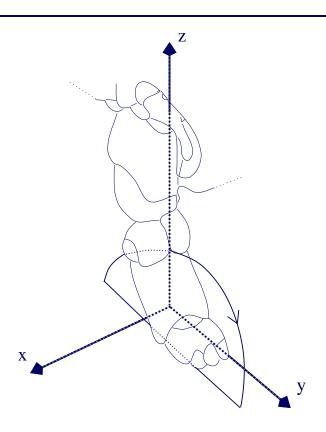
Locus Parameters



- Ellipse length
- Ellipse height
- ullet Position on x axis
- Position on y axis
- Body height
- Timing values

12 continuous parameters

Locus Parameters



- Ellipse length
- Ellipse height
- ullet Position on x axis
- Position on y axis
- Body height
- Timing values

12 continuous parameters

- Hand tuning by April, '03: 140 mm/s
- Hand tuning by July, '03: 245 mm/s

Parameters To Learn

Parameter	Initial Value
Front ellipse:	Value
(height)	4.2
(x offset)	2.8
(y offset)	4.9
Rear ellipse:	117
(height)	5.6
(x offset)	0.0
(y offset)	-2.8
Ellipse length	4.893
Ellipse skew multiplier	0.035
Front height	7.7
Rear height	11.2
Time to move	-
through locus	0.704
Time on ground	0.5

• Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) = \text{walk speed when using } \pi$

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) = \text{walk speed when using } \pi$
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Multiple traversals (3) per policy to account for noise

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) = \text{walk speed when using } \pi$
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Multiple traversals (3) per policy to account for noise
 - Multiple robots evaluate policies simultaneously
 - Off-board computer collects results, assigns policies

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) = \text{walk speed when using } \pi$
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Multiple traversals (3) per policy to account for noise
 - Multiple robots evaluate policies simultaneously
 - Off-board computer collects results, assigns policies

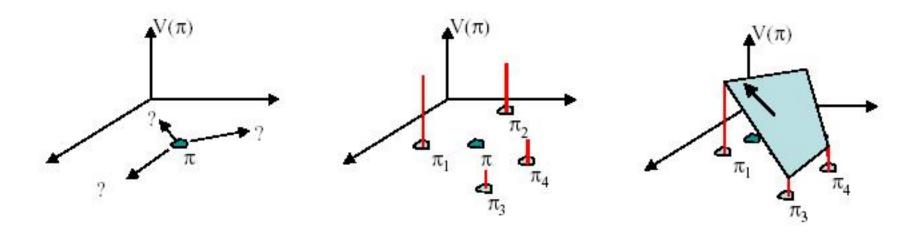
No human intervention except battery changes

• From π want to move in direction of **gradient** of $V(\pi)$

- From π want to move in direction of **gradient** of $V(\pi)$
 - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: **estimate** empirically

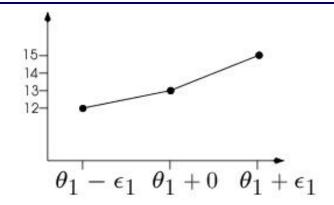
- From π want to move in direction of **gradient** of $V(\pi)$
 - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: **estimate** empirically
- Evaluate neighboring policies to estimate gradient
- Each trial randomly varies every parameter

- From π want to move in direction of **gradient** of $V(\pi)$
 - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: **estimate** empirically
- Evaluate neighboring policies to estimate gradient
- Each trial randomly varies every parameter

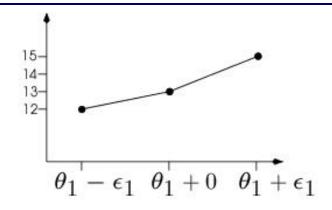


Gradient Estimation

Taking a step

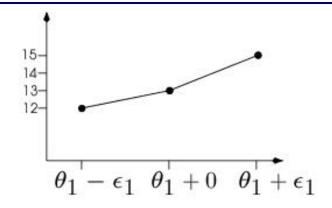


Taking a step



$$A_{i} = \begin{cases} 0 & \text{if } Avg_{+0,i} > Avg_{+\epsilon,i} \text{ and } \\ & Avg_{+0,i} > Avg_{-\epsilon,i} \end{cases}$$
 (1)
$$Avg_{+\epsilon,i} - Avg_{-\epsilon,i} & \text{otherwise}$$

Taking a step



$$A_i = \begin{cases} 0 & \text{if } Avg_{+0,i} > Avg_{+\epsilon,i} \text{ and } \\ & Avg_{+0,i} > Avg_{-\epsilon,i} \end{cases}$$
 (1)
$$Avg_{+\epsilon,i} - Avg_{-\epsilon,i} & \text{otherwise}$$

- Normalize A, multiply by scalar step-size η
- $\bullet \ \pi = \pi + \eta A$

Experiments

- Started from **stable**, but fairly slow gait
- Used 3 robots simultaneously
- ullet Each iteration takes 45 traversals, $7\frac{1}{2}$ minutes

Experiments

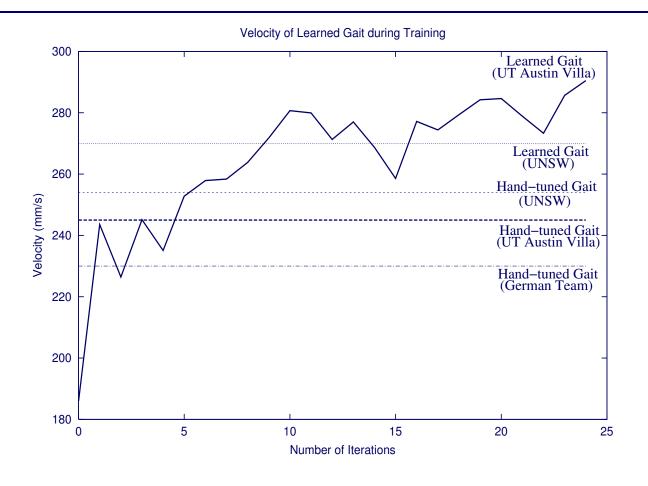
- Started from **stable**, but fairly slow gait
- Used 3 robots simultaneously
- \bullet Each iteration takes 45 traversals, $7\frac{1}{2}$ minutes

Before learning

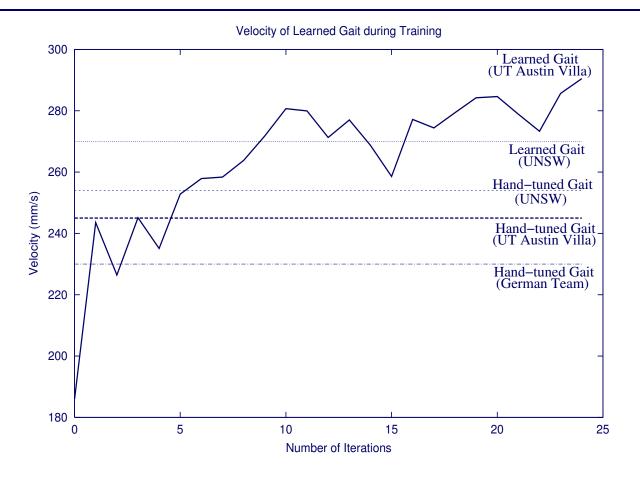
After learning

• 24 iterations = 1080 field traversals, \approx 3 hours

Results



Results

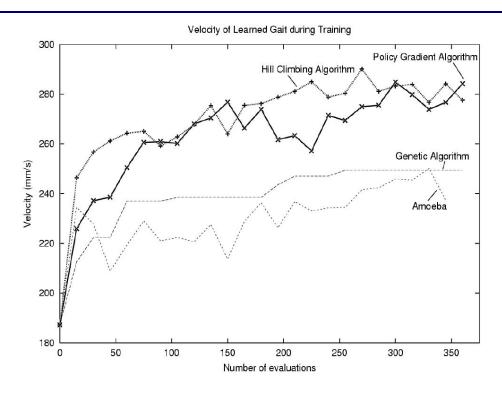


- Additional iterations didn't help
- Spikes: evaluation noise? large step size?

Learned Parameters

Parameter	Initial	ϵ	Best
	Value		Value
Front ellipse:			
(height)	4.2	0.35	4.081
(x offset)	2.8	0.35	0.574
(y offset)	4.9	0.35	5.152
Rear ellipse:			
(height)	5.6	0.35	6.02
(x offset)	0.0	0.35	0.217
(y offset)	-2.8	0.35	-2.982
Ellipse length	4.893	0.35	5.285
Ellipse skew multiplier	0.035	0.175	0.049
Front height	7.7	0.35	7.483
Rear height	11.2	0.35	10.843
Time to move			
through locus	0.704	0.016	0.679
Time on ground	0.5	0.05	0.430

Algorithmic Comparison, Robot Port



Before learning

After learning

Summary

- Used policy gradient RL to learn fastest Aibo walk
- All learning done on real robots
- No human itervention (except battery changes)

Grasping the Ball

- Three stages: walk to ball; slow down; lower chin
- Head proprioception, IR chest sensor → ball distance
- Movement specified by 4 parameters

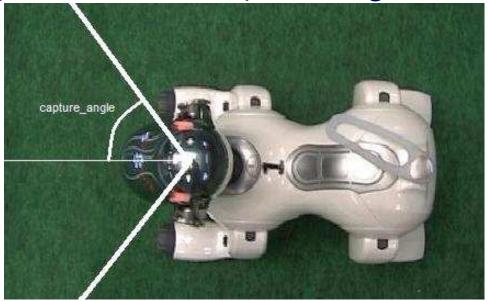
Grasping the Ball

- Three stages: walk to ball; slow down; lower chin
- Head proprioception, IR chest sensor → ball distance
- Movement specified by 4 parameters

Parameterization

- slowdown_dist: when to slow down
- slowdown_factor: how much to slow down

• capture_angle: when to stop turning



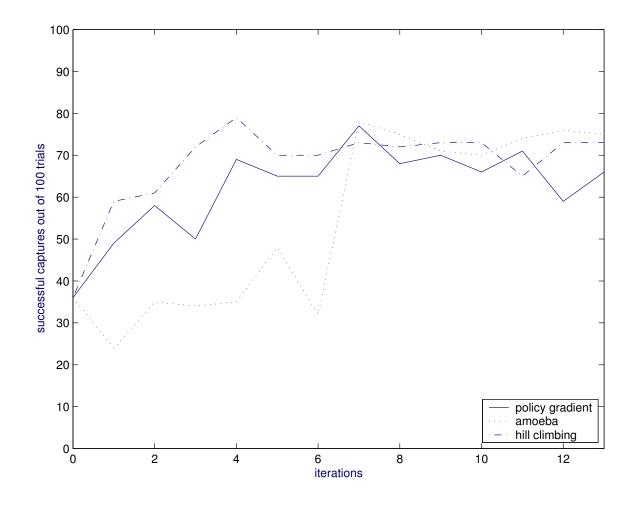
capture_dist: when to put down head

Learning the Chin Pinch

- Binary, noisy reinforcement signal: multiple trials
- Robot evaluates self: no human intervention

Results

• Evaluation of policy gradient, hill climbing, amoeba



What it learned

Policy	slowdown	slowdown	capture	capture	Success
	dist	factor	angle	dist	rate
Initial	200mm	0.7	15.0°	110mm	36%
Policy gradient	125mm	1	17.4°	152mm	64%
Amoeba	208mm	1	33.4°	162mm	69%
Hill climbing	240mm	1	35.0°	170mm	66%

Instance of Layered Learning

- ullet For domains too **complex** for tractably mapping state features $S \longmapsto$ outputs O
- Hierarchical subtask decomposition **given**: $\{L_1, L_2, \dots, L_n\}$
- Machine learning: exploit data to train, adapt
- Learning in one layer feeds into next layer

Nondeterministic actions:

Nondeterministic actions: AND-OR search

- Nondeterministic actions: AND-OR search
- Partial observations:

- Nondeterministic actions: AND-OR search
- Partial observations: Belief states

- Nondeterministic actions: AND-OR search
- Partial observations: Belief states
- Unknown environments:

- Nondeterministic actions: AND-OR search
- Partial observations: Belief states
- Unknown environments: Online search

- Nondeterministic actions: AND-OR search
- Partial observations: Belief states
- Unknown environments: Online search
- Adversaries:

- Nondeterministic actions: AND-OR search
- Partial observations: Belief states
- Unknown environments: Online search
- Adversaries: Next week....