CS344M Autonomous Multiagent Systems

Prof: Peter Stone

Department or Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Good Afternoon, Colleagues

Are there any questions?

• Questions about the syllabus?

- Questions about the syllabus?
- Class registration

- Questions about the syllabus?
- Class registration
 - Too many for student-led discussions

- Questions about the syllabus?
- Class registration
 - Too many for student-led discussions
- Problems with the assignment?

- Questions about the syllabus?
- Class registration
 - Too many for student-led discussions
- Problems with the assignment?
- Mailing list announcements yesterday

- Questions about the syllabus?
- Class registration
 - Too many for student-led discussions
- Problems with the assignment?
- Mailing list announcements yesterday
 CC Katie, Patrick, and me on everything

- Questions about the syllabus?
- Class registration
 - Too many for student-led discussions
- Problems with the assignment?
- Mailing list announcements yesterday
 CC Katie, Patrick, and me on everything
- Last week's slides are up

- Questions about the syllabus?
- Class registration
 - Too many for student-led discussions
- Problems with the assignment?
- Mailing list announcements yesterday
 CC Katie, Patrick, and me on everything
- Last week's slides are up
- Next week's readings are up:
 - Brooks' reactive robots
 - A more deliberative architecture
 - RoboCup challenge paper

- Questions about the syllabus?
- Class registration
 - Too many for student-led discussions
- Problems with the assignment?
- Mailing list announcements yesterday
 CC Katie, Patrick, and me on everything
- Last week's slides are up
- Next week's readings are up:
 - Brooks' reactive robots
 - A more deliberative architecture
 - RoboCup challenge paper
- Change rooms?

Words without (accepted) definitions

- Intelligence
- Agent

Words without (accepted) definitions

- Intelligence
- Agent

All proposed definitions include too much or leave gaps.

Words without (accepted) definitions

- Intelligence
- Agent

All proposed definitions include too much or leave gaps.

But there are examples...

- Are they agents or not?
- How does Wooldridge resolve this?

• Autonomous robot

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
- Meeting scheduler

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
- Meeting scheduler
- Computer-game-playing agent

Not Intelligent Agents

- Thermostat
- Telephone
- Answering machine
- Pencil
- Java object

Your Agent Examples

Automotive: cruise control, parallel parker, traffic detecting agent

Physical Control: Elevators, oil spill robots, DARPA mule,

- Roomba
- Simple: water boiler, smoke detector
- **Software:** antivirus software, MS Windows
- **Telecom:** portable GPS device, cell phone, computer monitors
- Game/entertainment: MMO gold farming agent, NPC in video game, pacman player, backgammon playerService: Stock trading agent, "carebot"

An Example

• You, as a class, act as a learning agent

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap
- Observations: colors, reward

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap
- Observations: colors, reward
- Goal: Find an optimal *policy*

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap
- Observations: colors, reward
- Goal: Find an optimal *policy*
 - Way of selecting actions that gets you the most reward

How did you do it?

- What is your policy?
- What does the world look like?

Knowns:

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Black}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Black}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Black}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

- S = 4x3 grid
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- $\mathcal{P} = \mathcal{S} \mapsto \mathcal{O}$
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Black}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

- S = 4x3 grid
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- $\mathcal{P} = \mathcal{S} \mapsto \mathcal{O}$
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

$o_i = \mathcal{P}(s_i)$

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Black}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

- S = 4x3 grid
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- $\mathcal{P} = \mathcal{S} \mapsto \mathcal{O}$
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

 $o_i = \mathcal{P}(s_i)$ $r_i = \mathcal{R}(s_i, a_i)$

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Black}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

- S = 4x3 grid
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- $\mathcal{P} = \mathcal{S} \mapsto \mathcal{O}$
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

 $o_i = \mathcal{P}(s_i)$ $r_i = \mathcal{R}(s_i, a_i)$ $s_{i+1} = \mathcal{T}(s_i, a_i)$

