The following is an attempt to describe in my own words the variable elimination algorithm for determining optimal joint actions of coordinating agents. Each agent is eliminated one at a time from a coordination graph by deciding the optimal local payoff based on the payoff functions of dependent agents, then notifying the other agents of this conditional decision. Specifically, the procedure for eliminating agent i is:

1. for each agent j in the graph that has a payoff rule dependent on the action of agent i (child nodes of agent i)

- remove the dependent payoff rule of agent j
- add it to the payoff function for agent i

2. maximize the local payoff by determining which combinations of agent actions will produce the greatest payoffs given the payoff function for agent i
3. distribute this conditional strategy to the agent that will be eliminated next
4. eliminate agent i from the graph
5. update the coordinated graph for new dependent relationships

Agents are eliminated with this process until only one agent remains. The last agent will possess the optimal joint payoff of the coordinating agents in terms of its own available actions. The optimal action of this agent is then propagated through the coordinated graph in the reverse order that agents were eliminated, giving each agent along the way enough information to decide what its own optimal action should be.

Here is a run-through of the example discussed in "Multi-robot decision making using coordination graphs," with an elimination order of G_{3}, G_{2}, G_{1}.

Elimination of $G_{\underline{3}}$:

$G_{1} \quad\left\langle a_{1}^{\wedge} \neg a_{3} \quad: 4\right\rangle$ $\left\langle a_{1} \wedge \neg a_{2} \quad: 5\right\rangle$
$G_{2}<\neg a_{2} \quad: 2>$
$G_{3}<a_{3} \wedge a_{2} \quad: 5>$
G_{1} sends G_{3} dependent rules:

$G_{1}<a_{1} \wedge \neg a_{2} \quad: 5>$
$G_{2}<\neg a_{2} \quad: 2>$
$G_{3}<a_{3} \wedge a_{2}: 5>$
$\left\langle a_{1} \wedge \neg a_{3} \quad: 4>\right.$
$\begin{array}{lll}G_{3} \text { determines that the maximum local payoff is } & <a_{2} & : 5> \\ \text { and distributes this to } G_{2} \text { : } & <a_{1} \wedge \neg a_{2} & : 4>\end{array}$

Dependencies are updated and G3 is removed:

$$
\begin{array}{lll}
G_{1} & <a_{1} \wedge \neg a_{2} & : 5> \\
G_{2} & <\neg a_{2} & : 2> \\
& <a_{2} \wedge & : 5> \\
& <a_{1} \wedge \neg a_{2} & : 4>
\end{array}
$$

Elimination of G_{2} :

G_{1} sends G_{2} dependent rules:

$$
\begin{array}{rlr}
G_{1} & & : 2> \\
G_{2} & <\neg a_{2} & : 5> \\
& <a_{2} \wedge & : 4> \\
& <a_{1} \wedge \neg a_{2} & : 4> \\
& <a_{1} \wedge \neg a_{2} & : 5>
\end{array}
$$

G_{2} determines that the maximum local payoff is $\left\langle a_{1}: 11\right\rangle$ and distributes this to G_{1}

G_{1}	$\left\langle a_{1}: 11\right\rangle$		
	$<\neg a_{1}$	$5>$	
G_{2}	$<\neg a_{2}$: $2>$
	$<a_{2}$		$5>$
	$<a_{1} \wedge$		$4>$
	$<a_{1} \wedge$		$5>$

G_{2} is removed, leaving G_{1} with the optimal decision of a_{1}.

$$
\begin{array}{rll}
G_{1}
\end{array} \quad \begin{array}{lll}
G_{1} & <a_{1} & : 11> \\
& <\neg a_{1} & : 5
\end{array}>
$$

G_{1} distributes the decision of a_{1} back to G_{2}. Knowing that a_{1} is now true, G_{2} chooses an optimal action of $\neg a_{2}$:

$$
\begin{aligned}
& \left.G_{2}<\neg a_{2}: 2\right\rangle \quad G_{2}\left\langle\neg a_{2}: 11\right\rangle \\
& \left\langle a_{2}: 5\right\rangle \quad \longrightarrow \quad\left\langle a_{2}: 5\right\rangle \\
& \left\langle a_{1} \wedge \neg a_{2} \quad: 4\right\rangle \\
& \left\langle a_{1} \wedge \neg a_{2} \quad: 5>\right.
\end{aligned}
$$

G_{2} distributes the decision of a_{1} and $\neg a_{2}$ back to G_{3}. Knowing that a_{1} is true and that a_{2} is false, G_{3} chooses an optimal action of $\neg a_{3}$:

$$
G_{3} \begin{array}{ll}
<a_{3} \wedge a_{2} \\
<a_{1} \wedge \neg a_{3}
\end{array} \begin{aligned}
& : 5> \\
& : 4>
\end{aligned} \longrightarrow G_{3} \quad\left\langle\neg a_{3}: 4>\right.
$$

The variable elimination algorithm should produce the same results, regardless of order. Here is a run-through with an elimination order of G_{1}, G_{3}, G_{2}.

Elimination of G_{1} :

G_{1}	$\left\langle a_{1} \wedge \neg a_{3}\right.$	$: 4\rangle$
	$\left\langle a_{1} \wedge \neg a_{2}\right.$	$: 5\rangle$
G_{2}	$\left\langle\neg a_{2}\right.$	$: 2\rangle$
G_{3}	$\left\langle a_{3} \wedge a_{2}\right.$	$: 5\rangle$

G_{1} determines that the maximum local payoff is and distributes this to G_{3} :

$$
\begin{aligned}
& \left\langle\neg a_{3}: 4\right\rangle \\
& \left\langle\neg a_{2}: 5\right\rangle
\end{aligned}
$$

G_{1}	$<a_{1} \wedge \neg a_{3}$	$: 4>$
	$<a_{1} \wedge \neg a_{2}$	$: 5>$
G_{2}	$<\neg a_{2}$	$: 2>$
G_{3}	$<a_{3} \wedge a_{2}$	$: 5>$
	$<\neg a_{3}$	$: 4>$
	$<\neg a_{2}$	$: 5>$

G_{1} is removed:

Elimination of $G_{\underline{3}}$:
G_{3} determines that the maximum local payoff is $\quad \begin{array}{ll}\left\langle a_{2}\right. & : 5\rangle \\ \text { and distributes this to } G_{2}\end{array} \quad\left\langle\neg a_{2}: 9\right\rangle$

G_{3} is removed, leaving G_{2} with the optimal decision of $\neg a_{2}$.

$$
\begin{array}{rlll}
& G_{2} & <a_{2}: 5 \\
& <\neg a_{2}: 11>
\end{array}
$$

G_{2} distributes the decision of $\neg a_{2}$ back to G_{3}. Knowing that a_{2} is now false, G_{3} chooses an optimal action of $\neg a_{3}$:
G_{3} distributes the decision of $\neg a_{2}$ and $\neg a_{3}$ back to G_{1}. Knowing that a_{2} and a_{3} are false, G_{1} chooses an optimal action of a_{1} :

$$
\left.G_{1} \begin{array}{ll}
\left\langle a_{1} \wedge \neg a_{3}\right. \\
<a_{1} \wedge \neg a_{2}
\end{array} \quad: 5\right\rangle \quad \longrightarrow \quad G_{3} \quad\left\langle a_{1}: 9\right\rangle
$$

