CS344M

Autonomous Multiagent Systems Spring 2008

Prof: Peter Stone

Department of Computer Sciences
The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

- Mixed Nash equilibria?
- What can'† game theory simulate?
- What if one player isn't rational?
- Doran's research

Logistics

- Faculty candidate on Thursday at 1lam:
"When Game Theory Isn'† Enough: Engineering Agents for an Open and Imperfectly Rational World" Sevan Ficici, Harvard

Logistics

- Faculty candidate on Thursday at 11 am:
"When Game Theory Isn'† Enough: Engineering Agents for an Open and Imperfectly Rational World" Sevan Ficici, Harvard
- Another one April 8th:
"Computing Equilibria in Games" Konstantinos Daskalakis, UC Berkeley

Class Discussion

Mike Jordan on statistical tests

T-test vs. Paired T-test

- Is the right half of the class or the left half taller?

T-test vs. Paired T-test

- Is the right half of the class or the left half taller?
- Did you weigh less after the class than before?

T-test vs. Paired T-test

- Is the right half of the class or the left half taller?
- Did you weigh less after the class than before?
- Who's better at tetris? Adam or Brandon?

T-test vs. Paired T-test

- Is the right half of the class or the left half taller?
- Did you weigh less after the class than before?
- Who's better at tetris? Adam or Brandon?
- Who's better at video games in general?

T-test vs. Paired T-test

- Test: Your team better than UvA vs. Brainstormers

T-test vs. Paired T-test

- Test: Your team better than UvA vs. Brainstormers
- Test: Your team better than UvA vs. a set of 20 opponents

T-test vs. Paired T-test

- Test: Your team better than UvA vs. Brainstormers
- Test: Your team better than UvA vs. a set of 20 opponents
- What if neither is significant?

Matching Pennies

- We each put a penny down covered
- If they match, I win, if they don't, you win

Matching Pennies

- We each put a penny down covered
- If they match, I win, if they don't, you win

$$
\text { Player } 2
$$

$$
\begin{array}{lll}
\mathrm{H} & 1,-1 & -1,1
\end{array}
$$

Player 1

$$
\begin{array}{ll}
\mathrm{T} & -1,1
\end{array}
$$

$$
1,-1
$$

Matching Pennies

- We each put a penny down covered
- If they match, I win, if they don't, you win

$$
\text { Player } 2
$$

$$
\begin{array}{lll}
\mathrm{H} & 1,-1 & -1,1
\end{array}
$$

Player 1

$$
\begin{aligned}
& \text { T } \quad-1,1 \\
& \text { Nash equilibrium? }
\end{aligned}
$$

Rock/Paper/Scissors

- Nash equilibrium?
-Why is anything else not an equilibrium?

Mixed strategy equilibrium

Player 2
 Action 1 Action 2

$$
\begin{array}{llll}
& \text { Action 1 } & 4,8 & 2,0 \\
\text { Player 1 } & & \\
& \text { Action 2 } & 6,2 & 0,8
\end{array}
$$

Mixed strategy equilibrium

$$
\begin{array}{cc}
\hline \text { Player } & 2 \\
\text { Action } 1 & \text { Action } 2 \\
4,8 & 2,0 \\
6,2 & 0,8
\end{array}
$$

$$
\text { Action } 1 \quad 4,8 \quad 2,0
$$

$$
\text { Player } 1
$$

$$
\text { Action } 2
$$

- What if player 2 picks action $13 / 4$ of the time?

Mixed strategy equilibrium

$$
\begin{array}{cc}
\hline \text { Player } & 2 \\
\text { Action } 1 & \text { Action } 2 \\
4,8 & 2,0 \\
6,2 & 0,8
\end{array}
$$

$$
\text { Action } 1 \quad 4,8 \quad 2,0
$$

$$
\text { Player } 1
$$

$$
\text { Action } 2
$$

- What if player 2 picks action $13 / 4$ of the time?
- What if player 2 picks action 1 1/4 of the time?

Mixed strategy equilibrium

$$
\begin{array}{cc}
\hline \text { Player } & 2 \\
\text { Action } 1 & \text { Action } 2 \\
4,8 & 2,0 \\
6,2 & 0,8
\end{array}
$$

$$
\text { Action } 1 \quad 4,8 \quad 2,0
$$

$$
\text { Player } 1
$$

$$
\text { Action } 2
$$

- What if player 2 picks action $13 / 4$ of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2

Mixed strategy equilibrium

$$
\begin{array}{lll}
\hline & \text { Player } & 2 \\
\text { Action } 1 & \text { Action } 2
\end{array}
$$

$$
\text { Action } 1 \quad 4,8 \quad 2,0
$$

Player 1

$$
\text { Action } 2
$$

6,2
0,8

- What if player 2 picks action $13 / 4$ of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2

Mixed strategy equilibrium

$$
\text { Player } 1
$$

$$
\begin{array}{cc}
\hline \text { Player } & 2 \\
\text { Action } 1 & \text { Action } 2 \\
4,8 & 2,0 \\
6,2 & 0,8
\end{array}
$$

$$
\text { Action } 1 \quad 4,8 \quad 2,0
$$

$$
\text { Action } 2
$$

- What if player 2 picks action $13 / 4$ of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2

Do actual numbers matter?

