CS344M

Autonomous Multiagent Systems Spring 2008

Prof: Peter Stone

Department of Computer Sciences
The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

- Mixed Nash equilibria?
- What can'† game theory simulate?
- What if one player isn't rational?
- Doran's research

Logistics

- Project progress reports due next week

Logistics

- Project progress reports due next week
- Thoughts on faculty candidate?

Class Discussion

Matt Wilson on a multiagent game

Bach/Stravinsky

- My wife and I agree to meet at a concert

Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky

Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other

Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach

Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
- But most of all, we want to be together

Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
- But most of all, we want to be together
- Propose a payoff matrix

Bach/Stravinsky

Wife
S
B
S $\quad 2,1$
0,0

Me
B
0,0
1,2

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky

> Wife
S
B

$$
\text { S } \quad 2,1
$$

0,0
Me
B
0,0
1,2

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky
Wife
$S \quad 2,1$

0,0
Me
B
0,0
1,2

Want only S,S or B,B-50\% each

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15 th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?
- What are the Nash equilibria?

Incomplete Information Games

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

Incomplete Information Games

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

Card ?

$$
\begin{array}{ccc}
& \mathrm{R} & \mathrm{~F} \\
\mathrm{R} & 5,-5 & 1,-1
\end{array}
$$

Card 3

$$
\begin{array}{ll}
F & -1,1
\end{array}
$$

Incomplete Information Games

	Card ?	
	R	
R	$5,-5$	$1,-1$

Card 3
F
$-1,1$
0,0

Incomplete Information Games

	Card ?	
	R	
R	$5,-5$	$1,-1$

Card 3

F	$-1,1$	0,0

Card ?
R F
$\begin{array}{lll}\mathrm{R} & -5,5 & 1,-1\end{array}$
Card 1
F
$-1,1$
0,0

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!
- Bayes-Nash: both players Raise if 3, otherwise Fold

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!
- Bayes-Nash: both players Raise if 3, otherwise Fold

With more numbers and/or different payoffs, bluffing can be a part of the Nash Equilibrium

Stackelburg Game

$$
\begin{array}{lll}
& \text { Player } & 2 \\
\text { Action } 1 & \text { Action } 2
\end{array}
$$

Action 1
1,0
3,2

Player 1
Action 2
2,1
4,0

Stackelburg Game

		Player 2	
		Action 1	Action 2
Player 1	Action 1	1,0	3,2

- Nash equilibrium?

Stackelburg Game

		Player 2	
		Action 1	Action 2
Player 1	Action 1	1,0	3,2

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?

Stackelburg Game

		Player 2	
		Action 1	Action 2
	Action 1	1,0	3,2
Player 1			
	Action 2	2,1	4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?

Stackelburg Game

		Player 2	
		Action 1	Action 2
Player 1	Action 1	1,0	3,2
	Action 2	2,1	4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)

Stackelburg Game

		Player 2	
		Action 1	Action 2
Player 1	Action 1	1,0	3,2
	Action 2	2,1	4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)
- Threats can stabilize a non-equilibrium strategy
- Change the best response of the other agent

Stackelburg Game

		Player 2	
		Action 1	Action 2
Player 1	Action 1	1,0	3,2
	Action 2	2,1	4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)
- Threats can stabilize a non-equilibrium strategy
- Change the best response of the other agent

Threats slides

Discussion

- How useful is the concept of Nash equilibrium?

Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?

Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can'† game theory simulate?

Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can'† game theory simulate?
- Shoham:
- 0-sum = single agent problem
- common payoff $=$ search for pareto optimum

Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can't game theory simulate?
- Shoham:
- 0-sum = single agent problem
- common payoff = search for pareto optimum
- General sum is the interesting case:

Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can't game theory simulate?
- Shoham:
- 0-sum = single agent problem
- common payoff $=$ search for pareto optimum
- General sum is the interesting case:
- Learning in an environment with other, unknown, independent agents who may also be learning

Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can't game theory simulate?
- Shoham:
- 0-sum = single agent problem
- common payoff $=$ search for pareto optimum
- General sum is the interesting case:
- Learning in an environment with other, unknown, independent agents who may also be learning
- Need to do well against some set of agents, never too poorly, and well against yourself.

Stochastic Games

- Tutorial slides

