CS344M Autonomous Multiagent Systems Spring 2008

Prof: Peter Stone

Department of Computer Sciences The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

- Mixed Nash equilibria?
- What can't game theory simulate?
- What if one player isn't rational?
- Doran's research

• Project progress reports due next week

- Project progress reports due next week
- Thoughts on faculty candidate?

Matt Wilson on a multiagent game

• My wife and I agree to meet at a concert

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
- But most of all, we want to be together

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
- But most of all, we want to be together
- Propose a payoff matrix

	Wife				
		S	В		
Me	S	2,1	0,0		
Me	В	0,0	1,2		

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky

Want only S,S or B,B - 50% each

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?
- What are the Nash equilibria?

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

		Card ?	
		R	F
Card 3	R	5,-5	1,-1
Odra O	F	-1,1	0,0
		Card ?	
		R	F
Card 1	R	-5,5	1,-1
	F	-1,1	0,0

• $3 \Rightarrow raise$

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

With more numbers and/or different payoffs, bluffing can be a part of the Nash Equilibrium

			Player	2	
		Action	1	Action 2	
Player 1	Action 1	1,0		3,2	
5	Action 2	2,1		4,0	

			Player	2
		Action	1	Action 2
Player 1	Action 1	1,0		3,2
	Action 2	2,1		4,0

• Nash equilibrium?

			Player	2
		Action	1	Action 2
Player 1	Action 1	1,0		3,2
	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?

			Player	2
		Action	•	Action 2
Dlavor 1	Action 1	1,0		3,2
Player 1	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?

			Player	2
		Action	1	Action 2
Player 1	Action 1	1,0		3,2
I FOLYOF I	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)

			Player	2
		Action	1	Action 2
Player 1	Action 1	1,0		3,2
1 + 00 y 0 + 1	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)
- Threats can stabilize a non-equilibrium strategy
- Change the **best response** of the other agent

				Player	2
			Action	1	Action 2
P	layer 1	Action 1	1,0		3,2
1	ray or r	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)
- Threats can stabilize a non-equilibrium strategy
- Change the **best response** of the other agent

Threats slides

• How useful is the concept of Nash equilibrium?

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can't game theory simulate?

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can't game theory simulate?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can't game theory simulate?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can't game theory simulate?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can't game theory simulate?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning

 Need to do well against some set of agents, never too poorly, and well against yourself.

• Tutorial slides

