# CS344M Autonomous Multiagent Systems Spring 2008

**Prof: Peter Stone** 

Department of Computer Sciences The University of Texas at Austin



- Successful uses of vickrey auctions
- Auction time constraints (sniping)?



- Successful uses of vickrey auctions
- Auction time constraints (sniping)?
- Any "perfect" (non-manipulable) voting system



- Successful uses of vickrey auctions
- Auction time constraints (sniping)?
- Any "perfect" (non-manipulable) voting system
- Computation complexity -> voting protocol



- Successful uses of vickrey auctions
- Auction time constraints (sniping)?
- Any "perfect" (non-manipulable) voting system
- Computation complexity -> voting protocol
- Given protocol, can you find manipulations?



- Successful uses of vickrey auctions
- Auction time constraints (sniping)?
- Any "perfect" (non-manipulable) voting system
- Computation complexity -> voting protocol
- Given protocol, can you find manipulations?
- Nash eq. in voting systems?



- Successful uses of vickrey auctions
- Auction time constraints (sniping)?
- Any "perfect" (non-manipulable) voting system
- Computation complexity -> voting protocol
- Given protocol, can you find manipulations?
- Nash eq. in voting systems?
- Bargaining why take arbitraily little money?



- Auctions: maximize profit
  - result affects buyer and seller
- Voting: maximize social good
  - result affects all



- Auctions: maximize profit
  - result affects buyer and seller
- Voting: maximize social good
  - result affects all

#### Nash eq. in voting systems?



• Example: Bush, Gore, or Nader?



- Example: Bush, Gore, or Nader?
  - Assume your preference is Nader > Gore > Bush
  - For whom should you vote?



- Example: Bush, Gore, or Nader?
  - Assume your preference is Nader > Gore > Bush
  - For whom should you vote?
  - What if we change the system?



- Example: Bush, Gore, or Nader?
  - Assume your preference is Nader > Gore > Bush
  - For whom should you vote?
  - What if we change the system?
  - Plurality, Binary, Borda?



- Example: Bush, Gore, or Nader?
  - Assume your preference is Nader > Gore > Bush
  - For whom should you vote?
  - What if we change the system?
  - Plurality, Binary, Borda?
- 3+ candidates  $\implies$  only dictatorial system eliminates need for tactical voting
  - One person appointed



- Example: Bush, Gore, or Nader?
  - Assume your preference is Nader > Gore > Bush
  - For whom should you vote?
  - What if we change the system?
  - Plurality, Binary, Borda?
- 3+ candidates  $\implies$  only dictatorial system eliminates need for tactical voting
  - One person appointed
- No point thinking of a "better" voting system
- Assumption: no restrictions on preferences



- Example: Bush, Gore, or Nader?
  - Assume your preference is Nader > Gore > Bush
  - For whom should you vote?
  - What if we change the system?
  - Plurality, Binary, Borda?
- 3+ candidates  $\implies$  only dictatorial system eliminates need for tactical voting
  - One person appointed
- No point thinking of a "better" voting system
- Assumption: no restrictions on preferences

#### What about Clarke tax algorithm?



- Compromising: Rank someone higher to get him/her elected
  - e.g. Gore instead of Nader



- Compromising: Rank someone higher to get him/her elected
  - e.g. Gore instead of Nader
- Burying: Rank someone lower to get him/her defeated
  - e.g. in Borda protocol



- Compromising: Rank someone higher to get him/her elected
  - e.g. Gore instead of Nader
- Burying: Rank someone lower to get him/her defeated – e.g. in Borda protocol
- Push-over: Rank someone higher to get someone else elected
  - e.g. in a protocol with multiple rounds

Given protocol, can you find manipulations?



- Compromising: Rank someone higher to get him/her elected
  - e.g. Gore instead of Nader
- Burying: Rank someone lower to get him/her defeated – e.g. in Borda protocol
- Push-over: Rank someone higher to get someone else elected
  - e.g. in a protocol with multiple rounds

Given protocol, can you find manipulations?

Is computational complexity of strategizing important?



#### **Arrow's Theorem**

**Universality.** The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.



**Universality.** The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

**Pareto optimality.** If everyone prefers X to Y, then the outcome should rank X above Y.



**Universality.** The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

**Pareto optimality.** If everyone prefers X to Y, then the outcome should rank X above Y.

**Criterion of independence of irrelevant alternatives.** If one set of preference ballots would lead to an an overall ranking of alternative X above alternative Y and if some preference ballots are changed without changing the relative rank of X and Y, then the method should still rank X above Y.



**Citizen Sovereignty.** Every possible ranking of alternatives can be achieved from some set of individual preference ballots.



**Citizen Sovereignty.** Every possible ranking of alternatives can be achieved from some set of individual preference ballots.

**Non-dictatorship.** There should not be one specific voter whose preference ballot is always adopted.



Universality. Complete rankings

**Pareto optimality.** X > Y if all agree

Citizen Sovereignty. Any ranking possible

Non-dictatorship. No one voter decides

Independence of irrelevant alternatives. Removing or adding a non-winner doesn't change winner



Universality. Complete rankings

**Pareto optimality.** X > Y if all agree

Citizen Sovereignty. Any ranking possible

Non-dictatorship. No one voter decides

Independence of irrelevant alternatives. Removing or adding a non-winner doesn't change winner

Not all possible!



 Strategy proof under weaker irrelevant alternatives criterion



- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method



- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set



- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set
- Every candidate in the Smith set is relevant



- 48: A > B > C
- 40: B > C > A
- 12: C > B > A



- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B :



- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B :  $48 52 \Longrightarrow B > A$



- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B :  $48 52 \Longrightarrow B > A$
- A vs. C :  $48 52 \Longrightarrow C > A$
- B vs. C :  $88 12 \Longrightarrow B > C$



### **Condorcet Example**

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B :  $48 52 \Longrightarrow B > A$
- A vs. C :  $48 52 \Longrightarrow C > A$
- B vs. C :  $88 12 \Longrightarrow B > C$

### Overall: B > C > A



### **Condorcet Example**

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B :  $48 52 \Longrightarrow B > A$
- A vs. C :  $48 52 \Longrightarrow C > A$
- B vs. C :  $88 12 \Longrightarrow B > C$

Overall: B > C > A

• Does that solve everything?



Peter Stone

### **Condorcet Example**

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B :  $48 52 \Longrightarrow B > A$
- A vs. C :  $48 52 \Longrightarrow C > A$
- B vs. C :  $88 12 \Longrightarrow B > C$

### Overall: B > C > A

• Does that solve everything? What about cycles?



#### small market, both can come out favorably



Peter Stone

- Two people bargaining, each with a preference over outcomes O
- Let  $o^*$  be the selected outcome



- Two people bargaining, each with a preference over outcomes O
- Let  $o^*$  be the selected outcome
- Example: "split the dollar"



- Two people bargaining, each with a preference over outcomes O
- Let  $o^*$  be the selected outcome
- Example: "split the dollar"
  - One person makes offer o
  - Other rejects with probaility p(o) based on offer
  - If rejects, both get nothing



- Two people bargaining, each with a preference over outcomes O
- Let  $o^*$  be the selected outcome
- Example: "split the dollar"
  - One person makes offer o
  - Other rejects with probaility p(o) based on offer
  - If rejects, both get nothing
- Another version
  - One person makes an offer
  - Other accepts, rejects, or counters
  - If counters, \$.05 lost
  - Game ends with an accept or reject



## **Nash Bargaining Solution**

Unique solution that satisfies:



# **Nash Bargaining Solution**

Unique solution that satisfies:

Invariance: only preference orders matter
Anonymity: no discrimination
Pareto efficiency: if one does better, other does worse
Independence of irrelevant alternatives: removing outcomes doesn't change things



# **Nash Bargaining Solution**

Unique solution that satisfies:

Invariance: only preference orders matter
Anonymity: no discrimination
Pareto efficiency: if one does better, other does worse
Independence of irrelevant alternatives: removing outcomes doesn't change things

Maximize  $u_1(o) * u_2(o)$ 



**Consumers:** utilities, endowments **Producers:** production possibility sets **Variables:** prices on goods





Consumers: utilities, endowments Producers: production possibility sets Variables: prices on goods Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

Assumption: agent doesn't affect prices



- Assumption: agent doesn't affect prices
  - Only true if market is infinitely large
  - Else, strategic bidding (like bargaining) possible



- Assumption: agent doesn't affect prices
  - Only true if market is infinitely large
  - Else, strategic bidding (like bargaining) possible
- Assumption: no externalities



- Assumption: agent doesn't affect prices
  - Only true if market is infinitely large
  - Else, strategic bidding (like bargaining) possible
- Assumption: no externalities
  - Utilities or production sets don't depend on others'



- Assumption: agent doesn't affect prices
  - Only true if market is infinitely large
  - Else, strategic bidding (like bargaining) possible
- Assumption: no externalities
  - Utilities or production sets don't depend on others'
  - Braess' paradox



• Contract nets: task allocation among agents



- Contract nets: task allocation among agents
  - Contingencies
  - Leveled commitment (price)



- Contract nets: task allocation among agents
  - Contingencies
  - Leveled commitment (price)
- Coalitions



- Contract nets: task allocation among agents
  - Contingencies
  - Leveled commitment (price)
- Coalitions
  - Formation
  - Optimization within
  - Payoff division



### Task allocation among agents



Peter Stone

- OCSM-contracts: original, cluster, swap, multiagent
  - Hill-climbing leads to optimum
  - Without any type, may be no sequence to optimum



- OCSM-contracts: original, cluster, swap, multiagent
  - Hill-climbing leads to optimum
  - Without any type, may be no sequence to optimum
- Backing out of contracts



- OCSM-contracts: original, cluster, swap, multiagent
  - Hill-climbing leads to optimum
  - Without any type, may be no sequence to optimum
- Backing out of contracts
  - Contingency (future events)



- OCSM-contracts: original, cluster, swap, multiagent
  - Hill-climbing leads to optimum
  - Without any type, may be no sequence to optimum
- Backing out of contracts
  - Contingency (future events)
  - Leveled commitment (price)



- OCSM-contracts: original, cluster, swap, multiagent
  - Hill-climbing leads to optimum
  - Without any type, may be no sequence to optimum
- Backing out of contracts
  - Contingency (future events)
  - Leveled commitment (price)
  - What are some of the tradeoffs?



**Contingency problems:** 



### **Contingency problems:**

1. Hard to track all contingencies



#### **Contingency problems:**

- 1. Hard to track all contingencies
- 2. Could be impossible to enumerate all possible contingencies



#### **Contingency problems:**

- 1. Hard to track all contingencies
- 2. Could be impossible to enumerate all possible contingencies
- 3. What if only one agent observes that relevant event happened?



#### **Contingency problems:**

- 1. Hard to track all contingencies
- 2. Could be impossible to enumerate all possible contingencies
- 3. What if only one agent observes that relevant event happened?

#### Leveled commitment problems:



#### **Contingency problems:**

- 1. Hard to track all contingencies
- 2. Could be impossible to enumerate all possible contingencies
- 3. What if only one agent observes that relevant event happened?

### Leveled commitment problems:

1. Breacher's gain may be smaller than victim's loss



### **Contingency problems:**

- 1. Hard to track all contingencies
- 2. Could be impossible to enumerate all possible contingencies
- 3. What if only one agent observes that relevant event happened?

### Leveled commitment problems:

- 1. Breacher's gain may be smaller than victim's loss
- 2. May decommit insincerely (wait for other) inefficent contracts executed.





- Formation
- Optimization within
- Payoff division



For many agents: voting, general equilibrium, auctions

For fewer agents: auctions, contract nets, bargaining

Possible in all: coalitions



For many agents: voting, general equilibrium, auctions

For fewer agents: auctions, contract nets, bargaining

Possible in all: coalitions

All self-interested, rational agents

