CS344M

Autonomous Multiagent Systems Spring 2008

Prof: Peter Stone

Department of Computer Sciences
The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Logistics

- Next week's readings up

Class Discussion

Brandon Blakely on Mechanism Design

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- What's the value of the flash?

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- What's the value of the flash?
- Auctions are simultaneous
- Auctions are independent (no combinatorial bids)

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- What's the value of the flash?
- Auctions are simultaneous
- Auctions are independent (no combinatorial bids)
- $\in[10,50]$ - Depends on the price of the camera

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 80$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 80$
$-\operatorname{score}\left(G_{f}^{*}\right)=$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 80$

$$
-\operatorname{score}\left(G_{f}^{*}\right)=\max \{100-80,10-0\}=20
$$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 80$

$$
\begin{aligned}
& -\operatorname{score}\left(G_{f}^{*}\right)=\max \{100-80,10-0\}=20 \\
& -\operatorname{score}\left(G_{\text {no-f }}^{*}\right)=
\end{aligned}
$$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 80$

$$
\begin{aligned}
& -\operatorname{score}\left(G_{f}^{*}\right)=\max \{100-80,10-0\}=20 \\
& -\operatorname{score}\left(G_{\text {no-f }}^{*}\right)=\max \{50-80,0-0\}=0
\end{aligned}
$$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 80$

$$
\begin{aligned}
& -\operatorname{score}\left(G_{f}^{*}\right)=\max \{100-80,10-0\}=20 \\
& -\operatorname{score}\left(G_{n \text { of }}^{*}\right)=\max \{50-80,0-0\}=0 \\
& - \text { So value }(f l a s h)=20-0=\$ 20
\end{aligned}
$$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 80$

$$
\begin{aligned}
& -\operatorname{score}\left(G_{f}^{*}\right)=\max \{100-80,10-0\}=20 \\
& -\operatorname{score}\left(G_{n \text { of }}^{*}\right)=\max \{50-80,0-0\}=0 \\
& - \text { So value(flash })=20-0=\$ 20
\end{aligned}
$$

- Already bought camera \Rightarrow price $=\$ 0$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 80$
$-\operatorname{score}\left(G_{f}^{*}\right)=\max \{100-80,10-0\}=20$
$-\operatorname{score}\left(G_{\text {no-f }}^{*}\right)=\max \{50-80,0-0\}=0$
- So value(flash) $=20-0=\$ 20$
- Already bought camera \Rightarrow price $=\$ 0 \Rightarrow$ value(flash) $=100-50=\$ 50$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 20$, flash $=\$ 10$
- value(flash) would be

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 20$, flash $=\$ 10$
- value(flash) would be $80-30=\$ 50$
- value(camera) would be

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 20$, flash $=\$ 10$
- value(flash) would be $80-30=\$ 50$
- value(camera) would be $90-0=\$ 90$
- But what if prices jump at the end?

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 20$, flash $=\$ 10$
- value(flash) would be $80-30=\$ 50$
- value(camera) would be $90-0=\$ 90$
- But what if prices jump at the end?
- Let average past camera price $=\$ 80$, flash $=\$ 30$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- Let current camera price $=\$ 20$, flash $=\$ 10$
- value(flash) would be $80-30=\$ 50$
- value(camera) would be $90-0=\$ 90$
- But what if prices jump at the end?
- Let average past camera price $=\$ 80$, flash $=\$ 30$
- value(flash) $=\$ 20$
- value $($ camera $)=\$ 70$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- What's the value of the flash?
- Camera price $=\$ 70 \Rightarrow$ value(flash) $=\$ 30$
- Camera price $=\$ 20 \Rightarrow$ value(flash) $=\$ 50$
- Camera price $=\$ 40 \Rightarrow$ value(flash) $=\$ 50$

Bidding for Multiple Items

	utility
camera alone	$\$ 50$
flash alone	10
both	100
neither	0

- What's the value of the flash?
- Camera price $=\$ 70 \Rightarrow$ value(flash) $=\$ 30$
- Camera price $=\$ 20 \Rightarrow$ value(flash) $=\$ 50$
- Camera price $=\$ 40 \Rightarrow$ value(flash) $=\$ 50$
- Expected value: resample camera price, take avg.

Spectrum licenses

- Worth a lot
- But how much to whom?

Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned

Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned
- took too long

Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned
- took too long
- Switched to lotteries

Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned
- took too long
- Switched to lotteries
- too random
- clear that lots of value given away

Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned
- took too long
- Switched to lotteries
- too random
- clear that lots of value given away

So decided to auction

Goals of mechanism

- Efficient allocation (assign to whom it's worth the most)
- Promote deployment of new technologies
- Prevent monopoly (or close)
- Get some licenses to designated companies
- No political embarrassments

Goals of mechanism

- Efficient allocation (assign to whom it's worth the most)
- Promote deployment of new technologies
- Prevent monopoly (or close)
- Get some licenses to designated companies
- No political embarrassments

Revenue an afterthought (but important in end)

Choices

- Which basic auction format?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?
- Up front payments or royalties?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?
- Up front payments or royalties?
- Reserve prices?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?
- Up front payments or royalties?
- Reserve prices?
- How much information public?

Problems from New Zealand and Australia

Second price, sealed bid

Problems from New Zealand and Australia

Second price, sealed bid

- High bidder's willingness to pay is public
- No reserve prices
- No penalties for default, so many meaningless high bids

Problems from New Zealand and Australia

Second price, sealed bid

- High bidder's willingness to pay is public
- No reserve prices
- No penalties for default, so many meaningless high bids

Any oversight in auction design can have harmful repercussions, as bidders can be counted on to seek ways to outfox the mechanism.

License interactions

- Complementarities: good to be able to offer roaming capabilities

License interactions

- Complementarities: good to be able to offer roaming capabilities
- Substitutability: several licenses in the same region

License interactions

- Complementarities: good to be able to offer roaming capabilities
- Substitutability: several licenses in the same region
- Need to be flexible to allow bidders to create aggregations

License interactions

- Complementarities: good to be able to offer roaming capabilities
- Substitutability: several licenses in the same region
- Need to be flexible to allow bidders to create aggregations
- Secondary market might allow for some corrections
- Likely to be thin
- High transaction costs

Limits of Theory

Limits of Theory

- Identify variables, but not relative magnitudes

Limits of Theory

- Identify variables, but not relative magnitudes
- When there are conflicting effects, can'† tell which will dominate

Limits of Theory

- Identify variables, but not relative magnitudes
- When there are conflicting effects, can't tell which will dominate
- Ignores transaction costs of implementing policies

Limits of Theory

- Identify variables, but not relative magnitudes
- When there are conflicting effects, can' \dagger tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
- e.g. bidder valuations

Limits of Theory

- Identify variables, but not relative magnitudes
- When there are conflicting effects, can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
- e.g. bidder valuations
- Doesn'† scale to complexity of spectrum auctions

Limits of Theory

- Identify variables, but not relative magnitudes
- When there are conflicting effects, can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
- e.g. bidder valuations
- Doesn'† scale to complexity of spectrum auctions

Used laboratory experiments too

Open vs. Sealed Bid

- Open increases information, reducing winner's curse

Open vs. Sealed Bid

- Open increases information, reducing winner's curse - Leads to higher bids

Open vs. Sealed Bid

- Open increases information, reducing winner's curse
- Leads to higher bids
- But. . .
- Risk aversion leads to higher bids in sealed bid auctions
- Sealed bid auctions deter colusion

Open vs. Sealed Bid

- Open increases information, reducing winner's curse
- Leads to higher bids
- But...
- Risk aversion leads to higher bids in sealed bid auctions
- Sealed bid auctions deter colusion
- Decided former outweighed latter
- Went with announcing bids, but not the bidders

Open vs. Sealed Bid

- Open increases information, reducing winner's curse
- Leads to higher bids
- But...
- Risk aversion leads to higher bids in sealed bid auctions
- Sealed bid auctions deter colusion
- Decided former outweighed latter
- Went with announcing bids, but not the bidders
- Circumvented!

Simultaneous vs. Sequential

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching

Simultaneous vs. Sequential

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching
- Simultaneous needs a stopping rule
- Closing one by one is effectively sequential
- Keeping all open until all close encourages sniping

Simultaneous vs. Sequential

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching
- Simultaneous needs a stopping rule
- Closing one by one is effectively sequential
- Keeping all open until all close encourages sniping
- Stopping rule should:
- End auction quickly
- Close licenses almost simultaneously
- be simple and understandable

Simultaneous vs. Sequential

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching
- Simultaneous needs a stopping rule
- Closing one by one is effectively sequential
- Keeping all open until all close encourages sniping
- Stopping rule should:
- End auction quickly
- Close licenses almost simultaneously
- be simple and understandable
Went with activity rules

Combinatorial Bids

- Nationwide bidding could decrease efficiency and revenue

Combinatorial Bids

- Nationwide bidding could decrease efficiency and revenue
- Full combinatorial bidding too complex
- Winner determination problem
- Active research area

Aiding Designated Bidders

- Give them a discount

Aiding Designated Bidders

- Give them a discount
- Circumvented!

Royalties vs. Up-front Payments

- Royalties decrease risk, increase bids

Royalties vs. Up-front Payments

- Royalties decrease risk, increase bids
- But royalties discourage post-auction innovation

Royalties vs. Up-front Payments

- Royalties decrease risk, increase bids
- But royalties discourage post-auction innovation
- Decided against

Reserve Prices

- Not necessary in such a competitive market
- Did include withdrawal penalties

Results

- Big successes
- Lots of bidders
- Lots of revenue

Results

- Big successes
- Lots of bidders
- Lots of revenue
- Also some problems
- Strategic Demand Reduction

Results

- Big successes
- Lots of bidders
- Lots of revenue
- Also some problems
- Strategic Demand Reduction
- Incremental design changes
- New problems always arise
- Bidders indeed find ways to circumvent mechanisms

Results

- Big successes
- Lots of bidders
- Lots of revenue
- Also some problems
- Strategic Demand Reduction
- Incremental design changes
- New problems always arise
- Bidders indeed find ways to circumvent mechanisms
- Lessons to be learned via agent-based experiments

