CS344M Autonomous Multiagent Systems Spring 2008

Prof: Peter Stone

Department of Computer Sciences The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

• Next week's readings up

Brandon Blakely on Mechanism Design

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

• What's the value of the flash?

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- What's the value of the flash?
 - Auctions are simultaneous
 - Auctions are independent (no combinatorial bids)

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- What's the value of the flash?
 - Auctions are simultaneous
 - Auctions are independent (no combinatorial bids)

ullet \in [10, 50] — Depends on the price of the camera

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

• Let current camera price = \$80

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

• Let current camera price = \$80

 $- score(G_{f}^{*}) =$

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- Let current camera price = \$80
 - $\ score(G_{f}^{*}) = \max\{100 80, 10 0\} = 20$

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- Let current camera price = \$80
 - $\begin{array}{l} \ score(G_{f}^{*}) = \ \max\{100 80, 10 0\} = 20 \\ \ score(G_{no-f}^{*}) = \end{array}$

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- Let current camera price = \$80

 - $score(G_{f}^{*}) = \max\{100 80, 10 0\} = 20$ $score(G_{no-f}^{*}) = \max\{50 80, 0 0\} = 0$

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- Let current camera price = \$80
 - $score(G_{f}^{*}) = \max\{100 80, 10 0\} = 20$ $score(G_{no-f}^{*}) = \max\{50 80, 0 0\} = 0$

 - So value(flash) = 20 0 = \$20

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- Let current camera price = \$80

 - $score(G_{f}^{*}) = \max\{100 80, 10 0\} = 20$ $score(G_{no-f}^{*}) = \max\{50 80, 0 0\} = 0$
 - So value(flash) = 20 0 = \$20
- Already bought camera \Rightarrow price = \$0

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- Let current camera price = \$80
 - $\ score(G_{f}^{*}) = \max\{100 80, 10 0\} = 20$
 - $score(G_{no-f}^{*}) = \max\{50 80, 0 0\} = 0$
 - So value(flash) = 20 0 = \$20
- Already bought camera \Rightarrow price = \$0 \Rightarrow value(flash) = 100 50 = \$50

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

• Let current camera price = \$20, flash = \$10- value(flash) would be

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- Let current camera price = \$20, flash = \$10
 - value(flash) would be 80 30 = \$50
 - value(camera) would be

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- Let current camera price = \$20, flash = \$10
 - value(flash) would be 80 30 = \$50
 - value(camera) would be 90 0 = \$90
- But what if prices jump at the end?

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- Let current camera price = \$20, flash = \$10
 - value(flash) would be 80 30 = \$50
 - value(camera) would be 90 0 = \$90
- But what if prices jump at the end?
 - Let average past camera price = \$80, flash = \$30

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- Let current camera price = \$20, flash = \$10
 - value(flash) would be 80 30 = \$50
 - value(camera) would be 90 0 = \$90
- But what if prices jump at the end?
 - Let average past camera price = \$80, flash = \$30
 - value(flash) = \$20
 - value(camera) = \$70

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- What's the value of the flash?
 - Camera price = $$70 \Rightarrow value(flash) = 30
 - Camera price = $$20 \Rightarrow value(flash) = 50
 - Camera price = $$40 \Rightarrow value(flash) = 50

	utility
camera alone	\$50
flash alone	10
both	100
neither	0

- What's the value of the flash?
 - Camera price = $$70 \Rightarrow value(flash) = 30
 - Camera price = $$20 \Rightarrow value(flash) = 50
 - Camera price = $$40 \Rightarrow value(flash) = 50

• Expected value: resample camera price, take avg.

• Worth **a lot**

• But how much to whom?

• Worth **a lot**

- But how much to whom?
- Used to be assigned

- Worth **a lot**
- But how much to whom?
- Used to be assigned
 - took too long

- Worth a lot
- But how much to whom?
- Used to be assigned
 - took too long
- Switched to lotteries

- Worth **a lot**
- But how much to whom?
- Used to be assigned
 - took too long
- Switched to lotteries
 - too random
 - clear that lots of value given away

- Worth **a lot**
- But how much to whom?
- Used to be assigned
 - took too long
- Switched to lotteries
 - too random
 - clear that lots of value given away

So decided to auction

Goals of mechanism

- Efficient allocation (assign to whom it's worth the most)
- Promote deployment of new technologies
- Prevent monopoly (or close)
- Get some licenses to designated companies
- No political embarrassments

Goals of mechanism

- Efficient allocation (assign to whom it's worth the most)
- Promote deployment of new technologies
- Prevent monopoly (or close)
- Get some licenses to designated companies
- No political embarrassments

Revenue an afterthought (but important in end)

Choices

• Which basic auction format?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?
- Up front payments or royalties?

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?
- Up front payments or royalties?
- Reserve prices?

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?
- Up front payments or royalties?
- Reserve prices?
- How much information public?

Problems from New Zealand and Australia

Second price, sealed bid

Problems from New Zealand and Australia

Second price, sealed bid

- High bidder's willingness to pay is public
- No reserve prices
- No penalties for default, so many meaningless high bids

Problems from New Zealand and Australia

Second price, sealed bid

- High bidder's willingness to pay is public
- No reserve prices
- No penalties for default, so many meaningless high bids

Any oversight in auction design can have harmful repercussions, as bidders can be counted on to seek ways to outfox the mechanism.

 Complementarities: good to be able to offer roaming capabilities

- Complementarities: good to be able to offer roaming capabilities
- Substitutability: several licenses in the same region

- Complementarities: good to be able to offer roaming capabilities
- Substitutability: several licenses in the same region
- Need to be flexible to allow bidders to create aggregations

- Complementarities: good to be able to offer roaming capabilities
- Substitutability: several licenses in the same region
- Need to be flexible to allow bidders to create aggregations
- Secondary market might allow for *some* corrections
 - Likely to be thin
 - High transaction costs

• Identify variables, but not relative magnitudes

- Identify variables, but not relative magnitudes
 - When there are conflicting effects, can't tell which will dominate

- Identify variables, but not relative magnitudes
 - When there are conflicting effects, can't tell which will dominate
- Ignores transaction costs of implementing policies

- Identify variables, but not relative magnitudes
 - When there are conflicting effects, can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 e.g. bidder valuations

- Identify variables, but not relative magnitudes
 - When there are conflicting effects, can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 e.g. bidder valuations
- Doesn't scale to complexity of spectrum auctions

- Identify variables, but not relative magnitudes
 - When there are conflicting effects, can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 e.g. bidder valuations
- Doesn't scale to complexity of spectrum auctions

Used laboratory experiments too

• Open increases information, reducing winner's curse

- Open increases information, reducing winner's curse
 - Leads to higher bids

- Open increases information, reducing winner's curse
 - Leads to higher bids
- But...
 - Risk aversion leads to higher bids in sealed bid auctions
 - Sealed bid auctions deter colusion

- Open increases information, reducing winner's curse
 - Leads to higher bids
- But...
 - Risk aversion leads to higher bids in sealed bid auctions
 - Sealed bid auctions deter colusion
- Decided former outweighed latter
- Went with announcing bids, but not the bidders

- Open increases information, reducing winner's curse
 - Leads to higher bids
- But...
 - Risk aversion leads to higher bids in sealed bid auctions
 - Sealed bid auctions deter colusion
- Decided former outweighed latter
- Went with announcing bids, but not the bidders
 - Circumvented!

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching
- Simultaneous needs a stopping rule
 - Closing one by one is effectively sequential
 - Keeping all open until all close encourages sniping

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching
- Simultaneous needs a stopping rule
 - Closing one by one is effectively sequential
 - Keeping all open until all close encourages sniping
- Stopping rule should:
 - End auction quickly
 - Close licenses almost simultaneously
 - be simple and understandable

- Sequential prevents backup strategies for aggregation
- Sequential also allows for budget stretching
- Simultaneous needs a stopping rule
 - Closing one by one is effectively sequential
 - Keeping all open until all close encourages sniping
- Stopping rule should:
 - End auction quickly
 - Close licenses almost simultaneously
 - be simple and understandable

Went with activity rules

Combinatorial Bids

Nationwide bidding could decrease efficiency and revenue

Combinatorial Bids

- Nationwide bidding could decrease efficiency and revenue
- Full combinatorial bidding too complex
 - Winner determination problem
 - Active research area

Aiding Designated Bidders

• Give them a discount

Aiding Designated Bidders

- Give them a discount
- Circumvented!

Royalties vs. Up-front Payments

• Royalties decrease risk, increase bids

Royalties vs. Up-front Payments

- Royalties decrease risk, increase bids
- But royalties discourage post-auction innovation

Royalties vs. Up-front Payments

- Royalties decrease risk, increase bids
- But royalties discourage post-auction innovation
- Decided against

Reserve Prices

- Not necessary in such a competitive market
- Did include withdrawal penalties

- Big successes
 - Lots of bidders
 - Lots of revenue

- Big successes
 - Lots of bidders
 - Lots of revenue
- Also some problems
 - Strategic Demand Reduction

- Big successes
 - Lots of bidders
 - Lots of revenue
- Also some problems
 - Strategic Demand Reduction
- Incremental design changes
 - New problems always arise
 - Bidders indeed find ways to circumvent mechanisms

- Big successes
 - Lots of bidders
 - Lots of revenue
- Also some problems
 - Strategic Demand Reduction
- Incremental design changes
 - New problems always arise
 - Bidders indeed find ways to circumvent mechanisms
- Lessons to be learned via agent-based experiments

