CS344M Autonomous Multiagent Systems Spring 2008

Prof: Peter Stone

Department of Computer Sciences
The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Logistics

• Executable teams due next Tuesday

Logistics

- Executable teams due next Tuesday
- Final reports due on Thursday

Logistics

- Executable teams due next Tuesday
- Final reports due on Thursday
- Final tournament: Wednesday, May 7th, 10am, TAY 3.128

Machine Learning

Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples → hypothesis

Machine Learning

Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples → hypothesis

Agent Learning

Policy: how to act (generate training examples)

Machine Learning

Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples → hypothesis

Agent Learning

Policy: how to act (generate training examples)

neural network training, decision tree training, clustering, genetic algorithms, genetic programming, reinforcement learning...

3 vs. 2 Keepaway (joint with Rich Sutton)

- Play in a **small area** ($20m \times 20m$)
- Keepers try to keep the ball
- Takers try to get the ball
- Episode:
 - Players and ball reset randomly
 - Ball starts near a keeper
 - Ends when taker gets the ball or ball goes out
- Performance measure: average possession duration
- Use CMUnited-99 skills:
 - HoldBall, PassBall(k), GoToBall, GetOpen

Available Skills (from CMUnited-99)

HoldBall(): Remain stationary while keeping possession of the ball.

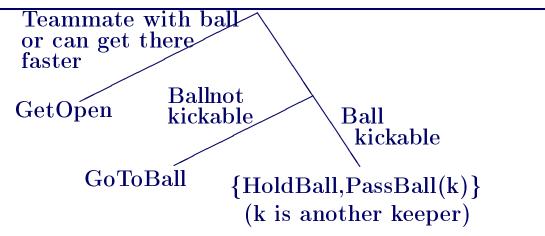
PassBall(k**):** Kick the ball directly to keeper k.

GoToBall(): Intercept a moving ball or move directly towards a stationary ball.

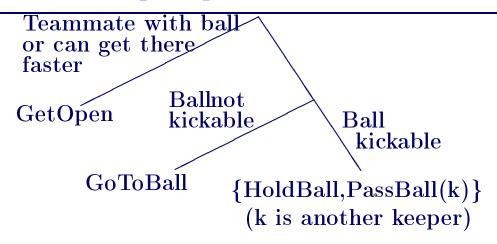
GetOpen(): Move to a position that is free from opponents and open for a pass from the ball's current position (using SPAR (Veloso et al., 1999))

BlockPass(k**):** Get in between the ball and keeper k

The Keepers' Policy Space



The Keepers' Policy Space



Example Policies

Random: HoldBall or PassBall(k) randomly

Hold: Always HoldBall

Hand-coded:

If no taker within 10m: HoldBall

Else If there's a good pass: PassBall(k)

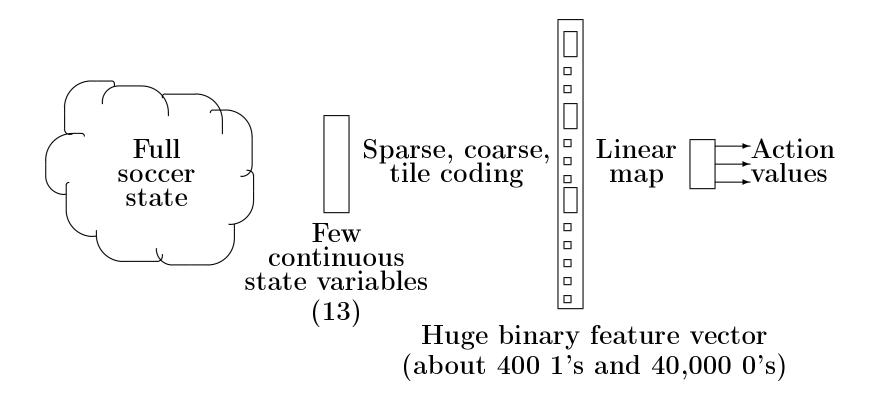
Else HoldBall

Mapping Keepaway to RL

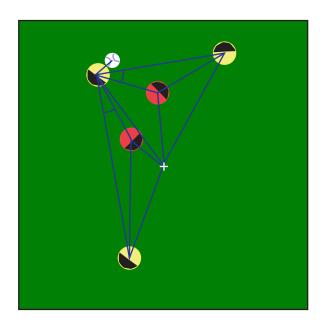
Discrete-time, episodic, distributed RL

- \bullet Simulator operates in discrete time steps, $t=0,1,2,\ldots$, each representing 100 msec
- Episode: $s_0, a_0, r_1, s_1, \ldots, s_t, a_t, r_{t+1}, s_{t+1}, \ldots, r_T, s_T$
- $a_t \in \{\text{HoldBall}, \text{PassBall}(k), \text{GoToBall}, \text{GetOpen}\}$
- $r_t = 1$
- $V^{\pi}(s) = E\{T \mid s_0 = s\}$
- ullet Goal: Find π^* that maximizes V for all s

Representation



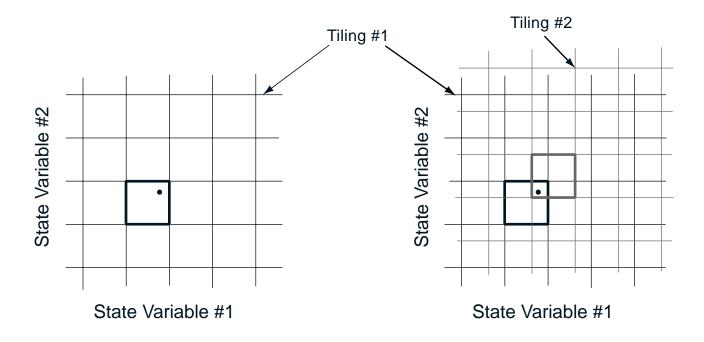
s: 13 Continuous State Variables



- 11 distances among players, ball, and center
- 2 angles to takers along passing lanes

Function Approximation: Tile Coding

 Form of sparse, coarse coding based on CMACS (Albus, 1981)



• Tiled state variables individually (13)

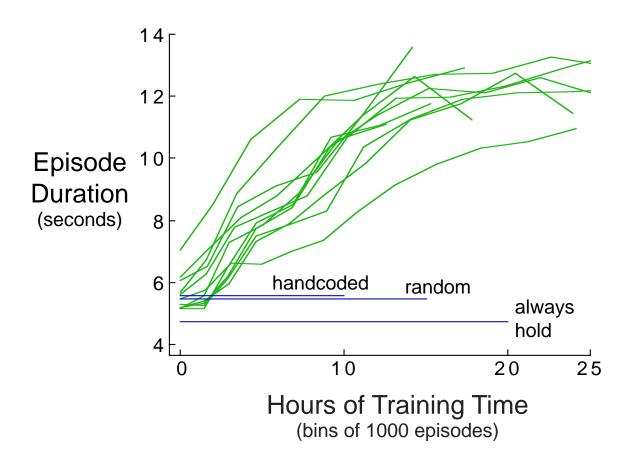
Policy Learning

• Learn $Q^{\pi}(s,a)$: Expected possession time

Policy Learning

- Learn $Q^{\pi}(s, a)$: Expected possession time
- Linear Sarsa(λ) each agent learns independently
 - On-policy method: advantages over e.g. Q-learning
 - Not known to converge, but works (e.g. (Sutton, 1996))

Main Result



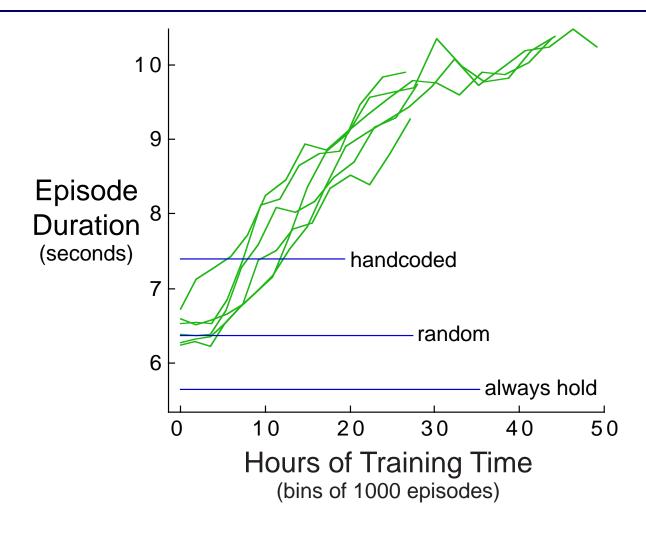
1 hour = 720 5-second episodes

Varied Field Size

		Testing Field Size		
Keepers		15x15	20x20	25x25
Trained	15x15	11.0	9.8	7.2
on field	20x20	10.7	15.0	12.2
of size	25x25	6.3	10.4	15.0
	Hand	4.3	5.6	8.0
Benchmarks	Hold	3.9	4.8	5.2
	Random	4.2	5.5	6.4

- Single runs
- learning specific to fields
 - mechanism generalizes better than policies

4 vs. 3 Keeper Learning



Preliminary: taker learning successful as well

• 5 vs. 4

• 5 vs. 4

• Transfer learning (Taylor, Liu)

- 5 vs. 4
- Transfer learning (Taylor, Liu)
- Evolutionary learning (Taylor and Whiteson)

- 5 vs. 4
- Transfer learning (Taylor, Liu)
- Evolutionary learning (Taylor and Whiteson)
- Half field offense (Kalyanakrishnan)

- 5 vs. 4
- Transfer learning (Taylor, Liu)
- Evolutionary learning (Taylor and Whiteson)
- Half field offense (Kalyanakrishnan)
 - Communication updates when others have the ball

- 5 vs. 4
- Transfer learning (Taylor, Liu)
- Evolutionary learning (Taylor and Whiteson)
- Half field offense (Kalyanakrishnan)
 - Communication updates when others have the ball
- Any coevolution?

Genetic algorithms

- Keep a population of individuals
- Each generation
 - Evaluate their fitness
 - Throw out the bad ones
 - Change the good ones randomly
 - Repeat

Genetic algorithms

- Keep a population of individuals
- Each generation
 - Evaluate their fitness
 - Throw out the bad ones
 - Change the good ones randomly
 - Repeat

The fitness function matters

- Playing against top-notch competition → no info
- Playing against a single foe → too brittle

- Co-evolve 2 populations: gives software and test suites item "New genotypes arise to defeat old ones"
 - Why not self play?

- Co-evolve 2 populations: gives software and test suites item "New genotypes arise to defeat old ones"
 - Why not self play?
- 2 techniques to keep diversity

- Co-evolve 2 populations: gives software and test suites item "New genotypes arise to defeat old ones"
 - Why not self play?
- 2 techniques to keep diversity
 - Fitness sharing: prevent extinctions
 - Opponent sampling: use range of opponents to test

- Co-evolve 2 populations: gives software and test suites item "New genotypes arise to defeat old ones"
 - Why not self play?
- 2 techniques to keep diversity
 - Fitness sharing: prevent extinctions
 - Opponent sampling: use range of opponents to test
- Test on TTT, Nim (and go)
 - Millions of generations
 - Worse than perfect play

- Co-evolve 2 populations: gives software and test suites item "New genotypes arise to defeat old ones"
 - Why not self play?
- 2 techniques to keep diversity
 - Fitness sharing: prevent extinctions
 - Opponent sampling: use range of opponents to test
- Test on TTT, Nim (and go)
 - Millions of generations
 - Worse than perfect play
 - Why compare against old methods?

Collaborative Co-Evolution

• Learn collaborative behaviors simultaneously

Collaborative Co-Evolution

- Learn collaborative behaviors simultaneously
- Applied in pursuit domain among others

Collaborative Co-Evolution

- Learn collaborative behaviors simultaneously
- Applied in pursuit domain among others
- Simultaneous learning by teammates could be thought of in this way as well.