CS344M Autonomous Multiagent Systems Spring 2008

Prof: Peter Stone

Department or Computer Sciences The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Some Definitions

• **Distributed Computing :** Processors share data, but not control. Focus on low-level parallelization, synchronization.

Some Definitions

- **Distributed Computing :** Processors share data, but not control. Focus on low-level parallelization, synchronization.
- **Distributed AI** : Control as well as data is distributed. Focus on problem solving, communication, and coordination.
- **Distributed Problem Solving** : Task decomposition and/or solution synthesis.
- Multiagent Systems : Behavior coordination or behavior management.
 - No necessary guarantees about other agents.
 - Individual behaviors typically simple relative to interaction issues.

Multiagent Systems

- Study, behavior, construction of **possibly preexisting** autonomous agents that interact with each other.
 - incomplete information for agents
 - no global control
 - decentralized data
 - asynchronous computation

Why Multiagent Systems?

- (7)
- Some domains require it. (Hospital scheduling)
- Interoperation of legacy systems
- Parallelism.
- Robustness.
- Scalability
- Simpler programming.
- "Intelligence is deeply and inevitably coupled with interaction." *Gerhard Weiss*

Organizations

- Hierarchy: authority from above
- Community of Experts: specialists, mutual adjustment
- Market: bid for tasks and resources; contracts
- Scientific community: full solutions (perhaps with varying information) combined

Issues and Challenges

- How to break down and resynthesize the problem among agents
- Communication/interaction protocols
- Maintain coherence, stability: guarantees?
 - Coherence is a global property
- Representation by agents of each other and interactions
- Reconciling different points of view
- Engineering

Dimensions and issues

- cooperative vs. competitive
- communication
- trust
- recursive modeling
- coalititions
- game theory

Convoy example

What did Sycara say about reactive vs. deliberative agents?

Individual Agents

- Purely reactive agents have disadvantages
 - Can't react to nonlocal info or predict effects on global behavior
 - hard to engineer
- Hybrid approach better
- Hard to evaluate agent architecture against one another

• Omniscience for one agent creates bottleneck

- Omniscience for one agent creates bottleneck
- Self-interested agents: each agent maximizes own local utility
 - Will that be good for global performance? (invisible hand)

- Omniscience for one agent creates bottleneck
- Self-interested agents: each agent maximizes own local utility
 - Will that be good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
 - Pitfall: no stability
 - Pitfall: lying

- Omniscience for one agent creates bottleneck
- Self-interested agents: each agent maximizes own local utility
 - Will that be good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
 - Pitfall: no stability
 - Pitfall: lying
- Market-based methods/auctions

- Omniscience for one agent creates bottleneck
- Self-interested agents: each agent maximizes own local utility
 - Will that be good for global performance? (invisible hand)
 - Pitfall: tragedy of the commons
 - Pitfall: no stability
 - Pitfall: lying
- Market-based methods/auctions
- Negotiation, game theory

Multiagent Planning

- Complex individual agents
- Teamwork modeling
 - Modeling of teammates and opponents
- Recent: emphasis on flexibility in dynamic environments

Communication

- Middle agents (brokers)
- Standard languages
- Ontologies

More next week

Mataric: Adaptive Group Behavior

• Built using subsumption architecture

- Built using subsumption architecture
- More complex behaviors than in Brooks' article
 - Multiagent

- Built using subsumption architecture
- More complex behaviors than in Brooks' article
 - Multiagent
- Hit a complexity limit?
 - (Subsumption or 3T more prevalent?)

• Necessary and sufficient, not "optimal"

- Necessary and sufficient, not "optimal"
 - Task dependent
 - Combinations: complementary, contradictory

- Necessary and sufficient, not "optimal"
 - Task dependent
 - Combinations: complementary, contradictory
- Example: locomotion

- Necessary and sufficient, not "optimal"
 - Task dependent
 - Combinations: complementary, contradictory
- Example: locomotion
 - Safe-wandering, following, dispersion, aggregation, homing

- Necessary and sufficient, not "optimal"
 - Task dependent
 - Combinations: complementary, contradictory
- Example: locomotion
 - Safe-wandering, following, dispersion, aggregation, homing
 - What 2 multiagent architectures does she compare?

- Necessary and sufficient, not "optimal"
 - Task dependent
 - Combinations: complementary, contradictory
- Example: locomotion
 - Safe-wandering, following, dispersion, aggregation, homing
 - What 2 multiagent architectures does she compare?
 - Anything special about this domain? Or could it apply just as well to others?

Basis behaviors for other tasks

Basis behaviors for other tasks

- Can human behavior be thought of as arising from a set of basis behaviors?
- What kinds of basis behaviors would they be?

Basis behaviors for other tasks

- Can human behavior be thought of as arising from a set of basis behaviors?
- What kinds of basis behaviors would they be?
- Would they be the same as the ones Mataric listed?
- Are there others?

Negotiation

- Example: Split the dollar
 - One person makes an offer
 - Other accepts or rejects
 - If rejects, both get nothing

Negotiation

- Example: Split the dollar
 - One person makes an offer
 - Other accepts or rejects
 - If rejects, both get nothing
- Another version
 - One person makes an offer
 - Other accepts, rejects, or counters
 - If counters, \$.05 lost
 - Game ends with an accept or reject

