CS344M Autonomous Multiagent Systems Spring 2008

Prof: Peter Stone

Department of Computer Sciences The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Are there any questions?

- relaxing constraints turns, etc. how did it affect performance?
- accident prediction
- Could follow more closely?
- OASIS how doing in real world?

• Give yourself some time for the game theory readings

- Give yourself some time for the game theory readings
- Start on the projects!

• Programming assignments:

Didn't like early programming assignments

- Programming assignments:
 - Didn't like early programming assignments
 - Too much work, for not much payoff
 - Simulator documentation poor

- Programming assignments:
 - Didn't like early programming assignments
 - Too much work, for not much payoff
 - Simulator documentation poor
 - Programming should be in LISP

- Programming assignments:
 - Didn't like early programming assignments
 - Too much work, for not much payoff
 - Simulator documentation poor
 - Programming should be in LISP
 - Scripts for starting teams

- Didn't like early programming assignments
- Too much work, for not much payoff
- Simulator documentation poor
- Programming should be in LISP
- Scripts for starting teams
- Material:
 - Go into some things more deeply

- Didn't like early programming assignments
- Too much work, for not much payoff
- Simulator documentation poor
- Programming should be in LISP
- Scripts for starting teams
- Material:
 - Go into some things more deeply
 - More about machine learning (and other topics)

- Didn't like early programming assignments
- Too much work, for not much payoff
- Simulator documentation poor
- Programming should be in LISP
- Scripts for starting teams
- Material:
 - Go into some things more deeply
 - More about machine learning (and other topics)
- Readings:
 - Mostly good, some mixed reviews

- Didn't like early programming assignments
- Too much work, for not much payoff
- Simulator documentation poor
- Programming should be in LISP
- Scripts for starting teams
- Material:
 - Go into some things more deeply
 - More about machine learning (and other topics)
- Readings:
 - Mostly good, some mixed reviews

- Writing
 - Like/don't like response

- Like/don't like response
- Prefer bullet point responses

- Like/don't like response
- Prefer bullet point responses
- Already comfortable with writing

- Like/don't like response
- Prefer bullet point responses
- Already comfortable with writing
- Want more feedback

- Like/don't like response
- Prefer bullet point responses
- Already comfortable with writing
- Want more feedback
- Classroom sessions:
 - Discussion format good going smoothly

- Like/don't like response
- Prefer bullet point responses
- Already comfortable with writing
- Want more feedback
- Classroom sessions:
 - Discussion format good going smoothly
 - Don't learn much in class more new material

- Like/don't like response
- Prefer bullet point responses
- Already comfortable with writing
- Want more feedback
- Classroom sessions:
 - Discussion format good going smoothly
 - Don't learn much in class more new material
 - Too much time on logistics

- Like/don't like response
- Prefer bullet point responses
- Already comfortable with writing
- Want more feedback
- Classroom sessions:
 - Discussion format good going smoothly
 - Don't learn much in class more new material
 - Too much time on logistics
 - Thursdays tough

- Like/don't like response
- Prefer bullet point responses
- Already comfortable with writing
- Want more feedback
- Classroom sessions:
 - Discussion format good going smoothly
 - Don't learn much in class more new material
 - Too much time on logistics
 - Thursdays tough
 - Enjoy insight to academia

- Like/don't like response
- Prefer bullet point responses
- Already comfortable with writing
- Want more feedback
- Classroom sessions:
 - Discussion format good going smoothly
 - Don't learn much in class more new material
 - Too much time on logistics
 - Thursdays tough
 - Enjoy insight to academia
 - The student led discussion section is something that I enjoy!

- Like/don't like response
- Prefer bullet point responses
- Already comfortable with writing
- Want more feedback
- Classroom sessions:
 - Discussion format good going smoothly
 - Don't learn much in class more new material
 - Too much time on logistics
 - Thursdays tough
 - Enjoy insight to academia
 - The student led discussion section is something that I enjoy!

- Layout could be better

- Layout could be better
- Default color schme?

- Layout could be better
- Default color schme?
- Links to resources from assignments

- Layout could be better
- Default color schme?
- Links to resources from assignments
- Misc.:
 - Want to spend time in lab with AIBOs

- Layout could be better
- Default color schme?
- Links to resources from assignments
- Misc.:
 - Want to spend time in lab with AIBOs
 - Classes are fun!

Intersection Management

• Kurt's slides

- Kurt's slides
- relaxing constraints turns, etc. how did it affect performance?
- accident prediction
- Could follow more closely?

Tyler Pearson on Distributed vs. Centralized control

Tyler Pearson on Distributed vs. Centralized control

- Concretization of BDI
 - Decision nodes, chance nodes \Rightarrow beliefs, desires, intentions trees

- Concretization of BDI
 - Decision nodes, chance nodes \Rightarrow beliefs, desires, intentions trees
- Real time: assume significant changes to state can be determined instantaneously

- Concretization of BDI
 - Decision nodes, chance nodes \Rightarrow beliefs, desires, intentions trees
- Real time: assume significant changes to state can be determined instantaneously
 - No blind execution
 - No constant reevaluation

- Concretization of BDI
 - Decision nodes, chance nodes \Rightarrow beliefs, desires, intentions trees
- Real time: assume significant changes to state can be determined instantaneously
 - No blind execution
 - No constant reevaluation

Implemented in an airport!

• Non-deterministic (\Rightarrow beliefs)

- Non-deterministic (\Rightarrow beliefs)
- Action choices (\Rightarrow intentions)

- Non-deterministic (\Rightarrow beliefs)
- Action choices (\Rightarrow intentions)
- Multiple objectives, possibly incompatible (\Rightarrow desires)

- Non-deterministic (\Rightarrow beliefs)
- Action choices (\Rightarrow intentions)
- Multiple objectives, possibly incompatible (\Rightarrow desires)
- Environment determines best actions (\Rightarrow desires)

- Non-deterministic (\Rightarrow beliefs)
- Action choices (\Rightarrow intentions)
- Multiple objectives, possibly incompatible (\Rightarrow desires)
- Environment determines best actions (\Rightarrow desires)
- Incomplete information (\Rightarrow beliefs)

- Non-deterministic (\Rightarrow beliefs)
- Action choices (\Rightarrow intentions)
- Multiple objectives, possibly incompatible (\Rightarrow desires)
- Environment determines best actions (\Rightarrow desires)
- Incomplete information (\Rightarrow beliefs)
- Dynamic world (\Rightarrow intentions)

- Non-deterministic (\Rightarrow beliefs)
- Action choices (\Rightarrow intentions)
- Multiple objectives, possibly incompatible (\Rightarrow desires)
- Environment determines best actions (\Rightarrow desires)
- Incomplete information (\Rightarrow beliefs)
- Dynamic world (\Rightarrow intentions)

Can't just use decision theory

Decision Theory

- Choice nodes: system gets to choose
- Chance nodes: environment selects randomly

Decision Theory

- Choice nodes: system gets to choose
- Chance nodes: environment selects randomly

Deliberation Functions

- Maximin: aim for a best, worst case
- Expected utility: aim for a best expected case

Decision Theory

- Choice nodes: system gets to choose
- Chance nodes: environment selects randomly

Deliberation Functions

- Maximin: aim for a best, worst case
- Expected utility: aim for a best expected case

Example

Air-traffic Management

70–80 agents at a time

Air-traffic Management

70–80 agents at a time

- One agent per aircraft
- Sequencer
- Wind modeller
- Coordinator
- Trajectory checker

Air-traffic Management

70–80 agents at a time

- One agent per aircraft
- Sequencer
- Wind modeller
- Coordinator
- Trajectory checker

Keep schedule until complete or impossible

Beliefs: All possible wind velocities and trajectories

Beliefs: All possible wind velocities and trajectories

Desires: Pruned to only keep the right ETA

Beliefs: All possible wind velocities and trajectories

Desires: Pruned to only keep the right ETA

Intentions: Pruned further to keep only the best in terms of fuel consumption, etc.

• Are we ready for free flight and automatic proxy agents?

Continue ML crash course

- Genetic algorithms/programming
- Reinforcement learning
- Neural networks

