CS378 Autonomous Multiagent Systems Spring 2004

Prof: Peter Stone

TA: Mazda Ahmadi

Department of Computer Sciences
The University of Texas at Austin

Week 12a: Tuesday, April 13th

Good Afternoon, Colleagues

Are there any questions?

Logistics

- Final tournament times
 - M-F 10:30am, 12:30, 2:30pm?

Logistics

- Final tournament times
 - M-F 10:30am, 12:30, 2:30pm?
- Next week's readings

Logistics

- Final tournament times
 - M-F 10:30am, 12:30, 2:30pm?
- Next week's readings
- Questions required on Thursday!

Self-interested, rational agent

Self-interested:

- Self-interested: maximize own goals
 - No concern for global good

- Self-interested: maximize own goals
 - No concern for global good
- Rational:

- Self-interested: maximize own goals
 - No concern for global good
- Rational: agents are smart
 - Ideally, will act optimally

Self-interested, rational agent

- Self-interested: maximize own goals
 - No concern for global good
- Rational: agents are smart
 - Ideally, will act optimally

The protocol is key

Evaluation Criteria

- Social welfare
- Pareto efficiency
- Stability

Evaluation Criteria

- Social welfare
- Pareto efficiency
- Stability
- Individual Rationality

Evaluation Criteria

- Social welfare
- Pareto efficiency
- Stability
- Individual Rationality
- Efficiency (computational, communication)

Voting vs. auctions

- Voting: maximize social good
 - result affects all

Voting vs. auctions

- Voting: maximize social good
 - result affects all
- Auctions: maximize profit
 - result affects buyer and seller

Class Discussion

Irvin Hwang on auctions (and candy bars)

• Valuations:

- Valuations:
 - private value

- Valuations:
 - private value
 - common value

- Valuations:
 - private value
 - common value
 - correlated value

- Valuations:
 - private value
 - common value
 - correlated value
- Types:
 - first-price open-cry (English)

- Valuations:
 - private value
 - common value
 - correlated value
- Types:
 - first-price open-cry (English)
 - first-price sealed-bid

Valuations:

- private value
- common value
- correlated value

Types:

- first-price open-cry (English)
- first-price sealed-bid
- descending (Dutch)

Valuations:

- private value
- common value
- correlated value

Types:

- first-price open-cry (English)
- first-price sealed-bid
- descending (Dutch)
- second-price sealed-bid (Vickrey)

- Valuations:
 - private value
 - common value
 - correlated value
- Types:
 - first-price open-cry (English)
 - first-price sealed-bid
 - descending (Dutch)
 - second-price sealed-bid (Vickrey)

Revenue equivalence: private-value, risk-neutral

• You value a bunch of flowers at \$100

- You value a bunch of flowers at \$100
- What strategy if auction is:
 - English

- You value a bunch of flowers at \$100
- What strategy if auction is:
 - English
 - first-price sealed-bid

- You value a bunch of flowers at \$100
- What strategy if auction is:
 - English
 - first-price sealed-bid
 - Descending

- You value a bunch of flowers at \$100
- What strategy if auction is:
 - English
 - first-price sealed-bid
 - Descending
 - Vickrey

- You value a bunch of flowers at \$100
- What strategy if auction is:
 - English
 - first-price sealed-bid
 - Descending
 - Vickrey
- What if it's an antique?

Vickrey, English are truthful

- Vickrey, English are truthful
- First-price sealed-bid: bidders bid lower than values

- Vickrey, English are truthful
- First-price sealed-bid: bidders bid lower than values
 - Private value case: why?

- Vickrey, English are truthful
- First-price sealed-bid: bidders bid lower than values
 - Private value case: why?
- In common (and correlated) value case, bids lower in all mechanisms

- Vickrey, English are truthful
- First-price sealed-bid: bidders bid lower than values
 - Private value case: why?
- In common (and correlated) value case, bids lower in all mechanisms
 - Why?