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Logistics

• Surveys from Poland

• Final reports due to Mazda tomorrow by 8pm
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The Tournament
1. Soccer Fascists Sura and Hwang
2. G-Cipher Barksdale and Morris
3. Kablip FC Kane, Issen, and Parkeh
4. Ottomans Deligonul and Ciftici
5. CG United Su and Bradley
6. MISC Lewis

7. PG-11 Li and Fayyaz
8. The Big O’z Shao and Jones
9. Serendipity Trimble and Hatfield
10. Node Warrior Fakhreddine and Clark
11. Team Quarks Chuah and Dasler
12. Team Stamina High and Ulrich
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Machine Learning
Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples 7→ hypothesis
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Machine Learning
Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples 7→ hypothesis

Agent Learning
Policy: how to act (generate training examples)

neural network training, Q-learning, decision tree training,
clustering, genetic algorithms, genetic programming, . . .

Peter Stone



Genetic algorithms
• Keep a population of individuals

• Each generation

– Evaluate their fitness
– Throw out the bad ones
– Change the good ones randomly
– Repeat
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Genetic algorithms
• Keep a population of individuals

• Each generation

– Evaluate their fitness
– Throw out the bad ones
– Change the good ones randomly
– Repeat

The fitness function matters

• Playing against top-notch competition → no info

• Playing against a single foe → too brittle

Peter Stone



Class Discussion

Brian Jones on competitive coevolution

Peter Stone
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• Learn collaborative behaviors simultaneously
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Collaborative Co-Evolution
• Learn collaborative behaviors simultaneously

• Applied in pursuit domain among others

• Could be used in context of layered learning

− Research here with Shimon Whiteson

• Simultaneous learning by teammates could be thought of
in this way as well.

Peter Stone



3 vs. 2 Keepaway (joint with Rich Sutton)
• Play in a small area (20m × 20m)

• Keepers try to keep the ball

• Takers try to get the ball

• Episode:
− Players and ball reset randomly
− Ball starts near a keeper
− Ends when taker gets the ball or ball goes out

• Performance measure: average possession duration

• Use CMUnited-99 skills:

− HoldBall, PassBall(k), GoToBall, GetOpen

Peter Stone



Available Skills (from CMUnited-99)

HoldBall(): Remain stationary while keeping possession of
the ball.

PassBall(k): Kick the ball directly to keeper k.

GoToBall(): Intercept a moving ball or move directly towards
a stationary ball.

GetOpen(): Move to a position that is free from opponents
and open for a pass from the ball’s current position (using
SPAR [Veloso et al., 1999])

BlockPass(k): Get in between the ball and keeper k
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The Keepers’ Policy Space
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Example Policies
Random: HoldBall or PassBall(k) randomly
Hold: Always HoldBall
Hand-coded:

If no taker within 10m: HoldBall
Else If there’s a good pass: PassBall(k)
Else HoldBall
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Mapping Keepaway to RL
Discrete-time, episodic, distributed RL

• Simulator operates in discrete time steps, t = 0, 1, 2, . . .,
each representing 100 msec

• Episode: s0, a0, r1, s1, . . . , st, at, rt+1, st+1, . . . , rT , sT

• at ∈ {HoldBall, PassBall(k), GoToBall, GetOpen}

• rt = 1

• V π(s) = E{T | s0 = s}

• Goal: Find π∗ that maximizes V for all s

Peter Stone



Representation
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s: 13 Continuous State Variables

• 11 distances among players, ball, and center

• 2 angles to takers along passing lanes

Peter Stone



Function Approximation: Tile Coding

• Form of sparse, coarse coding based on CMACS [Albus,

1981]

Tiling #1

State Variable #1
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• Tiled state variables individually (13)
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Policy Learning
• Learn Qπ(s, a): Expected possession time
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Policy Learning
• Learn Qπ(s, a): Expected possession time

• Linear Sarsa(λ) — each agent learns independently

− On-policy method: advantages over e.g. Q-learning
− Not known to converge, but works (e.g. [Sutton, 1996])

Peter Stone



Main Result
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always
hold

1 hour = 720 5-second episodes
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Varied Field Size
Testing Field Size

Keepers 15x15 20x20 25x25
Trained 15x15 11.0 9.8 7.2
on field 20x20 10.7 15.0 12.2
of size 25x25 6.3 10.4 15.0

Hand 4.3 5.6 8.0
Benchmarks Hold 3.9 4.8 5.2

Random 4.2 5.5 6.4

• Single runs
• learning specific to fields
− mechanism generalizes better than policies

Peter Stone



4 vs. 3 Keeper Learning
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• Preliminary: taker learning successful as well

Peter Stone
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Course recap
• You’ve read.

• You’ve reacted and formed opinions.

• You’ve spoken.

• You’ve written.

• You’ve coded for a task with no right answer and no way
of knowing that you’re done.

Do you like CS research?

Peter Stone
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What have we covered?
1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, TCA
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: KQML, Joint Intentions
5. RoboCup case studies
6. Swarms and ant-based approaches: “Go to the Ant”
7. Applications: Air traffic, electric elves
8. Game theory: Nash equilibrium
9. RoboCup rescue:
10. Agent modeling: coaching, RMM, tracking teams
11. Distributed rational decision making: voting. . .
12. Auctions: FCC spectrum auctions, TAC
13. Entertainment agents cobot, chatbots
14. Multiagent learning: layered learning, co-evolution
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The original question

• What is an agent?

Peter Stone



Course recap

• I’ve been impressed by the levels of discussions we’ve had
in class

• I’m happy with the progress in writing and speaking that
many of you have made

• I’m proud of all of you for sticking with it through such a
demanding course

Peter Stone



Course recap

• I’ve been impressed by the levels of discussions we’ve had
in class

• I’m happy with the progress in writing and speaking that
many of you have made

• I’m proud of all of you for sticking with it through such a
demanding course

THANKS!!!

Peter Stone
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Surveys
• Mazda’s and my surveys

• Positive and negative feedback useful

• Invitation to do more on-line surveys

− Still anonymous
− Fill it out only what you feel like
− Should the course be run again?
− How should it change?

Peter Stone
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Next Meeting
• The tournament!

• Thursday, May 13th

• ACES 6.304

• 10:30am–12:30pm

• Come prepared to talk (informally) about your team

Peter Stone


