CS378 Autonomous Multiagent Systems Spring 2005

Prof: Peter Stone

TA: Mazda Ahmadi

Department of Computer Sciences
The University of Texas at Austin

Week 11a: Tuesday, April 5th

Good Afternoon, Colleagues

Are there any questions?

Logistics

- Progress reports due at beginning of class
 - Attach your proposals

Logistics

- Progress reports due at beginning of class
 - Attach your proposals
- Next week's readings focus on beginning

Logistics

- Progress reports due at beginning of class
 - Attach your proposals
- Next week's readings focus on beginning
- Guest lecture on Thursday: Greg Kuhlmann

Recursive Modeling Method

What should I do?

Recursive Modeling Method

- What should I do?
- What should I do given what I think you'll do?

Recursive Modeling Method

- What should I do?
- What should I do given what I think you'll do?
- What should I think you'll do given what I think you think I'll do?

Recursive Modeling Method

- What should I do?
- What should I do given what I think you'll do?
- What should I think you'll do given what I think you think I'll do?
- etc.

• Rely on communication

- Rely on communication
 - What to say? What to trust?

- Rely on communication
 - What to say? What to trust?
- Watch for patterns of others

- Rely on communication
 - What to say? What to trust?
- Watch for patterns of others
 - Might have incorrect expectations, especially it environment changes

- Rely on communication
 - What to say? What to trust?
- Watch for patterns of others
 - Might have incorrect expectations, especially if environment changes
- Use deeper models
 - Includes physical and mental states

- Rely on communication
 - What to say? What to trust?
- Watch for patterns of others
 - Might have incorrect expectations, especially if environment changes
- Use deeper models
 - Includes physical and mental states
 - Could be computationally expensive

Types of models

Example: pursuit task

No-information: Random choice

Types of models

Example: pursuit task

No-information: Random choice

Sub-intentional: Not rational

Types of models

Example: pursuit task

No-information: Random choice

Sub-intentional: Not rational

Intentional: Others use same model

Lessons

- Modeling can help
- There is a lot of useless information in recursive models
- Approximations (limited rationality) can be useful

Use your own plans to model others

- Use your own plans to model others
- Use explicit team operators

- Use your own plans to model others
- Use explicit team operators
 - Introduces challenges of role assignments, and
 - Minimum cost repair

- Use your own plans to model others
- Use explicit team operators
 - Introduces challenges of role assignments, and
 - Minimum cost repair
- Assume agent is using a plan that you could use,
 - But not modeling you

- Use your own plans to model others
- Use explicit team operators
 - Introduces challenges of role assignments, and
 - Minimum cost repair
- Assume agent is using a plan that you could use,
 - But not modeling you
- Act based on assumed actions of others

Class Discussion

Michael Lovitt on agent vs. user modeling

Where do Models Come From

Observation:

- Tambe and RMM: use existing model
 - No building a model

Where do Models Come From

Observation:

- Tambe and RMM: use existing model
 - No building a model

What if we can't build a full model in advance?

Where do Models Come From

Observation:

- Tambe and RMM: use existing model
 - No building a model

What if we can't build a full model in advance?

 What are some incremental approaches for building a predictive model?

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

What is your strategy before modeling me?

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- What is your strategy before modeling me?
- What is your strategy after modeling me?

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- What is your strategy before modeling me?
- What is your strategy after modeling me?
- Am I modeling you?

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- What is your strategy before modeling me?
- What is your strategy after modeling me?
- Am I modeling you?
- Would your end strategy change if I can?

		Player 2		
		Action 1	Action 2	
	Action 1	1,0	3,2	
Player 1				
Ü	Action 2	2,1	4,0	

		Player 2		
		Action 1	Action 2	
	Action 1	1,0	3,2	
Player 1				
	Action 2	2,1	4,0	

• Nash equilibrium?

			Player	2
		Action	1	Action 2
Player 1	Action 1	1,0		3,2
<i>J</i>	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?

			Player	2
		Action	1	Action 2
Player 1	Action 1	1,0		3,2
<i>J</i>	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 2?

		P1	ayer 2
		Action 1	Action 2
Player 1	Action 1	1,0	3,2
1 1 2 3 0 1 1	Action 2	2,1	4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 2?
- Threats can stabilize a non-equilibrium strategy
- Change the best response of the other agent

				Player	2
			Action	1	Action 2
Player	1	Action 1	1,0		3,2
J -		Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 2?
- Threats can stabilize a non-equilibrium strategy
- Change the best response of the other agent

Threats slides

How useful is the concept of Nash equilibrium?

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning
 - Need to do well against some set of agents, never too poorly, and well against yourself.