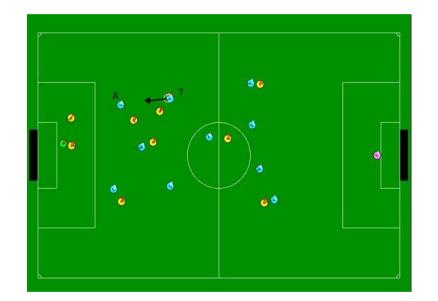
Opponent modeling in the RoboCup Simulator



Gregory Kuhlmann and Peter Stone

Department of Computer Sciences

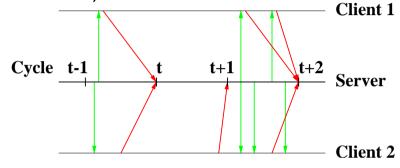
Outline

- The Coach Competition
- The UT Austin Villa Coach
- Changes for 2005
- Something completely different
 - General Game Playing

Department of Computer Sciences

RoboCup Simulator

- Distributed: each player a separate client
- Server models dynamics and kinematics
- Clients receive sensations, send actions



- Parametric actions: dash, turn, kick, say
- Abstract, noisy sensors, hidden state
 - Hear sounds from limited distance
 - See relative distance, angle to objects ahead
- $> 10^{9^{23}}$ states
- Limited resources : stamina
- Play occurs in real time (\approx human parameters)

Department of Computer Sciences

The University of Texas at Austin

Motivation for Coaching

- MAMSIG
 - Aim: encourage research in opponent modeling
 - Challenge: create a simulated coach
 - * autonomous agent that gives advice
 - * improves performance of a team against a fixed opponent
- Power of a coach:
 - More a priori knowledge
 - Better view of world
 - More computational resources
- Prerequisites:
 - coachable players (programmed by others)
 - standardized coaching language

Department of Computer Sciences

RoboCup Coach Competition

- Sub-league of RoboCup Simulator League
- Coaching scenario:
 - Access to log files ("game films") of fixed opponent
 - Noise-free, omniscient view of field
 - Limited communication (once every 300 cycles, 50 cycle delay)
 - can't micromanage. No centralized control.
 - Advice sent in standardized coach language
 - Players to follow advice most of the time
 - Performance measured by goal difference
- Good test of opponent modeling?

Department of Computer Sciences

RoboCup Coach Competition (contd.)

- 4 International Competitions (plus regional events)
 - Early years best result worse than no advice
 - * teams already coherent and competent
 - * probably stuck in local maximum
 - 2003 coaching helped
 - * team of players from several institutions (UT, CMU, USTC)
 - * little or no default strategy.
 - 2004 some rule changes
 - * standardized communication language
 - * new scoring metric
 - * limited time to review logfiles
 - 2005 ?

Department of Computer Sciences

CLang

- Standardized Coach Language
 - independent of coachable player's behavior representation
- If-then rules:

 $\{condition\} \rightarrow \{action\}$

• Example:

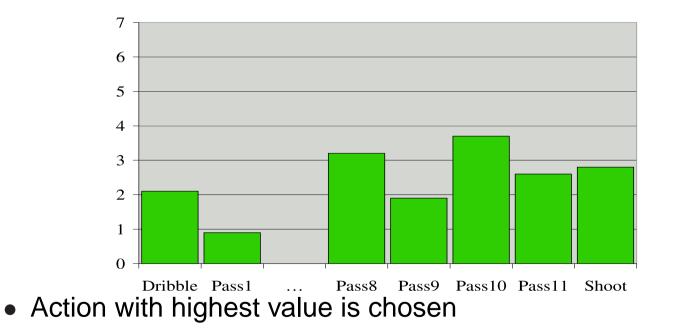
If our player 7 has the ball, then he should pass to player 8 or player 9

```
(definerule pass789 direc
((bowner our {7})
 (do our {7} (pass {8 9}))))
```

Department of Computer Sciences

Example: UT Austin Villa Coachable Player

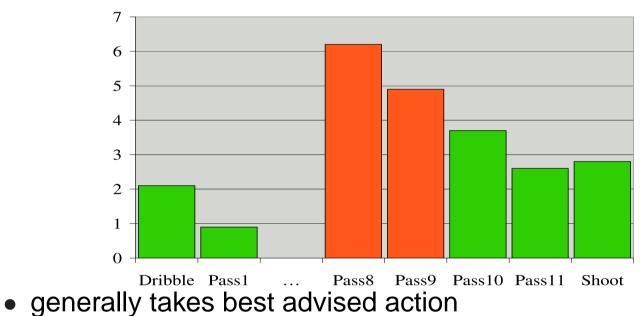
- Candidate actions are assigned values using a heuristic
 - Based on probability and value of success
- Before advice:



Department of Computer Sciences

Example: UT Austin Villa Coachable Player (contd.)

- Advice bumps values up (or down)
- When rule pass789 becomes active:



possible to override advice

Department of Computer Sciences

The UT Austin Villa Coach

- Opponent-specific advice
 - Learned defensive positioning advice
 - * predict opponent passes
 - * advise player to block pass
 - Learned offensive action selection
 - * mimic successful team's passing and shooting
 - Learned formations
 - * mimic successful team's positioning
 - average position + ball attraction
- Handcoded rules
 - encode general soccer strategy

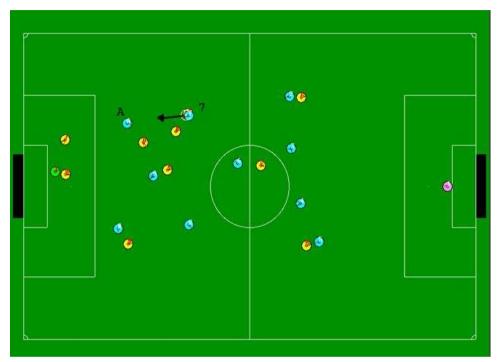
Department of Computer Sciences

The UT Austin Villa Coach (contd.)

- Game analysis
 - Given x and y coordinates
 - Detect high-level events: play-by-play
- Offline learning
 - Learn from logfiles
 - Online learning possible but difficult
 - All advice sent at start of game

Department of Computer Sciences

Predicting Agent Behavior

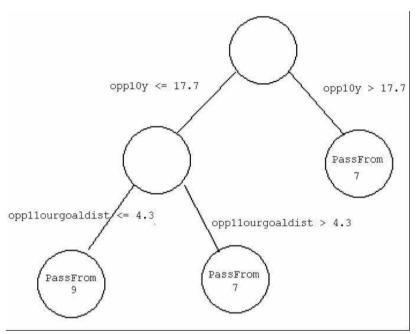


- Inputs: features of current world state
 - Player locations, distances to ball and goal, current score, etc.
- Classification: PassFromk
 - Example: PassFrom7 stored in opponent 10's training set

Department of Computer Sciences

The University of Texas at Austin

Model: Decision Trees



- Compile training instances
- Train decision tree for each modeled player
 - J48 algorithm (*weka*)
 - very much like C4.5

Department of Computer Sciences

Generating Advice

- Generate advice for each leaf node in tree
 - Action to counter predicted opponent action
 - Example:
 - * If opponent 10's y-coordinate is greater than 17.7, then position our player 4 between opponent 10 and opponent 7

Department of Computer Sciences

Incorporating Advice



• Thanks to the advice, defender 4 is ready to intercept a pass from opponent 7 to 10.

Department of Computer Sciences

Competition Results

Team	1st Round		2nd Round		3rd Round	
UT Austin Villa	0:19	7th	0:2	1st	8:2	1st
FC Portugal	1:21	8th	0:8	4th	7:3	2nd
Iranians	0:14	4th	0:5	3rd	3:2	3rd
Helli-Amistres	1:12	2nd	0:3	2nd	7:7	4th

- 1st place in 2003 RoboCup Coach Competition
- Only one other team used learning
- Further experiments statistical tie with second place

Department of Computer Sciences

Experimental Results

Opponent	w/ HC	None	Formation	Offensive	Defensive	Full
BoldHearts	N	-8.8	-3.3	-2.9	-2.9	-2.7
	Y	-6.8	-0.5	-1.4	-5.7	-6.5
Sirim	N	-4.1	2.6	1.2	0.9	1.7
	Y	-5.4	-1.6	-0.3	0.8	-0.4
EKA-PWr	N	-0.6	2.8	2.9	3.4	2.7
	Y	1.0	3.62	2	2.12	2.43

- Formation learning helps
- Handcoded sometimes hurts
- Offensive and defensive advice mixed
- Why?

Department of Computer Sciences

Changes for 2005

- What happened in the 2004 competition?
 - Online learning (k-armed bandit).
 - Two of top three never saw opponent.
- Make opponent modeling necessary
 - Test prediction, not exploitation
 - Make defects more obvious
 - Take the human out of the loop

Department of Computer Sciences

2005 Competition

- Detect patterns: simple exploitable behaviors
- Offline phase
 - Given one log file of base strategy
 - One log file for each base+pattern (labeled)
- Online phase
 - Play full match using standard coachable players
 - * send advice to facilitate detection
 - Opponent with two or more patterns activated
 - * base strategy may be different
 - Report active patterns
 - * more points for reporting sooner
 - * penalty for incorrect detection

Department of Computer Sciences

General Game Playing

- Challenge: play a game you've never played before
- Perfect information, deterministic
- Single or multi-player
- Simultaneous decision or turn-taking
- Yes: 8-puzzle, Tic-tac-toe, Go, Chess, Roshambo, Repeated Prisoner's dilemma
- No: Yahtzee, Backgammon, Battleship, Poker
- Given a game description in first-order logic
 - initial state
 - state transition function
 - legal moves
 - terminal and goal states

Department of Computer Sciences

General Game Playing (contd.)

- Competition at AAAI 05
 - Description of unseen game sent to agents
 - 30 seconds to think between moves
 - Illegal moves punished
 - Best score wins
- Agent modeling in GGP
 - Have perfect model of all but other agents
 - Only have raw features
 - Must figure out cooperative/competitive
- Winner gets \$10,000

Department of Computer Sciences