CS378 Autonomous Multiagent Systems Spring 2005

Prof: Peter Stone TA: Mazda Ahmadi

Department of Computer Sciences The University of Texas at Austin

Week 15b: Thursday, May 5th

Good Afternoon, Colleagues

Are there any questions?

The Tournament

- 1. RoboTrapper
- 2. ntUnited
- 3. Give and Go Goonies
- 4. Bollywood Ballers
- 5. CICA FC
- 6. Trilearn United
- 7. Unreal Madrid

Kulaga and Narula Knaack and Popova Chrien and Kloepping Lonkar and Sachandani Mittal and Tschetter Little and Rogers Lovitt, Mundra, and Reveley

The Tournament

- 1. RoboTrapper
- 2. ntUnited
- 3. Give and Go Goonies
- 4. Bollywood Ballers
- 5. CICA FC
- 6. Trilearn United
- 7. Unreal Madrid

Kulaga and Narula Knaack and Popova Chrien and Kloepping Lonkar and Sachandani Mittal and Tschetter Little and Rogers Lovitt, Mundra, and Reveley

- 8. RescueSpread
- 9. Ant sim

Kang and Srivastava Boothe and Broyles

Machine Learning

Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples \mapsto hypothesis

Machine Learning

Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples \mapsto hypothesis

Agent Learning

Policy: how to **act** (generate training examples)

neural network training, Q-learning, decision tree training, clustering, genetic algorithms, genetic programming,

Genetic algorithms

- Keep a population of individuals
- Each generation
 - Evaluate their fitness
 - Throw out the bad ones
 - Change the good ones randomly
 - Repeat

Genetic algorithms

- Keep a population of individuals
- Each generation
 - Evaluate their fitness
 - Throw out the bad ones
 - Change the good ones randomly
 - Repeat

The fitness function matters

- Playing against top-notch competition \rightarrow no info
- Playing against a single foe \rightarrow too brittle

Rosin and Belew

- Co-evolve 2 populations: gives software and test suites item "New genotypes arise to defeat old ones"
 - What about cycles?
- 2 techniques to keep diversity
 - Fitness sharing: prevent extinctions
 - Opponent sampling: use range of opponents to test
- Test on TTT, Nim (and go)
 - Millions of generations
 - Worse than perfect play

• Learn **collaborative** behaviors simultaneously

- Learn **collaborative** behaviors simultaneously
- Applied in pursuit domain among others

- Learn **collaborative** behaviors simultaneously
- Applied in pursuit domain among others
- Could be used in context of layered learning
 - Research here with Shimon Whiteson

- Learn **collaborative** behaviors simultaneously
- Applied in pursuit domain among others
- Could be used in context of layered learning
 - Research here with Shimon Whiteson
- Simultaneous learning by teammates could be thought of in this way as well.

3 vs. 2 Keepaway (joint with Rich Sutton)

- Play in a **small area** ($20m \times 20m$)
- Keepers try to keep the ball
- Takers try to get the ball
- Episode:
 - Players and ball reset randomly
 - Ball starts near a keeper
 - Ends when taker gets the ball or ball goes out
- Performance measure: average possession duration
- Use CMUnited-99 skills:

- HoldBall, PassBall(k), GoToBall, GetOpen

Available Skills (from CMUnited-99)

- HoldBall(): Remain stationary while keeping possession of the ball.
- **PassBall(**k**):** Kick the ball directly to keeper k.
- **GoToBall():** Intercept a moving ball or move directly towards a stationary ball.
- **GetOpen():** Move to a position that is free from opponents and open for a pass from the ball's current position (using SPAR (Veloso et al., 1999))

BlockPass(k**):** Get in between the ball and keeper k

The Keepers' Policy Space

The Keepers' Policy Space

Example Policies

Random: HoldBall or PassBall(k) randomly Hold: Always HoldBall Hand-coded: If no taker within 10m: HoldBall Else If there's a good pass: PassBall(k) Else HoldBall

Mapping Keepaway to RL

Discrete-time, episodic, distributed RL

- Simulator operates in discrete time steps, t = 0, 1, 2, ...,each representing 100 msec
- Episode: $s_0, a_0, r_1, s_1, \dots, s_t, a_t, r_{t+1}, s_{t+1}, \dots, r_T, s_T$
- $a_t \in \{\text{HoldBall}, \text{PassBall}(k), \text{GoToBall}, \text{GetOpen}\}$
- $r_t = 1$
- $V^{\pi}(s) = E\{T \mid s_0 = s\}$
- Goal: Find π^* that maximizes V for all s

Representation

s: 13 Continuous State Variables

- 11 distances among players, ball, and center
- 2 angles to takers along passing lanes

Function Approximation: Tile Coding

• Form of sparse, coarse coding based on CMACS (Albus, 1981)

• Tiled state variables individually (13)

Policy Learning

• Learn $Q^{\pi}(s, a)$: Expected possession time

Policy Learning

- Learn $Q^{\pi}(s, a)$: Expected possession time
- Linear Sarsa(λ) each agent learns independently
 - On-policy method: advantages over e.g. Q-learning
 - Not known to converge, but works (e.g. (Sutton, 1996))

Main Result

1 hour = 720 5-second episodes

Varied Field Size

		Testing Field Size		
Keepers		15x15	20x20	25x25
Trained	15x15	11.0	9.8	7.2
on field	20x20	10.7	15.0	12.2
of size	25x25	6.3	10.4	15.0
Benchmarks	Hand	4.3	5.6	8.0
	Hold	3.9	4.8	5.2
	Random	4.2	5.5	6.4

- Single runs
- learning specific to fields
 - mechanism generalizes better than policies

4 vs. 3 Keeper Learning

• Preliminary: taker learning successful as well

• You've read.

- You've read.
- You've reacted and formed opinions.

- You've read.
- You've reacted and formed opinions.
- You've spoken.

- You've read.
- You've reacted and formed opinions.
- You've spoken.
- You've written.

- You've read.
- You've reacted and formed opinions.
- You've spoken.
- You've written.
- You've coded for a task with no right answer and no way of knowing that you're done.

- You've read.
- You've reacted and formed opinions.
- You've spoken.
- You've written.
- You've coded for a task with no right answer and no way of knowing that you're done.

Do you like CS research?

1. Autonomous agents:

What is an agent?

- 1. Autonomous agents:
- 2. Agent architectures:

What is an agent? Subsumption, TCA

- 1. Autonomous agents:
- 2. Agent architectures:
- 3. Multiagent Systems:

What is an agent? Subsumption, TCA Overview, subsumption

- 1. Autonomous agents:
 - 2. Agent architectures:
 - 3. Multiagent Systems:

What is an agent? Subsumption, TCA Overview, subsumption

4. Communication and Teamwork: KQML, Joint Intentions

- 1. Autonomous agents:
- 2. Agent architectures:
- 3. Multiagent Systems:
- 4. Communication and Teamwork:
- 5. RoboCup case studies

UTCS

What is an agent? Subsumption, TCA

Overview, subsumption

ork: KQML, Joint Intentions

- 1. Autonomous agents:
- 2. Agent architectures:
- 3. Multiagent Systems:
- 4. Communication and Teamwork: KQML, Joint Intentions
- 5. RoboCup case studies
- 6. Swarms and ant-based approaches:

"Go to the Ant"

What is an agent?

Subsumption, TCA

Overview, subsumption

- 1. Autonomous agents:What is an agent?2. Agent architectures:Subsumption, TCA3. Multiagent Systems:Overview, subsumption4. Communication and Teamwork:KQML, Joint Intentions5. RoboCup case studies6. Swarms and ant-based approaches:
- 7. **Applications:** Air traffic, intersection traffic

1. Autonomous agents:What is an agent?2. Agent architectures:Subsumption, TCA3. Multiagent Systems:Overview, subsumption4. Communication and Teamwork:KQML, Joint Intentions5. RoboCup case studies6. Swarms and ant-based approaches:6. Swarms and ant-based approaches:"Go to the Ant"7. Applications:Air traffic, intersection traffic8. Game theory:Nash equilibrium

What is an agent? 1. Autonomous agents: 2. Agent architectures: Subsumption, TCA 3. Multiagent Systems: Overview, subsumption 4. Communication and Teamwork: KQML, Joint Intentions 5. RoboCup case studies "Go to the Ant" 6. Swarms and ant-based approaches: Air traffic, intersection traffic 7. Applications: 8. Game theory: Nash equilibrium 9. Statistical measurements: t-tests

What is an agent? 1. Autonomous agents: Subsumption, TCA 2. Agent architectures: 3. Multiagent Systems: Overview, subsumption 4. Communication and Teamwork: KQML, Joint Intentions 5. RoboCup case studies "Go to the Ant" 6. Swarms and ant-based approaches: 7. Applications: Air traffic, intersection traffic 8. Game theory: Nash equilibrium 9. Statistical measurements: t-tests 10. Agent modeling: coaching, RMM, tracking teams

What is an agent? 1. Autonomous agents: 2. Agent architectures: Subsumption, TCA 3. Multiagent Systems: Overview, subsumption 4. Communication and Teamwork: KQML, Joint Intentions 5. RoboCup case studies "Go to the Ant" 6. Swarms and ant-based approaches: Air traffic, intersection traffic 7. Applications: 8. Game theory: Nash equilibrium 9. Statistical measurements: t-tests 10. Agent modeling: coaching, RMM, tracking teams 11. Distributed rational decision making: voting...

What is an agent? 1. Autonomous agents: 2. Agent architectures: Subsumption, TCA 3. Multiagent Systems: Overview, subsumption 4. Communication and Teamwork: KQML, Joint Intentions 5. RoboCup case studies "Go to the Ant" 6. Swarms and ant-based approaches: Air traffic, intersection traffic 7. Applications: 8. Game theory: Nash equilibrium 9. Statistical measurements: t-tests 10. Agent modeling: coaching, RMM, tracking teams 11. Distributed rational decision making: voting... 12. Auctions: FCC spectrum auctions, TAC

What is an agent? 1. Autonomous agents: 2. Agent architectures: Subsumption, TCA 3. Multiagent Systems: Overview, subsumption 4. Communication and Teamwork: KQML, Joint Intentions 5. RoboCup case studies "Go to the Ant" 6. Swarms and ant-based approaches: Air traffic, intersection traffic 7. Applications: Nash equilibrium 8. Game theory: 9. Statistical measurements: t-tests 10. Agent modeling: coaching, RMM, tracking teams 11. Distributed rational decision making: voting... 12. Auctions: FCC spectrum auctions, TAC 13. Entertainment agents cobot, chatbots

What is an agent? 1. Autonomous agents: 2. Agent architectures: Subsumption, TCA 3. Multiagent Systems: Overview, subsumption 4. Communication and Teamwork: KQML, Joint Intentions 5. RoboCup case studies "Go to the Ant" 6. Swarms and ant-based approaches: Air traffic, intersection traffic 7. Applications: Nash equilibrium 8. Game theory: 9. Statistical measurements: t-tests 10. Agent modeling: coaching, RMM, tracking teams 11. Distributed rational decision making: voting... 12. Auctions: FCC spectrum auctions, TAC 13. Entertainment agents cobot, chatbots 14. Multiagent learning: layered learning, co-evolution

• What is an agent?

- I've been impressed by the levels of discussions we've had in class
- I'm happy with the progress in writing and speaking that many of you have made
- I'm proud of all of you for sticking with it through such a demanding course

- I've been impressed by the levels of discussions we've had in class
- I'm happy with the progress in writing and speaking that many of you have made
- I'm proud of all of you for sticking with it through such a demanding course

Surveys

- Mazda's and my surveys
- Positive and negative feedback useful

Surveys

- Mazda's and my surveys
- Positive and negative feedback useful
- Invitation to send more feedback by email

Surveys

- Mazda's and my surveys
- Positive and negative feedback useful
- Invitation to send more feedback by email
 - Should the course be run again?
 - How should it change?

Next Meeting

• The tournament!

Next Meeting

- The tournament!
- Friday, May 13th
- ACES 2.402
- 2pm-4pm

Next Meeting

- The tournament!
- Friday, May 13th
- ACES 2.402
- 2pm-4pm
- Come prepared to talk (informally) about your team

