CS378 Autonomous Multiagent Systems Spring 2005

Prof: Peter Stone TA: Nate Kohl

Department of Computer Sciences The University of Texas at Austin

Week 10a: Thursday, March 30th

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

- how do you find NEQ?
- what if there are multiple NEQ?

• Project progress reports due next week

- Project progress reports due next week
- An Al faculty candidate next Tuesday

- Project progress reports due next week
- An Al faculty candidate next Tuesday
- Lots of game theory resources

			Player	2
		Action	1	Action 2
Plavor 1	Action 1	8,16		4,0
TTayer I	Action 2	12,4		0,16

Mixed strategy equilibriumPlayer 2Action 1Action 1Action 18,164,0Player 1Action 2Action 212,40,16

• What if player 2 picks action 1 3/4 of the time?

Player 2 Action 1 Action 2 Action 1 8,16 4,0 Player 1 Action 2 12,4 0,16

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?

Player 2 Action 1 Action 2 Action 1 8,16 4,0 Player 1 Action 2 12,4 0,16

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2

Player 2 Action 1 Action 2 Action 1 8,16 4,0 Player 1 Action 2 12,4 0,16

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2

Player 2 Action 1 Action 2 Action 1 8,16 4,0 Player 1 Action 2 12,4 0,16

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2

Do actual numbers matter?

		P	Layer 2
		Action 1	Action 2
Plaver 1	Action 1	2,2	2,0
I I Gy CI I	Action 2	3,1	0,2

Player 2 Action 1 Action 2 Action 1 2,2 2,0 Player 1 Action 2 3,1 0,2

• Pure strategy Nash equilibrium?

Player 2 Action 1 Action 2 Action 1 2,2 2,0 Player 1 Action 2 3,1 0,2

• Pure strategy Nash equilibrium?

• Mixed strategy Nash equilibrium?

Player 2 Action 1 Action 2 Action 1 2,2 2,0 Player 1 Action 2 3,1 0,2

• Pure strategy Nash equilibrium?

• Mixed strategy Nash equilibrium?

Note: complexity unknown (likely in NP)

Tom's matrices

worker:

	Inspect	NoInspect
Work	WAGE-EFFORT_W	WAGE-EFFORT_W
Shirk	0	WAGE

supervisor:

	Inspect	NoInspect				
Work	VALUE-WAGE-EFFORT_I	VALUE-WAGE				
Shirk	-EFFORT_I	-WAGE				
The nash equilibrium is as follows:						
o(I) = EFFORT_W / WAGE						
p(W) =	EFFORT_I / WAGE					

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky

Want only S,S or B,B - 50% each

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?
- What are the Nash equilibria?

Luis Guimbarda on coalitions

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

		Card ?	
		R	F
Card 3	R	5,-5	1,-1
Odit G	F	-1,1	0,0
		Card ?	
		R	F
Card 1	R	-5,5	1,-1
	F	-1,1	0,0

• $3 \Rightarrow raise$

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

With more numbers and/or different payoffs, bluffing can be a part of the Nash Equilibrium

			Player	2
		Action	1	Action 2
Plaver 1	Action 1	1,0		3,2
1 1 00 01 1	Action 2	2,1		4,0

			Player	2
		Action	1	Action 2
Plaver 1	Action 1	1,0		3,2
1 1 00 y 01 1	Action 2	2,1		4,0

• Nash equilibrium?

			Player	2
		Action	1	Action 2
Plaver 1	Action 1	1,0		3,2
TTayOT	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?

			Player 2	
		Action	1 Action	2
Plaver	Action 1	1,0	3,2	
TTUYCT	Action 2	2,1	4,0	

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?

			Player	2
		Action	1	Action 2
Plaver 1	Action 1	1,0		3,2
	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)

			Player	2
		Action	1	Action 2
Plaver 1	Action 1	1,0		3,2
	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)
- Threats can stabilize a non-equilibrium strategy
- Change the **best response** of the other agent

				Player	2
			Action	1	Action 2
Plaver 1	Action 1	1,0		3,2	
	1 200 01 1	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 1?
- What would you do as player 2? (repeated game)
- Threats can stabilize a non-equilibrium strategy
- Change the **best response** of the other agent

Threats slides

• How useful is the concept of Nash equilibrium?

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning
 - Need to do well against some set of agents, never too poorly, and well against yourself.

• Tutorial slides

