CS378 Autonomous Multiagent Systems Spring 2005

Prof: Peter Stone

TA: Nate Kohl

Department of Computer Sciences
The University of Texas at Austin

Week 13b: Thursday, April 20th

Good Afternoon, Colleagues

Are there any questions?

Class Discussion

Mickey Ristroph on human modeling

Reinforcement Learning

• Slides from Tom Mitchell's ML book

		Player 2		
		Action 1	Action 2	
	Action 1	1,0	3,2	
Player 1				
Ü	Action 2	2,1	4,0	

		Player 2		
		Action 1	Action 2	
	Action 1	1,0	3,2	
Player 1				
	Action 2	2,1	4,0	

• Nash equilibrium?

			Player	2
		Action	1	Action 2
Player 1	Action 1	1,0		3,2
<i>J</i>	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?

			Player	2
		Action	1	Action 2
Player 1	Action 1	1,0		3,2
<i>J</i>	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 2?

		P1	ayer 2
		Action 1	Action 2
Player 1	Action 1	1,0	3,2
1 1 2 3 0 1 1	Action 2	2,1	4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 2?
- Threats can stabilize a non-equilibrium strategy
- Change the best response of the other agent

				Player	2
			Action	1	Action 2
Player	1	Action 1	1,0		3,2
J -		Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 2?
- Threats can stabilize a non-equilibrium strategy
- Change the best response of the other agent

Threats slides

How useful is the concept of Nash equilibrium?

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning
 - Need to do well against some set of agents, never too poorly, and well against yourself.