CS378 Autonomous Multiagent Systems Spring 2005

Prof: Peter Stone

TA: Nate Kohl

Department of Computer Sciences
The University of Texas at Austin

Week 15b: Thursday, May 4th

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

- Bob experimental results
- NcNeil BEATS
- How would you deal w/ more subtle/covert emotions
- rtNEAT other than NERO

Logistics

- Final reports due to me on Thursday
- Just one point off if turned in at my office by Friday at 3:30pm
 - Only if you're in class on Thursday!

Discussion

How would you deal w/ more subtle/covert emotions?

Discussion

- How would you deal w/ more subtle/covert emotions?
- Should agents model emotions?

• You've read.

You've read.

You've reacted and formed opinions.

- You've read.
- You've reacted and formed opinions.
- You've spoken.

- You've read.
- You've reacted and formed opinions.
- You've spoken.
- You've written.

- You've read.
- You've reacted and formed opinions.
- You've spoken.
- You've written.
- You've coded for a task with no right answer and no way of knowing that you're done.

- You've read.
- You've reacted and formed opinions.
- You've spoken.
- You've written.
- You've coded for a task with no right answer and no way of knowing that you're done.

Do you like CS research?

1. Autonomous agents:

What is an agent?

1. Autonomous agents:

2. Agent architectures:

What is an agent? Subsumption, TCA

1. Autonomous agents:

What is an agent? Subsumption, TCA

2. Agent architectures:

Overview, subsumption

3. Multiagent Systems:

1. **Autonomous agents:** What is an agent?

2. **Agent architectures**: Subsumption, TCA

3. **Multiagent Systems:** Overview, subsumption

4. Communication and Teamwork: KQML, Joint Intentions

1. **Autonomous agents:** What is an agent?

2. **Agent architectures**: Subsumption, TCA

3. **Multiagent Systems:** Overview, subsumption

4. Communication and Teamwork: KQML, Joint Intentions

5. RoboCup case studies

- 1. **Autonomous agents:** What is an agent?
- 2. **Agent architectures**: Subsumption, TCA
- 3. **Multiagent Systems:** Overview, subsumption
- 4. Communication and Teamwork: KQML, Joint Intentions
- 5. RoboCup case studies
- 6. **Swarms and ant-based approaches:** "Go to the Ant"

- 1. **Autonomous agents:** What is an agent?
- 2. **Agent architectures**: Subsumption, TCA
- 3. **Multiagent Systems:** Overview, subsumption
- 4. Communication and Teamwork: KQML, Joint Intentions
- 5. RoboCup case studies
- 6. **Swarms and ant-based approaches:** "Go to the Ant"
- 7. **Applications:** Air traffic, intersection traffic

Autonomous agents:

 Agent architectures:
 Multiagent Systems:
 Communication and Teamwork:
 RoboCup case studies

 Swarms and ant-based approaches:

 Applications:
 Applications:
 Air traffic, intersection traffic

 Agent architectures:

 Subsumption
 KQML, Joint Intentions
 Go to the Ant"

 Applications:

 Air traffic, intersection traffic

 Nash equilibrium

What is an agent? Autonomous agents: 2. Agent architectures: Subsumption, TCA 3. Multiagent Systems: Overview, subsumption 4. Communication and Teamwork: KQML, Joint Intentions 5. RoboCup case studies "Go to the Ant" 6. Swarms and ant-based approaches: Air traffic, intersection traffic 7. Applications: 8. Game theory: Nash equilibrium 9. Statistical measurements: t-tests

What is an agent? Autonomous agents: Subsumption, TCA 2. Agent architectures: 3. Multiagent Systems: Overview, subsumption 4. Communication and Teamwork: KQML, Joint Intentions 5. RoboCup case studies "Go to the Ant" 6. Swarms and ant-based approaches: 7. Applications: Air traffic, intersection traffic 8. Game theory: Nash equilibrium 9. Statistical measurements: t-tests

coaching, RMM, tracking teams

10. **Agent modeling:**

1. Autonomous agents:		\	What is an agent'
2. Agent architectures:		(Subsumption, TCA
3. Multiagent Systems:		Overv	view, subsumptior
4. Communication and	Teamwork:	KQN	/IL, Joint Intention
5. RoboCup case studie	es		
6. Swarms and ant-base	ed approacl	hes:	"Go to the Ant
7. Applications:	Air t	raffic,	intersection traffic
8. Game theory:			Nash equilibrium
9. Statistical measureme	ents:		t-test
10. Agent modeling:	coachin	g, RM	M, tracking team
11. Distributed rational of	decision ma	king:	voting

1. Autonomous agents:		What is an agent?
2. Agent architectures:		Subsumption, TCA
3. Multiagent Systems:	Over	view, subsumption
4. Communication and Te	eamwork: KQN	ML, Joint Intentions
5. RoboCup case studies		
6. Swarms and ant-based	d approaches:	"Go to the Ant"
7. Applications:	Air traffic,	intersection traffic
8. Game theory:		Nash equilibrium
9. <mark>Statistical measureme</mark> r	nts:	t-tests
10. Agent modeling:	coaching, RIV	IM, tracking teams
11. Distributed rational de	ecision making:	voting
12. Auctions:	FCC spect	rum auctions, TAC

1. Autonomous agents:	What is an agent?
2. Agent architectures:	Subsumption, TCA
3. Multiagent Systems:	Overview, subsumption
4. Communication and Te	amwork: KQML, Joint Intentions
5. RoboCup case studies	
6. Swarms and ant-based	approaches: "Go to the Ant"
7. Applications:	Air traffic, intersection traffic
8. Game theory:	Nash equilibrium
9. Statistical measurement	t-tests
10. Agent modeling:	coaching, RMM, tracking teams
11. Distributed rational dec	cision making: voting
12. Auctions:	FCC spectrum auctions, TAC
13. Multiagent learning:	multiagent RL, co-evolution
14. Entertainment agents	cobot, chatbots

1. Autonomous agents:	What is an agent?
2. Agent architectures:	Subsumption, TCA
3. Multiagent Systems:	Overview, subsumption
4. Communication and Te	amwork: KQML, Joint Intentions
5. RoboCup case studies	
6. Swarms and ant-based	approaches: "Go to the Ant"
7. Applications:	Air traffic, intersection traffic
8. Game theory:	Nash equilibrium
9. Statistical measurement	t-tests
10. Agent modeling:	coaching, RMM, tracking teams
11. Distributed rational dec	cision making: voting
12. Auctions:	FCC spectrum auctions, TAC
13. Multiagent learning:	multiagent RL, co-evolution
14. Entertainment agents	cobot, chatbots

The original question

• What is an agent?

- I've been impressed by the levels of discussions we've had in class
- I'm happy with the progress in writing and speaking that many of you have made
- I'm proud of all of you for sticking with it through such a demanding course

- I've been impressed by the levels of discussions we've had in class
- I'm happy with the progress in writing and speaking that many of you have made
- I'm proud of all of you for sticking with it through such a demanding course

THANKS!!!

Surveys

- Nate's and my surveys
- Positive and negative feedback useful

Surveys

- Nate's and my surveys
- Positive and negative feedback useful
- Invitation to send more feedback by email

Surveys

- Nate's and my surveys
- Positive and negative feedback useful
- Invitation to send more feedback by email
 - Should the course be run again?
 - How should it change?

Next Meeting

• The tournament!

Next Meeting

- The tournament!
- Tuesday, May 16th
- ACES 2,402
- 1pm-3pm

Next Meeting

- The tournament!
- Tuesday, May 16th
- ACES 2.402
- 1pm-3pm
- Come prepared to talk (informally) about your team