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Abstract

A group of agents can be used to perform patrolling tasks
in a variety of domains ranging from computer network ad-
ministration to computer wargame simulations. The multi-
agent patrolling problem has recently received growing at-
tention from the multi-agent community, due to the wide
range of potential applications. Many algorithms based on
reactive and cognitive architectures have been developed,
giving encouraging results. However, no theoretical analy-
sis of this problem has been conducted. In this paper, vari-
ous classes of patrolling strategies are proposed and com-
pared. More precisely, these classes are compared to the
optimal strategy by means of a standard complexity analy-
sis.

1. Introduction

To patrol is literally the act of walking or traveling
around an area, at regular intervals, in order to protect or su-
pervise it. This task is by nature a multi-agent task and there
are a wide variety of problems that may reformulate as par-
ticular patrolling task. As a concrete example, during the de-
velopment of the Artificial Intelligent component of an in-
teractive computer wargame, one may face the problem of
coordinating a group of units to patrol a given rough ter-
rain in order to detect the presence of “enemies”. The qual-
ity of the strategies used for patrolling may be evaluated us-
ing different measures. Informally, a good strategy is one
that minimizes the time lag between two passages to the
same place and for all places. Beyond simulators and com-
puter games, performing this patrolling task efficiently can
be useful for various application domains where distributed
surveillance, inspection or control are required. An exam-
ple of such a task is the identification of objects or people in
dangerous situations that should be rescued by robots [3].

Recently, many different architectures of multi-agent
systems have been proposed and evaluated on the patrolling
problem [1], giving encouraging results. In particular, it
was shown in [1] that very simple strategies implemented
through reactive agents with nearly no communication abil-
ity could achieve impressive results. Also, some authors of
these papers suggested that an approach based on partition-
ing the territory such that each agent patrols in its own re-
gion could also work well.

This paper proposes a theoretical analysis of the pa-
trolling problem addressing the following issues : do the ex-
isting algorithms generate optimal strategies ? Are there ef-
ficient algorithms generating near-optimal strategies ? Are
patrolling strategies based on partitioning the territory good
? What if the agents all follow the same circuit one behind
another ? To answer these questions, strategies are proposed
in this paper which are close to strategies humans could
build to patrol over a territory. They need a certain amount
of communication/synchronisation between agents. Which
multi-agent architecture should be chosen, how to imple-
ment the algorithms will not be our purpose here, and the
reader interested in these questions can refer to [7]. Our
primary purpose is to understand more deeply the the pa-
trolling problem.

To do this study, we will use the formal definition of the
patrolling problem introduced in [1], presented in section
2. After a short overview of the previous work, a first class
of strategies referred to as “cyclic strategies” is introduced
in section 4, and it is shown that there exists an O(n3) al-
gorithm generating such a strategy close to optimality. In
section 5, strategies based on partitioning will be analyzed
and compared to the previous. In section 6, the results ob-
tained in [1, 8] will be compared to ours. Finally, section
7 draws some conclusions and indicates directions for fu-
ture work.
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2. The patrolling task

Many tasks (such as rescuing, tracking, detecting, etc...)
can involve some sort of patrolling, which may exhibit
slightly different characteristics according to the domain
and circumstances. It is then necessary for our study to have
a more precise definition of patrolling.

In [1], it was shown that in many applications of the pa-
trolling problem, the territory could be represented by an
undirected graph. Given such a graph, the patrolling task
refers to continuously visiting all the graph nodes so as to
minimize the time lag between two visits. The edges may
have different associated lengths (weights) corresponding
to the real distance between the nodes.

From now on, the graph representing the territory will
be referred to as G(V, E), where V = {1 . . . n} is the set
of nodes and E ⊆ V 2 the set of edges of G. To each edge
(i, j) will correspond a weight cij representing the distance
between nodes. Note that the graph will be assumed to be
metric1 The time taken by an agent to move across an edge
(i, j) will be exactly cij . At time 0, r agents will be posi-
tioned on nodes of G. When the patrolling task starts, agents
will move simultaneously around the nodes and edges of the
graph according to a predetermined strategy.

Definition. The strategy of an agent is a function π :
N → V such that π(j) is the jth node visited by the agent.
A multi-agent strategy Π = {π1...πr}is simply defined as a
set of r single-agent strategies.

Knowing the strategy of agent k, we can now pre-
dict at what time a given node will be visited. For exam-
ple, agent k will visit node πk(0) at time 0. It will also
visit node πk(j) at time equal to the weight of the path
πk(0) . . . πk(j), which is

∑j−1
i=0 cπk(i)πk(i+1). For the sake

of clarity, the weight of a path s0...sm will be from now on
noted c(s0...sm). Also, the weight of a set of edges E′ will
be noted c(E′).

Our main goal is to find good patrolling strategies. We
thus need an evaluation criterion. We will use idleness cri-
teria introduced in [1].

Definition. Let r agents patrol a graph G according to a
multi-agent strategy Π. The idleness of a node i at time t

is the amount of time elapsed since that node has received
the visit of an agent. The idleness of all nodes at the be-
ginning of the patrolling task is set to 0. The worst idleness
is the biggest value of the idleness occurred during the en-
tire patrolling process for all nodes. It is noted WIΠ(G) or
just WIΠ when there is no ambiguity.

Figure 1 illustrates the calculation of the idleness and
worst idleness for a single agent and a very simple graph.

1 graphs in which the triangular inequality is not violated, that is, given
three nodes i, j, k connected by edges, we have cij + cjk ≥ cik.

Notice that strategies are not necessarily finite over time,
and that agents can patrol for ever on the graph. Of course,
if strategies are tested in a simulator, the patrolling task will
have to be stopped at one time. Thus, the worst idleness
measured during a simulation will be an approximation of
the true value.

1 2

Idl(1)=0 Idl(2)=0t=0

1 2

Idl(1)=0.9 Idl(2)=0.9t=0.9

1 2

Idl(1)=1.8 Idl(2)=0.8t=1.8

1 2

Idl(1)=0.2 Idl(2)=1.3t=2.3

Figure 1. Agent patrolling on a graph made of
two nodes and an edge of weight 1. Its strat-
egy is π = 1, 2, 1, 2, 1, . . .. The idleness of the
nodes are shown at various moments. Here,
WIπ = 2.

In this work, we chose the worst idleness criterion among
the various criteria defined in [1] mainly for simplicity rea-
sons : compared to the average idleness criterion, which is
the other main criterion defined in [1], the theoretical analy-
sis will be easier than with our criterion. In addition, the for-
mer is upper bounded by the latter. Thus, minimizing worst
idleness will also lead to a small average idleness.

3. Previous Work

Most work on the patrolling problem as formulated
above has been done by Machado et al. in [1]. In their ar-
ticle, they proposed several multi-agent architectures vary-
ing parameters such as agent type (reactive vs. cognitive),
agent communication (allowed vs. forbidden), coordina-
tion scheme (central and explicit vs. emergent), agent per-
ception (local vs. global), decision-making (random selec-
tion vs. goal-oriented selection). For each agent, the choice
of the next node to visit is basically influenced by two fac-
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tors: (1) node idleness, which can shared (generated by all
agents) vs. individual (corresponding a single agent vis-
its); (2) field of vision, which can be local (agent’s neigh-
borhood) or global (entire graph). The experiments they
conducted showed two interesting facts: first, agents mov-
ing randomly achieved very bad results. Second, agents
with absolutely no communication ability which strate-
gies consisted in moving towards the node with the highest
idleness performed nearly as well as the most complex al-
gorithm they implemented. In the experiments section,
we will the compare our approach to the two most ef-
ficient strategies of [1] : (a) The Conscientious Reac-
tive strategy, in which the next node an agent visits is
the one with the highest individual idleness from its lo-
cal neighborhood; (b) The Cognitive Coordinated strat-
egy, in which the next node an agent chooses to visit is the
one with the highest idleness from the whole graph, accord-
ing to the suggestions given by a central coordinator agent.
To reach the chosen node, agents move through the short-
est path leading to this node. The coordinator is respon-
sible for avoiding that more than one agent chooses the
same next node.More recently, a new approach based on re-
inforcement learning (RL) techniques was developped
in [8]. In their paper, Santana et al showed that a sim-
ple Q-learning algorithm could be used to train agents
to solve the patrolling problem efficiently. The results of
their algorithm will also be compared to ours in the experi-
ments section.

The strategies proposed in this paper are very different
from those proposed in previous work. They have not been
developped out of a specific architecture, or a communica-
tion scheme between agents. In fact, the implementation is-
sues of our strategies will not be tackled here. However, an
important work has been done concerning the implemen-
tation of the cyclic strategies in a multi-robot environment
[7].

The next section proposes a new class of strategies which
we called “cyclic strategies”.

4. The cyclic strategies

In this section, we will first show how cycles and closed-
paths can be used to create efficient single-agent patrolling
strategies. Then, an extension to the multi-agent case will
be proposed, and the resulting strategies will be shown to
be near-optimal.

4.1. Patrolling with a single-agent

Consider a single agent patrolling over an area. The sim-
plest strategy which comes to mind would be to find a cy-
cle covering all the area, and then to make the agent travel
around this cycle over and over. Applied to our case in

Figure 2. Example of multi-agent cyclic-
based strategy. Strategy of these robots
are π1 = 2, 1, 4, 5, 6, 4, 1, 3, 2, 1, 4 . . . and π2 =
6, 4, 1, 3, 2, 1, 4, 5, 6, 4, . . .

which areas are represented by nodes in a graph, the notion
of cycle is too restrictive. In fact, in the graph-theory ter-
minology, a cycle is a path starting and ending on the same
node and covering each edge at most once. However, for
some graphs such as the one on figure 2, there does not ex-
ist a cycle covering all nodes. Instead of using cycles, we
will have to use closed-paths, which are paths starting and
ending on the same node and covering edges possibly more
than once. A closed-path is usually represented by a list of
nodes, beginning and ending with the same node. On fig-
ure 2 for example, the closed-path s = 1, 3, 2, 1, 4, 5, 6, 4, 1
covers all nodes, and turning over s indefinitely seems to
be a good strategy for a single-patrolling problem. Single-
agent strategies consisting in traveling along a closed-path
indefinitely will be called single-agent cyclic strategies. The
strategy of agent on figure 1 is a single-agent cyclic strat-
egy based on the closed-path 1, 2, 1. The bottom agent on
the right of figure 3 is also following a cyclic strategy based
on the closed-path 4, 5, 6, 5, 4.

Before extending this idea to the multi-agent case, let us
concentrate on two questions: 1) which closed-path should
be chosen in a single-agent patrolling problem, and 2) are
strategies based on closed-paths optimal with a single-agent
? To answer the first question, let us notice that the time
taken for a single agent patrolling around a closed-path to
visit a node twice is at most equal to the length of this
closed-path. Therefor, with a single agent patrolling around
a closed-path s, the worst idleness will be equal to the
length of s. Finding the smallest closed-path covering all
nodes will thus result in the best possible strategy among all
single-agent cyclic strategies. Let us show how this prob-
lem relates to the well known Traveling Salesman Problem
(TSP),

The traveling salesman problem is a combinatorial opti-
mization problem which was originally formulated as fol-
lows: given a set of cities on a map, find the shortest cy-
cle such that each city is visited exactly once. This prob-
lem was soon extended to metric graphs, and became: given
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a metric graph G(V, E) with edges weighted according to
cij , find the shortest closed-path such that each node is vis-
ited at most once [6]. Christofides [5] proposed an algorithm
which generates in O(n3) a cycle (or a closed-path for the
metric graphs case) whose length is less than 3

2 times the
shortest cycle (or closed-path). From now on, STSP will de-
note the closed-path being the optimal solution to the TSP,
whereas SChr will denote the closed-path obtained by the
algorithm of Christofides. The following holds:

Theorem 1. For a single agent, the optimal strategy in
terms of worst idleness is the cyclic-based strategy based on
STSP .

We already knew that the cyclic strategy based on STSP

was the best possible strategy among all single-agent cyclic
strategies. Note that this theorem states it is also the best
strategy among all possible single-agent strategies. Due to
the lack of space, the proof of this theorem which can be
found in [4] will be omitted here. Note that this result will
only be needed in section 5 to demonstrate theorem 2. An
immediate corrolary of this theorem is that the worst idle-
ness of a single-agent cyclic strategy based on SChr will be
at most 3

2 times the worst idleness of the optimal strategy.
In addition, the SChr closed-path is calculable in O(n3),
whereas the calculation of STSP is NP-complete. In prac-
tice, there exists many efficient algorithms which can effi-
ciently build closed-paths very close to STSP using heuris-
tic algorithms.

4.2. Extending to multi-agent case

One way to extend single-agent cyclic strategies to the
multi-agent case is to arrange agents on the same closed-
path such that when they start moving through that path all
in the same direction, they keep an approximately constant
gap between them. This leads to the following definition:

Definition. Let S = s0...sm be a closed-path visiting all
nodes of a graph G. The strategy Π = {π1...πr} is a multi-
agent cyclic strategy based on S iff there exists d1...dr ∈ N

such that πi(k) = s(k+di) mod m. The set of all multi-agent
cyclic strategies will be referred to as Πcyclic.

Figure 2 illustrates this with a 2-agent cyclic strategy
based on the closed-path 2, 1, 4, 5, 6, 4, 1, 3, 2, such that
d1 = 0 and d2 = 4.

How does the worst idleness evolve when the number
of agents grows ? The following lemma shows that if r

agents follow a multi-agent cyclic strategy Π and if d1...dr

are well chosen, then the worst idleness will be approxima-
tively r times lower than the worst idleness obtained by a
single agent patrolling around the same closed-path.

Lemma 1. Let S = s0 . . . sm be a closed-path cover-
ing each node of G such that there exists a node x ∈ V

covered exactly once by S. Let l = c(S) be the length

of the closed-path. There exists a multi-agent cyclic strat-
egy Π = {π1 . . . πr} based on this closed-path such that
l
r
− max{cij | (i, j) ∈ ES} ≤ WIΠ ≤ l

r
+ max{cij |

(i, j) ∈ ES}. Here, ES refers to the set of edges present in
S. Note that l is also the worst idleness of the single-agent
cyclic strategy based on S.

Proof. Let S = s0...sm, the closed-path covering G.
Consider two agents moving around S such that at time 0,
agent 1 is positioned on node s0 and agent 2 is on node sd.
Let l(i, j) =

∑j−1
k=i csksk+1

. Thus, l(0, d) is the time taken
by agent 1 starting at s0 to reach node sd. Note that at any
time t, the node visited by agent 2 will also be visited by
agent 1 at time t + l(0, d). Of course, a node visited at time
t by agent 1 will be visited by agent 2 at time t + l(d, m).
Therefor, we have WI{π1,π2} ≤ max{l(0, d), l(d, m)}.
In addition, if agent 2 visits node x at time tx, because
node x is present only once in S, the next visit of the an
agent to node x will occur exactly at tx + l(0, d). Thus
WI{π1,π2} = max{l(0, d), l(d, m)}.

Let us generalize this to r agents. We get WIΠ =
max{l(0, d1),l(d1, d2), . . . , l(dr−1, m)}. We will now have
to choose the values of dk such that the worst idleness is as
low as possible. By setting each dk to the greatest integer
verifying l(0, dk) ≤ k× l(0,m)

r
, we get d0 = 0 and dr = m.

We can now write WIΠ = maxk=0..r−1 l(dk, dk+1). Let
us now calculate upper and lower bounds to l(dk, dk+1) =

l(0, dk+1)−l(0, dk) by showing that k× l(0,m)
r

−max{cij |

(i, j) ∈ ES} ≤ l(0, dk) ≤ k × l(0,m)
r

, thus (k + 1) ×
l(0,m)

r
−max{cij | (i, j) ∈ ES} ≤ l(0, dk+1) ≤ (k + 1)×

l(0,m)
r

. Combining these two equations, we get for all k :
l
r
−max{cij | (i, j) ∈ ES} ≤ l(dk, dk+1) ≤

l
r
+max{cij |

(i, j) ∈ ES}. Because WIΠ = maxk=0..m−1 l(dk, dk+1),
the lemma follows.

4.3. Optimality of cyclic strategies

We have shown previously that cyclic strategies based on
STSP were optimal for single agents. We will now show a
similar result for the multi-agent case. From now on, opt

will refer to the worst idleness of the optimal strategy.

Theorem 2. Let G=(V,E) a connected metric graph and
let r agents patrolling on it. Let ΠChr be the multi-agent
cyclic strategy based on SChr. We have WIΠChr

≤ 3 ×
opt + 4 × maxij{cij}.

Note that if all edges of G have the same length, then
opt ≥ maxij{cij}, and therefor, WIΠChr

≤ 7 × opt. To
prove this theorem, we first need to demonstrate the follow-
ing lemma.

Lemma 2. For any multi-agent strategy Π, there exists
multi-agent strategy Π′ = {π′

1, ..., π
′
r} such that for each

k ∈ 1..r, each strategy π′
k consists in moving through a
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path sk
1 . . . sk

mk
of mk nodes forwards and backwards in-

definitely, and such that WIΠ′ ≤ 2 maxk c(sk
0 . . . sk

mk
) ≤

2 × WIΠ .

Proof. Consider the multi-agent strategy Π = {π1...πk}.
Let sk

1 . . . sk
mk

be the list of nodes visited by agent k ac-
cording to strategy πk between time t = 0 and time
t = WIΠ. Clearly, ∪k=1..r{s

k
1 , . . . , s

k
mk

} = V . Let
π′

k = sk
1 . . . sk

mk
, sk

mk−1, . . . , s
k
1 , . . . be the strategy con-

sisting in moving forwards and backwards through
sk
1 . . . sk

mk
. Time taken by agent k using strategy π′

k to
visit a node twice is at most 2 × c(sk

1 . . . sk
mk

). Thus,
WIΠ′(G) ≤ 2 maxk c(sk

1 . . . sk
mk

) ≤ 2 × WIΠ(G).
Now the theorem can be proven. The preceding lemma

will be used on the optimal strategy to build a set of
paths, which will be combined to form a closed-path lead-
ing to an near optimal strategy.

Proof of the theorem. Consider an optimal strat-
egy Π. We can tell with lemma 2 that there exists a
strategy Π′ = {π′

1, ..., π
′
r} in which each strategy π′

k con-
sists in moving through a path sk

1 . . . sk
mk

and such that
WIΠ′

2 ≤ maxk{c(s
k
0 ...sk

mk
)} ≤ opt. Let us first show that

there exists a closed path S covering all nodes and such
that c(S)

2r
≤ maxk{c(sk

0 ...sk
mk

)} + maxij{cij}.
Let U be the set of edges present in these paths; be-

cause these paths cover all nodes of G, by adding at most
r − 1 edges to U , we obtain a set U ′ of edges such that
the graph (V, U ′) is connected. Clearly, there exists a tree
T ⊆ U covering all nodes. In addition, c(T ) ≤ c(U ′) ≤∑r

k=1 c(sk
0 ...sk

mk
) + (r − 1) × maxij{cij}. There exists a

closed-path S covering all nodes obtained by exploring the
tree T in a depth-first manner (thus twice each edge), such
that c(S)

2r
= c(T )

r
≤ maxk{c(s

k
0 ...sk

mk
)}+ maxij{cij}. Re-

member that the closed-path SChr obtained by Christofides
algorithm is at most 3

2 times longer than the shortest closed-
path covering G. Thus, we have: c(SChr) ≤ 3

2 c(S) ≤
3r×maxk{c(sk

0 . . . ck
mk

)}+3r×maxij{cij} ≤ 3r×opt+
3r × maxij{cij}.

With lemma 1, we can generate from SChr a multi-
agent cyclic-based strategy ΠChr such that WIΠChr

≤
c(SChr)

r
+ maxij{cij} ≤ 3.opt + 4. maxij{cij}.

It is clear that because of the maxij{cij} in the theorem,
cyclic strategies will not be suited for graphs containing
long edges. For this reason, let us study another kind of
strategies, which we will call partition-based strategies.

5. Partition-based strategies

Another very intuitive way to make r agents patrol over
a territory would be make a partition of this territory into r

disjoint regions, and to have each agent patrolling inside a
single region.

1
2

3

4

6

5

1
2

3

4

6

5

Figure 3. On the left: cyclic strategy Πcyc =
{πcyc1, πcyc2} and to the right: partition based
strategy ΠP = {πP1

, πP2
} with two agents.

We have πcyc1 = 1, 2, 3, 4, 5, 6, 1, 2, 3 . . . and
πcyc2 = 4, 5, 6, 1, 2, 3, 4, 5, 6, 1 . . .. Also, πP1

=
1, 2, 3, 2, 1, 2, . . . and πP2

= 4, 5, 6, 5, 4, 5, . . ..
Thus, WIΠcyc

= 3 and WIΠP
= 4.

From now on P = {P1...Pr} will denote a partition
of V . Thus, P1 ∪ . . . ∪ Pr = V and Pi ∩ Pj = ∅. Also,
{G1 . . .Gr} will refer to the subgraphs induced by the par-
tition. Thus, Gi = (V ∩ Pi, E ∩ (Pi × Pi)).

Definition. A multi-agent strategy Π = {π1 . . . πr} is
said to be based on a partition P iff each agent k follow-
ing strategy πk visits the nodes of a single region of P . The
class of all strategies based on partition P is referred to as
ΠP.

The previous definition does not specify what moves
agents should make in their own region. Given a partition
P , how should agents behave inside their region ? The fol-
lowing lemma brings an answer.

Lemma 4. For k ∈ 1..r, let πk be the single-agent cyclic
strategy based on the TSP of Gk. Then, Π = {π1...πr} is
the optimal strategy based on partition P .

Proof. For any strategy Π = {π1...πr} based on parti-
tion P , each node of G will not be visited by more than one
agent. Thus, WIΠ(G) = maxk{WIπk

(Gk)}. Therefor, a
set of r optimal single-agent strategies in P1...Pr is an opti-
mal multi-agent partition-based strategy. Theorem 1 stated
that single-agent cyclic strategies based on TSP were opti-
mal. Thus, by combining such single-agent strategies, we
will obtain an optimal partition-based strategy.

5.1. Comparing cyclic and partition-based strate-
gies

Figure 3 illustrates how both strategies perform on a cir-
cular graph with two agents. On this example, the cyclic
strategy wins. Consider now figure 2. On this figure, if the
distance between node 1 and 4 was huge, the cyclic strat-
egy would be disastrous, as both agents would spend most
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time crossing the edge (1, 4). However, a strategy based on
the partition {{1, 2, 3}, {4, 5, 6}}would not have this prob-
lem. Thus, it seems that on graphs having “long corridors”
connecting two sub-graphs as on figure 2, partition-based
strategies could be better.

Most of the proofs will be omitted in this section, due to
lack of space. However, the complete proofs can be found
in [4]. The following theorem compares the values of the
worst idleness of the optimal cyclic strategy and the opti-
mal partition-based strategy. Here optΠCycle

and optΠP
re-

fer to the worst idleness of the optimal cyclic strategy and
of the strategies based on partition P .

Theorem 3. optΠcycle
≤ optΠP

+ 3 × maxij{cij}

sketch of the proof. The previous lemma showed that
the optimal partition-based strategy was composed of r

single-agent cyclic strategies based on TSP. Let Sk
TSP de-

note the closed-path being the solution to the TSP on sub-
graph Gk. By joining together these closed-paths, it is pos-
sible to build a closed-path S covering all nodes such that
c(S) ≤

∑r

k=1 c(Sk
TSP ) + 2r × maxij{cij}. Therefor,

we have c(S) ≤
∑r

k=1 c(Sk
TSP ) + 2r × maxij{cij} ≤

r × maxk∈1..r{c(Sk
TSP )} + 2r × maxij{cij} ≤ r ×

optΠP
+2r×maxij{cij}. From closed-path S, we can build

a multi-agent cyclic strategy ΠS using lemma 1. WIΠS
≤

c(S)
r

+maxij{cij} ≤ optΠP
+3×maxij{cij}. Thus, given

any partition P , there exists a cyclic strategy ΠSverifying
the previous equation.
To conclude this section, we can say that cyclic strategies
are to be prefered when graphs do not have long edges con-
necting far regions. Otherwise, building a partition of the
graph and making agents follow cyclic strategies based on
the TSP of the regions is a good solution. The following cor-
rolary is a “computable” version of the main theorem.

Corrolary. Let P = {P1, ..., Pr} a partition of V . It is
possible to compute in O(n3) a cyclic strategy ΠChr such
that WIΠChr

≤ 3
2optΠP

+ 4 × maxij{cij}.

6. Experiments

Six different graphs (fig 4) were proposed in [9] as
a benchmark for the patrolling problem. To evaluate the
cyclic strategy on these graphs, the TSP of each graph
was computed using the open-source software “Concorde”
2 which contains efficient heuristic algorithms which are in
practice much faster than the O(n3) Christofides algorithm
[5], and often come much closer to the optimal. Then, the
simulator described in [1] was used to measure the idleness
of agents patrolling around the obtained closed-paths.

The graphs on figure 5 show the performance of the
strategies described in [1] and in [8] on the six graphs for

2 available at www.math.princeton.edu/tsp/concorde.html

Figure 4. Graphs used during experiments

5 and 15 agents per graph. On each graph, the cyclic strat-
egy obtains the best results. When the number of agents in-
crease largely above 15, all strategies become equivalent.

7. Conclusion

We have shown various theoretical results for the pa-
trolling problem. First, we have shown that the single-agent
patrolling problem could be solved with a TSP approach.
Then, we defined the class of cyclic strategies, based on an
extension of this approach to more than one agent. An ap-
proximation result was obtained for this class, showing that
in O(n3), a close to optimal strategy could be obtained.

The strategies based on a partitioning of the graph were
also studied. A surprising result was obtained : except when
maxij{cij} is big, the cyclic strategies based on TSP were
shown to be better than any partition based strategy. How-
ever, when graphs have long “tunnels” separating regions,
the cyclic strategies are not well suited. Finally, some ex-
periments were conducted to compare the state-of-the-art
patrolling algorithms to the cyclic strategy based on TSP.
The results are encouraging, but would need to be pursued
on more graphs.

Many other interesting theoretical results have been ob-
tained and will be published soon, in particular concern-
ing other kind of strategies offering a good compromise be-
tween cyclic strategies and partition based strategies.

The cyclic strategy based on TSP have already been
to implemented in a multi-robot patrolling problem with
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Figure 5. Idleness on different graphs with 5 agents (left) and 15 agents (right). The strategies com-
pared here are the Conscientious Reactive (CR), the Cognitive Coordinated (CC), the reinforcement
learning (RL) and the cyclic strategy (CS)

a noisy environment [7]. Many modifications had to be
brought to the algorithm in order to synchronize de robots. It
was shown that the cyclic strategy still performs best when
the noise level is low.
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